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Introduction I: geometry for higher-spin fields?

Central object in Maxwell, Yang-Mills (spin 1) and Einstein (spin 2) theories

IS

A F
the curvature : { “H TRV
huy — Ryuv,po -

It gives us both dynamical informations and geometrical meaning.

Is it possible to find any similar description for higher-spins?



Free propagation of massive irreps of the Poincaré group can be described by

Spin-s, massive boson — symmetric rank-s tensor @ s ..
spin-(s + 1/2), massive fermion — symmetric rank-s spinor-tensor v

satisfying the conditions [Fierz, 1939]:
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At the Lagrangian level the problem is
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= how to implement the conditions [

Typically, known solutions

involve auxiliary fields,

are not simple deformations of the massless theory.



Introduction III: the examples of spin 1 and spin 2

Spin 1 and spin 2: massive theory as

quadratic deformation of the geometric theory:

» Spin 1 [Procal

1
£(m = O) = _ZF/U/FMV

1 1
ﬁ(m) = _ZF/U/FMV — EmQAMA'u,

Oy, F" — m2A* = 0,
9,0,F" =0 —9,A" =0

» Spin 2 [Fierz-Pauli]

1 1
2 2
1 1
L(m) = EhW{(RW _ EUWR) —m?2 \(h”’/ — haa)J }

Fierz—Pault mass term

1
O (RM — S R) = 0 — 0, (W = 9" h°,) = 0

o, ht'" — 0"h* , = 0 Fierz-Pauli constraint




Introduction 1V: difficulties of the Fronsdal’s theory

“Canonical” description of higher-spin gauge fields encoded in the
Fronsdal’s equation (1978):

F=0Op—00-p+08%" =0

> gauge invariant under 6 p = AN iff N (= AN*,) =0,

<> LLagrangian description iff " (= goaﬁaﬁ) = 0.

Gauge invariance with a traceless parameter
=

the “Einstein tensor” does not need to be (and is not) divergenceless

1 1
O - {F — “nFY = ZnF',
{ 5 } 5

not possible to extend the results of spin 1 and spin 2

[Aragone-Deser-Yang 1987]



To try and reproduce the ‘‘geometric construction” we need the following:

» Candidate tensors to play the role of higher-spin curvatures.

» Candidate Ricci tensors and Dirac tensors, to define the free equations
of motion. These have to be consistent with the known result for the
non-geometric, constrained theory of Fronsdal.

» Bijanchi identities to be satisfied by the generalised Ricci tensors.

» Suitable mass deformations, such that the on-shell consequence of the
Bianchi identity imply that the system reduces to the Fierz form.
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I. Higher-spin curvatures
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Higher-spin curvatures

Following de Wit and Freedman (1980), introduce higher-spin curvatures:
< Spin 1 [Maxwell]: F,, = 0,A, —9d,A, s. t. 0F,, =0 under § A, = 9, N\ ;
0-F'=20
(but also s =3/2)
<> Spin 2 [Einstein]: R%; , = 0,5 — 0,5, s. t. dR% =0 under §hy = O\, + O \y;
Ro‘ﬁw =Ruw=0

(but also s =5/2)

=  Spin 3 [de Wit - Freedman]: 0pasy = 0alN\gy + 0Nary + 07Nsa

1
rf(),Ozﬂ’V = OpPapy — (80690pﬁ7 + Osppay + a’ysoaﬁp) ,

2) _ (1) . 1 (1)
rpa,aﬁv T 8Pra,a57 > (aara,pﬂ,y +...),

) =9,r? L o.r® 3
rPUTaOéﬁ’Y o 8pr07',aﬁ'y o g(aarm_ypﬁ,y + ... ) , S. t. 5I—p0‘7',a,3'y =0.

but also s =7/2
(
Curvature

= gauge-invariant top of this hierarchy of connexions:
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Higher-spin curvatures

Following de Wit and Freedman (1980), introduce higher-spin curvatures:
< Spin 1 [Maxwell]: F,, = 0,A, —0,A, s. t. 0F, =0 under § A, = I, N\ ;
o-FF=20

(but also s =3/2)

<> Spin 2 [Einstein]: R%; , = 0,5 — 0,5, s. t. dR% =0 under §hy = O\, + O \y;
R0y = Ruv =0

(but also s =5/2)

=  Spin 3 [de Wit - Freedman]: 0pasy = 0alN\gy + 0Nary + 07Nsa

1
r/(),ozﬁ’y = Oppapy — (8(19%57 + 9pppay + 8790015,0) ;

@ _ar® _ Lo
I_PU’O‘W o 8pr0,0é57 ) (Ba ra,pﬂv +)
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but also s =7/2
(
Curvature

= gauge-invariant top of this hierarchy of connexions:

NE)

) g =R . = BoM?
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Higner-spin curvatures

Following de Wit and Freedman (1980), introduce higher-spin curvatures:
< Spin 1 [Maxwell]: F,, = 0,A, —0,A, s. t. 0F, =0 under § A, = O, N\ ;
o-FF=0

(but also s = 3/2)

s> Spin 2 [Einstein]: R%; , = 0,I'G — 0,5, s. t. dR% =0 under dhy = Ou/\, + O \y;
R0y = Ruw =0

(but also s =5/2)

=  Spin 3 [de Wit - Freedman]: 0pagy = 0alN\gy + 03Nary + 0Nga | A" , # 0!

1
r;(),oaﬁv — OpPapy — (80490/),6"7 + 8B¢pa7 + ays%ﬂp) )

2  _ (1) 1 (1)
I—pa,aﬁy — apl_o'7aﬁry - 5(8ara,pﬁfy + ce ) ,

3 _ a2 1 (2) 3
o oy = O g — g(aarmm +.) st or) o =0

(but also s =7/2)
Curvature

= gauge-invariant top of this hierarchy of connexions:
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) g =R o = EoM?
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Higner-spin curvatures

Following de Wit and Freedman (1980), introduce higher-spin curvatures:
< Spin 1 [Maxwell]: F,, = 0,A, —0,A, s. t. 0F, =0 under § A, = O, N\ ;
o-FF=0

(but also s = 3/2)

s> Spin 2 [Einstein]: R%; , = 0,I'G — 0,5, s. t. dR% =0 under dhy = Ou/\, + O \y;
R0y = Ruw =0

(but also s =5/2)

=  Spin 3 [de Wit - Freedman]: 0pagy = 0alN\gy + 03Nary + 0Nga | A" , # 0!

1
rf,,im = Oppapy = (Bappsy + OpPpay + OrPagp)

@ 5 1) 1 (1)
U poiapy = apro,aﬁv N 5(8aro,pﬁv +-)

@ a0 1 ) 3
M) s =02 o 3(aar077pm +..), st er) =0

(but also s = 7/2) (curvatures = no constraints — Fronsdal’s theory is not geometric)

Curvature
= gauge-invariant top of this hierarchy of connexions:

NE)
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Higner-spin curvatures

Following de Wit and Freedman (1980), introduce higher-spin curvatures:
< Spin 1 [Maxwell]: F,, = 0,A, —0,A, s. t. 0F, =0 under § A, = O, N\ ;
o-FF=0

(but also s = 3/2)

s> Spin 2 [Einstein]: R%; , = 0,I'G — 0,5, s. t. dR% =0 under dhy = Ou/\, + O \y;
R0y = Ruw =0

(but also s =5/2)

=  Spin 3 [de Wit - Freedman]: 0pagy = 0alN\gy + 03Nary + 0Nga | A" , # 0!

1
rf,,im = Oppapy = (Bappsy + OpPpay + OrPagp)

@ 5 1) 1 (1)
U poiapy = apro,aﬁv N 5(8aro,pﬁv +-)

@ a0 1 ) 3
M) s =02 o 3(aar077pm +..), st er) =0

(but also s = 7/2) (curvatures = no constraints — Fronsdal’s theory is not geometric)

Curvature
= gauge-invariant top of this hierarchy of connexions:
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) g =R o = BoM?
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II. Geometric massive theory I: bosons
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Candidate Ricci tensors (s = 3)

Spin-3 curvature: saturate three indices to restore the symmetries of
¢N1M2M3:

/
Rplpzpa,uluzua — 0-R",

restore dimensions of a relativistic wave operator, introducing non-localities:

1
9 R’ — —0-R',
]

so defining the simplest candidate Ricci tensor. [D.F. - A. Sagnotti, 2002]

This possibility is highly non-unique — infinitely many -more singular- ones:

1 / 1 / 82 /]
CH9R — Ay(a)= —89-R' +a’d-R",
] n DQ

Ay(a) =0

» Meaning?

» [ agrangian origin (i.e. Bianchi identity)?



Geometric Lagrangians for massless bosons

Spin s: the most general candidate “Ricci” tensor

Asp(a;]_, ...ak,...)

is such that, for almost all choices of a1, ...ak,... :

» (CONSISTENCY') the equation A, = 0 implies the compensator equation
F —308%a, =0,

with da, = A’ = Fronsdal form, after partial gauge-fixing.

» (LAGRANGIAN) it is possible to define an identically divergenceless Ein-
stein tensor &, s.t.

1



Mass deformation for bosons I

<>  Spin 2:
Ruw — 20w R — m2(hyw — nuwh’) = 0.
=
My = by — nuwh’, N 9-h, —0,h =0,
Fierz—Pauli mass term Fierz—Pauli constraint

< Spin s: | General idea: higher traces should appear in the mass term |

(a1, ...ap,...) —m?M, =0

=

Mgy =) Mn*ol, - 9-p —0¢p' =0,

\ 7

generalised F'P mass term FP constraint

How 7



Mass deformation for bosons II: spin 4

e =0-¢ — 0y’

» We look for Ai, Ao s.t.

8-My, =0 {o+ Mne + Xan?0"} = py + knul,;
in this way
0 (€, (a1, a2}) — m2 Mo, )} = 0 —

po +knu, =0 —
M@:O —

|
o

Ho

» The condition u, = 0 implies in turn  A{, ({a1, a2}) = 0  V{a1, az}
» From the resulting equation (A1 = —1, A\» = —1)

A, ({a1, a2}) —m?(p—ne' — ") =0 —
SOH -0 — 90/ -0 —
A@({ala CLQ}) = O \V/{a,]_, CLQ}

the last condition needed to put the system in the Fierz form.




Mass deformation for bosons III

= The general solution is

L(m) = %cp{&p({al, e R R mQMgp},

where, for s =2n or s =2n+1

1 1
My =¢—np =n?¢" = 2np" — - — n o 3)”77”90[”] -

=> The structure of the mass term is to be understood such that

8- My, = py + kinpl + oo+ k™ plm 4+ 00
so that 0 - M, = O implies the basic, Fierz-Pauli constraint
po =0-p —0p" =0,

together with all its consistency conditions: Mg[om] =0 Vm.

o¢ T he massive theory is not unique:
e The Fierz-Pauli constraint implies AL, ({ax}) = 0, V({ar})
e Under this condition all traces of ¢ can be shown to vanish on-shell

e thisimpliesin turn A,({ar}) = O¢, V({ar}), and then any Lagrangian
equation can be reduced to the Fierz system.



III. Geometric massive theory II: fermions
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The example of spin 3/2

Spin-3/2 massive theory as

quadratic deformation of the geometric, Rarita-Schwinger theory:

» Spin 3/2

Lim=0) = _§,(R" ~ >+ R) + he

Lom) = S0 ARY — 4" R) — m @ — 4 )} + he

0 (R! — A" R) = 0 — 8, (4" — 7 ) =0

oYt— Py =0 (fermionic) Fierz-Pauli constraint




Mass deformation for fermions

In the general case the fermionic analogue of the Fierz-Pauli constraint is

hy = 09— P — 9’ =0

< Spin 5/2:  We look for a mass term M, s. t.

Ey —m@W — Xy ¥ —dany’) =0, = 0-My = py + p1v fiy = 0.
M,

The unique solution is

1 -
L= 00 —m@W— v ¢ - nv)} + he..

>  Spin s+ 1/2: The same procedure leads to the general solution

1 - - 1 - ° 1 .
L=g0l8e—m@ =3 Gy ¥ X Gy e
]:O 1 =1

<> The generalised Fierz-pauli constraint implies the Fierz system for all
geometric Einstein tensors (including those with more singular terms)
— jssue of uniqueness (already at the simplest level).




IV. Propagators & uniqueness
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Massless propagators

Are all those solutions really equivalent?

» Propagator from Lagrangian equation with an external current:

Eoar,...ap ...) =T = p=G-TJ

» Current exchange J - = J -G - J — consistency conditions on the
polarisations flowing:

almost all geometric theories give the wrong result, but one.
The correct theory has a simple structure:

=> The Kinetic tensor has the compensator form A, = F — 393 ~(p);

o - A, —
A:;EO

LA =0 . .
- It satisfies the identities : 2 v , and the Lagrangian is*

1 1
L=2S¢(Ae—onAL +0°By) — 0T

* D.F. - J. Mourad - A. Sagnotti, 2007]



Massive propagators - spin 4

¢ Consider the Lagrangian

1
L(m) = S p{€s(ar, a2) — m? M} — ¢ - T,

where J is a conserved current.

The on-shell condition A/ (a1, a2) = O
reduces the equation of motion to

Ag(ar, az) — m?(p—np’' — ") = J.

where
02 o4
Ao(a1, a2) = 0p — — o' — 3 " =0
90(1 2) ()0 D()O DQC’O
=

The whole structure of the propagator is encoded in the coefficients of M,

¢ Inverting the equation of motion

1 6 3
. — . _ Jl . J/ J// . J//
Te = VI T s T OrO®13) J
while the corresponding computation for the massless case gives
1 6 3
. —_ . o J/ . J/ J// . J//
Je =50 - 5 T Db+ 2) )

thus showing the (generalised) vDVZ discontinuity for higher-spin fields.




“KK reduction” and uniqueness

¢ How to understand the origin of the Fierz-Pauli mass-term, for s = 27

KK reduction (O — O —m?):

1
RMV - 5/’7“1/7?/ Y D(h - nh/) + ey

¢ How to perform a KK reduction of a non local theory?

Maybe not clear (% — ﬁ), but still it is unambiguously defined the “pure massive”
contribution of the resulting reduction:

E,=0(p + king' + kan?¢”" +...) + ...,

¢ [s it possible to find a geometric theory whose “box"” term encodes the coefficients of the
generalised FP mass term?

<> up to spin 4 (at least) it is the one selected by the analysis of the current exchange.
¢ \Why the mass term works well with all geometric tensors?

Not too strange, also true for spin 2: the non-local theory defined by the eom

1 02
Ruw — EUMVR + X(n — E)R - mz(h - nh'),

reduces to the Fierz system, and gives the correct current exchange!



Comments & Conclusions

Foregoing locality, linear dynamics of higher-spin gauge fields in geometric
fashion; infinitely many formulations are indeed available, at the free level.

relationship with a parallel, /local, unconstrained formulation*, or analysis
of the propagator, shows that there is one preferred geometric theory.

*I D.F. - A. Sagnotti, ‘05, ‘06]

Generalisation of the Fierz-Pauli mass term, for bosons and fermions,
involving all (v—)traces of the field.

Description of massive theory, for spin greater than two, that does not
involve auxiliary fields (and no dimension-dependent coefficients).

Mass term — unique
Issue of uniqueness:. < Massive theory — degenerate
“memory’” of the correct theory, by KK analysis 7

The van Dam - Veltman - Zakharov discontinuity is shown to be present
for any spin.



