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• Objective: 

Phase diagram of Little String Theory
-- through its holographic dual --

• Motivation:  

‣ LST presents semiclassically a Hagedorn 
behavior. Detail study of Hagedorn regime.

‣ LST has a holographic dual asymptotic to 
flat space except for a linear dilaton. Toy 
model for holography in flat spaces.
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Little String Theory

We will focus on the type IIA case

• Definition:  worldvolume theory of a stack of N 
type II NS5-branes in the decoupling limit

gs → 0 [Seiberg]!s = fixed

Characteristics:

‣ Lives in 6 dimensions

‣ It is non-gravitational: no graviton in the spectrum

‣ It has                  supersymmetry.

‣ It is non-local; e. g. LST exhibits T-duality

N = (2, 0)
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Exact CFT
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Holographic dual of LST
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Thermodynamics of LST

The position of the horizon gives the energy we are probing

SCFT ∼ N
3
V5T
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Thermodynamics of LST

Hagedorn Plateau

Microcanonical View

T

E

TH

T ∼ E
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S(E) ! βHE

Ω(E) ∼ e
βHE



1 + γ > 0

Thermodynamics of LST
Microcanonical View

S(E) ! βHE − (1 + γ) log
E

EΛ

T

E

TH

T ∼ E
1

6

1 + γ < 0

Ω(E) ∼
eβHE

E1+γ
Hagedorn Plateau
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• Tube region
Strings (radiation gas of the black brane) propagating in the 
tube

Φ = −

z

R
ds
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2

6 + dz
2 + R

2
dΩ2

3

Corrections are extensive in the tube length!
They completely dominate

Ftube ∝ ∆z

[Kutasov, Sahakyan]



Radiation in the Tube
Free energy can be written as a sum over field excitations (flat space)
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Radiation in the Tube
Veff

zszH−∞ ← z

AdS
tube

z → ∞

For flat        one has extensive behaviour in z: one has to regularize the 
length of the tube ∆z = zΛ − zb = 1
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Radiation in the Tube
Veff

zszH−∞ ← z

AdS
tube

z → ∞

States: 
 
                     
                  behave 6-d relativistic

                  behave 7-d non-relativistic

                  behave 10-d relativistic           
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Thermodynamics cutoff LST

Stotal(ET ) = SBlack Brane(EBB) + SRadiation(ER)

ET = EBB + ER

x ≡

z − zH

R
= log(r/rH)
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SBB ∼ βHE



UV completion LST

Deconstruction:

Physical realization of cutoff (AdS) 
Stable degrees of freedom in the UV (CFT)

[Arkani-Hamed, Cohen, 
Kaplan, Karch, Molt]

AdS7 × S
4 AdS7 × S

4tube
localized

D4

smeared

D4

rH rθ

rε

Smeared D4-branes on a torus with wrapped NS5-branes

[Dorey]
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Phase Diagram of LST
T

EH Eε E

T∗

E∗Et

CFTUV

gasNR LST


