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Motivation

Compactifications to four dimensions of string theory typically
generate many moduli fields that should all be stabilized at a
non-susy minimum with tiny cosmological constant.

From a 4D effective Lagrangian approach these moduli fields
are chiral superfields of a N = 1 supergravity theory and their
dynamics are governed by the 4D scalar potential.

For phenomenological/cosmological applications it is
important to know when this 4D scalar potentials can give rise
to realistic situations.

Natural question: if we require that a general sugra theory has
viable vacua, can one get some conditions that restrict the
class of models with potential interest?
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Chiral Models: Generalities

A theory with n chiral multiplets Φi is specified in terms of a
real Kähler potential K and a holomorphhic superpotential W .
Depends only on the (Kähler invariant) function G:

G(Φi ,Φ
†
i ) = K (Φi ,Φ

†
i ) + log W (Φi) + log W̄ (Φ†i )

that is invariant under Kähler transformations

(K , W ) → (K + ∆ + ∆̄, e−∆W )

The scalar fields φi span a Kähler manifold whose metric is
given by:

gi j̄ = Gi j̄ =
∂G

∂φi∂φj̄

and can be use to lower and raise chiral indices.
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Chiral Models: Generalities

The e.o.m. for the auxiliary fields fix them to:

F i = −eG/2Gi

Substituting back the expressions for the auxiliary fields into
the Lagrangian, the scalar potential is found to be:

V = eG
(

Gi j̄G
iGj̄ − 3

)
Cremmer,Julia,Scherk,Ferrara,Girardello,Van Nieuwenhuizen

Bagger,Witten

If Gi 6= 0 at the vacuum, supersymmetry is spontaneously
broken and the gravitino mass is:

m3/2 = eG/2

and the direction given by the Gi parametrizes the Goldstino
direction.
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Chiral Models: Finding Viable Vacua

The flatness condition (V = 0) fixes that at the vacuum:

gi j̄G
iGj̄ = 3

The stationary condition (∇iV = 0) implies that:

Gi + Gk∇iGk = 0

Finally, the stability condition requires that the matrix of
second derivatives is positive definite(

m2
i j̄ m2

i j

m2
ī j̄ m2

ī j

)
> 0

where m2
i j̄ = ∇i∇j̄V and m2

i j = ∇i∇jV and are given by:

m2
i j̄ = eG

(
Gi j̄ +∇iGk∇j̄G

k − Ri j̄ p q̄ GpGq̄
)

m2
i j = eG

(
∇iGj +∇jGi +

1
2

Gk{∇i ,∇j
}

Gk

)
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Chiral Models: Finding Viable Vacua

To see if the matrix m2
I J is positive definite one should check

the behavior of the 2n eigenvalues.
This is in general a complicated task and should be studied
model by model. However it is possible to find simple
necessary (but not sufficient) conditions:

Remark: If m2
I J is positive definite then all its upper left

submatrices are also positive definite.
Necessary condition for the existence of viable vacua: the
quadratic form m2

i j̄z
iz j̄ > 0 for any vector z i .

Strategy: Find simple conditions by looking at particular
directions in field space!

In this case there is only one special direction in field space:
the Goldstino direction Gi . Looking in that direction:

m2
i j̄G

iGj̄ = eG
(

6− Ri j̄ p q̄GiGj̄GpGq̄
)
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Chiral Models: Constraints

We define the rescaled variables:

f i = − 1√
3

Gi

The necessary conditions for the existence of non-susy
Minkowski minima can then be written as:

Flatness: gi j̄ f
i f j̄ = 1

Fixes the amount of susy breaking

Stability: Ri j̄ p q̄ f i f j̄ f pf q̄ <
2
3

Requires the existence of directions with R < 2/3 and
constraints the direction of susy breaking to be aligned with it.
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Gauge Invariant Models: Generalities

A theory with n chiral multiplets Φi and m vector multiplets V a

is specified by three functions:

A real Kähler function G = K (Φi ,Φ
†
i ) + log W (Φi) + log W̄ (Φ†

i ).

A set of holomorphic Killing vectors X i
a .

A holomorphic gauge kinetic matrix Hab.

Gauge transformations of chiral and vector multiplets are:

δΦi = ΛaX i
a δV a = −i(Λa − Λ̄a)

The function G should be invariant under the gauge
transformations:

Ga = −i X i
a Gi = i X ī

a Gī
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Gauge Invariant Models: Generalities

As before for the chiral indices the metric is gi j̄ = Gi j̄ , and also
now the real part the gauge kinetic matrix hab = ReHab acts as
a metric for the vector indices Ga = habGb.

The auxiliary fields are fixed from the Lagrangian by the
e.o.m.:

Fi = −eG/2 Gi

Da = −Ga = i X i
a Gi = −i X ī

a Gī

The vector auxiliary fields Da are the Killing potentials:

X i
a = −i ∇iDa
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Gauge Invariant Models: Generalities

The vector auxiliary fields Da induce a new contribution to the
scalar potential (in addition to the standard one coming from
the chiral auxiliary fields F i ):

V = eG
(

GkGk − 3
)

+
1
2

GaGa

Cremmer,Ferrara,Girardello,Van Proeyen
Bagger

As before, if Gi 6= 0 at the vacuum supersymmetry is
spontaneously broken and the gravitino mass is:

m3/2 = eG/2

Gauge symmetries are also spontaneously broken and the
m-dimensional mass matrix for the vector fields is:

M2
ab = 2 gi j̄X

i
aX j̄

b = 2 gi j̄ ∇
iGa∇j̄Gb
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Gauge Invariant Models: Finding Viable Vacua

The flatness condition (V = 0) fixes at the vacuum:

−3 + GiGi +
1
2

e−GGaGa = 0

The stationarity condition (∇iV = 0) implies:

Gi + Gk∇iGk + e−G
[
Ga
(
∇i −

1
2

Gi

)
Ga +

1
2

habiGaGb
]

= 0

The stability condition requires in this case the slightly weaker
condition:

mI J =

(
m2

i j̄ m2
i j

m2
ī j̄ m2

ī j

)
≥ 0

where m2
i j̄ = ∇i∇j̄V and m2

i j = ∇i∇jV .
The equality sign takes care of the flat directions associated
with the m scalars that are absorbed by the gauge fields and
get a positive mass.
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Gauge Invariant Models: Finding Viable Vacua

The two different n-dimensional blocks of the mass matrix are
given by:

m2
i j̄ = eG

[
Gi j̄ − Ri j̄ p q̄GpGq̄ +∇iGk∇j̄G

k
]
− 1

2

(
Gi j̄ −GiG j̄

)
GaGa

+
(

G(iha b j̄) + hc dha c ihb d j̄

)
GaGb − 2 GaG(i∇j̄)Ga

−2 Gahb cha b (i∇j̄)Gc + ha b∇iGa∇j̄Gb + Ga∇i∇j̄Ga

m2
i j = eG

[
2∇(iGj) + Gk∇(i∇j)Gk

]
− 1

2

(
∇(iGj) −GiGj

)
GaGa

+
(

G(iha b j) + hc dha c ihb d j −
1
2

ha b i j

)
GaGb − 2 GaG(i∇j)Ga

−2 Gahb cha b (i∇j)Gc + ha b∇iGa∇jGb
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Gauge Invariant Models: Finding Viable Vacua

Aim: study the constraints imposed in this case by the flatness
condition and the stability condition.
Strategy: same as before, find simple conditions by looking at
particular directions in field space!
In this case, there exist two types of special complex directions
one could look at: Gi and X i

a.
From Gi we get the condition m2

i j̄G
iGj̄ ≥ 0, which simplifies to:

Ri j̄ p q̄ GiGj̄GpGq̄ ≤ 6 + e−G
[
−2 GaGa + hc dha c ihb d j̄ GiGj̄GaGb

]
+ e−2G

[
M2

ab GaGb − 3
2

(∇iGa)hb c i GaGbGc

−1
2

(
GaGa

)2
+

1
4

h k
a b hc d k GaGbGcGd

]
From X i

a we get the condition m2
i j̄X

i
aX j̄

a ≥ 0, one finds a
complicated expression:

no extra useful condition!
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Gauge Invariant Models: Constraints

We introduce the rescaled variables

fi =
1√
3

Fi

m3/2
= − 1√

3
Gi , da =

1√
6

Da

m3/2
= − 1√

6
e−G/2Ga

In terms of the rescaled variables f i and da, the flatness and
stability conditions take then the following form:

f i fi + dada = 1

Ri j̄ p q̄ f i f j̄ f pf q̄ ≤ 2
3

+
4
3

( M2
ab

m3/2
− ha b

)
dadb + 2hc dha c ihb d j̄ f

i f j̄dadb

−(2 ha bhc d − 1
2 hi

a bhc d i) dadbdcdd

−3(Gida + 2∇ida)hb c idadbdc

But now there is the additional complication coming from the
fact that f i and da are not independent of each other.
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Gauge Invariant Models: Constraints

The fields f i and da are related in several ways:

As a consequence of gauge invariance:

da = −
i X a

i√
2m3/2

f i =⇒ |da| ≤
1
2

Maa

m3/2

√
f i fi

Projecting the stationarity condition along the directions X a
i

(valid only at the stationary points of the potential):

i ∇iXāj f i f j̄ −
√

2
3

m3/2

(
3f i fi − 1

)
da −

M2
ab√

6 m3/2
db − 2 i X i

ahb c i dbdc = 0

Kawamura

The f i represent the basic qualitative seed for susy breaking
whereas the da provide additional quantitative effects.
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Analysis of the Constraints

To see the implications of the constraints we restrict to
constant and diagonal gauge kinetic function of the form:

hab = g−2
a δab

We can rescale the vector variables so that the metric becomes
just δab by including a factor ga for each index a.

Using this the flatness and stability conditions take the
following form:

f i fi +
∑

a d2
a = 1

Ri j̄ p q̄ f i f j̄ f pf q̄ ≤ 2
3

+
4
3

∑
a

(
2 m2

a − 1
)

d2
a − 2

∑
a,b

d2
a d2

b

As before the flatness condition fixes the amount of susy
breaking and the stability condition fixes the direction.
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Analysis of the Constraints

The relations between f i and da read:

da = i mav i
afi =⇒ |da| ≤ ma

√
f i fi

da =

√
3
2

ma qa i j̄ f i f j̄

m2
a − 1/2 + 3/2 f i fi

where:

v i
a =

√
2X i

a
Ma

, qa i j̄ =
i ∇iXa j̄

Ma

and we also define the quantity:

ma =
Ma

2 m3/2

measuring the hierarchies between scales
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Interplay Between F and D Breaking Effects

To see the interplay between the F and D breaking effects we
introduce variables:

z i =
f i√

1−
∑

a d2
a

Using these variables the conditions can be rewritten as:z izi = 1

Ri j̄ p q̄ z iz j̄zpz q̄ ≤ 2
3

K (d2
a , m2

a)

where:

K (d2
a , m2

a) = 1 + 4

∑
a m2

ad2
a −

(∑
a d2

a
)2(

1−
∑

b d2
b

)2
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Interplay Between F and D Breaking Effects

And the relations between auxiliary fields:

da
1 + m2

a − 3/2
∑

b d2
b

1−
∑

b d2
b

=

√
3
2

ma qa i j̄ z iz j̄

da√
1−

∑
b d2

b

= i mav i
azi

|da|√
1−

∑
b d2

b

≤ ma

In the limit da << 1:

da '
√

3
8

1
1 + m2

a
qa i j̄ z i z j̄

and z i ' f i .
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Interplay Between F and D Breaking Effects

At first order In the limit da << 1:

K ' 1 +
3
2

∑
a

( m2
a

1 + m2
a

)
qa i j̄ qa p q̄ z iz j̄zpz q̄

Therefore we can write the flatness and stability conditions as:z izi = 1

R̂i j̄ p q̄ z iz j̄zpz q̄ ≤ 2
3

where:

R̂i j̄ p q̄ = Ri j̄ p q̄ −
∑

a

[
m2

a

1 + m2
a

]2

qa i (̄j qa p q̄)

The net effect in this case is to change the curvature felt by the
chiral multiplets. Not necessarily a small effect!
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Interplay Between F and D Breaking Effects

For larger values of da one can find an upper bound to K :

K ≤ 1 +
3
2

∑
a

[
m2

a (1 +
∑

b m2
b)

1 + m2
a + (m2

a − 1
2)
∑

b m2
b

]2

qa i j̄ qa p q̄ z iz j̄zpz q̄

So in this general case we get as well that the effect of vector
multiplets can be encoded into an effective curvature:

R̂i j̄ p q̄ = Ri j̄ p q̄ −
∑

a

[
m2

a (1 +
∑

b m2
b)

1 + m2
a + (m2

a − 1
2)
∑

b m2
b

]2

qa i (̄j qa p q̄)
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Some Examples: Simple Scalar Geometries

In certain situations the conditions for flatness and stability can
be solved exactly.

One chiral field and one isometry

K = −n Log(Φ + Φ̄) =⇒

{
R =

2
n

X = iξ

The flatness condition can be solved by parametrizing |f |2 = cos2 δ

and |d |2 = sin2 δ, and the stability condition is:

n >
3

1 + 4 |d/f |6

For example for the dilaton field n = 1, so the D-term should
contribute significantly to susy breaking.
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Two chiral fields and one isometry

K = −n1 Log(Φ1 + Φ̄1)− n2 Log(Φ2 + Φ̄2) =⇒

{
Ri =

2
ni

X = i (ξ1, ξ2)

Parametrizing |f1|2 = cos2 θ cos2 δ, |f2|2 = sin2 θ cos2 δ,
|d |2 = sin2 δ we solve the flatness condition, and from the
stability condition we derive the bound (f =

√
|f1|2 + |f22|):

n1 + n2 ≥ 3


1− |d/f |2

1− |d/f |2 + |d/f |4
, if |d/f | ≤ 1/2

1
1 + 4 |d/f |6

, if |d/f | > 1/2

Also solvable for other relevant models, as for Kähler
potentials of the type K = −

∑
i ni Log(Φi + Φ̄i −

∑Ni−1
ai=1 Xai X

†
ai
)

whose Kähler manifold is given by the coset spaces
SU(Ni ,1)

SU(Ni )×U(1) .
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Conclusions

In a general N = 1 supergravity theory with chiral and vector
multiplets there are strong necessary conditions for the
existence of phenomenologically viable vacua.

These necessary conditions severely constrain the geometry
of the scalar manifold as well as the direction of susy breaking
and the size of the auxiliary fields (relevant for soft terms).

When susy breaking is dominated by the F–terms the
conditions restrict the Kähler curvature.

When the D–terms participate also to susy breaking the net
effect is to alleviate the constraints through a lower effective
curvature (although restrict the theory as well!).

These conditions should be useful to identify
phenomenologically viable theories.

M. Gomez-Reino Metastable vacua with F and D susy breaking


	Outline
	Motivation
	Viable susy breaking vacua in supergravity theories
	Chiral Models
	Gauge Invariant Models

	Analysis of the constraints
	Interplay between F and D breaking effects

	Some examples: moduli fields in string models
	Conclusions

