Metastable vacua with F and D susy breaking in general supergravity theories

M. Gómez-Reino

CERN

(Moving from U. of Neuchâtel)

RTN'07 Meeting Valencia, 1-5 October 2007

> based on hep-th/0602246, hep-th/0606273 and arXiv:0706.2785 done in collaboration with C.A. Scrucca

> > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Viable susy breaking vacua in supergravity theories Constraints for chiral theories

- Constraints for gauge invariant theories
- 3 Analysis of the constraints
 - Interplay between F and D breaking effects
- 4 Some examples: moduli fields in string models

5 Conclusions

Motivation

- Compactifications to four dimensions of string theory typically generate many moduli fields that should all be stabilized at a non-susy minimum with tiny cosmological constant.
- From a 4D effective Lagrangian approach these moduli fields are chiral superfields of a $\mathcal{N} = 1$ supergravity theory and their dynamics are governed by the 4D scalar potential.
- For phenomenological/cosmological applications it is important to know when this 4*D* scalar potentials can give rise to realistic situations.
- Natural question: if we require that a general sugra theory has viable vacua, can one get some conditions that restrict the class of models with potential interest?

Chiral Models: Generalities

- A theory with *n* chiral multiplets Φ_i is specified in terms of a real Kähler potential *K* and a holomorphhic superpotential *W*.
- Depends only on the (Kähler invariant) function G:

$$G(\Phi_i, \Phi_i^{\dagger}) = K(\Phi_i, \Phi_i^{\dagger}) + \log W(\Phi_i) + \log \overline{W}(\Phi_i^{\dagger})$$

that is invariant under Kähler transformations

$$(K, W) \rightarrow (K + \Delta + \overline{\Delta}, e^{-\Delta}W)$$

 The scalar fields φⁱ span a Kähler manifold whose metric is given by:

$$g_{i\bar{j}} = G_{i\bar{j}} = \frac{\partial G}{\partial \phi^i \partial \phi^{\bar{j}}}$$

and can be use to lower and raise chiral indices.

Chiral Models: Generalities

• The e.o.m. for the auxiliary fields fix them to:

 $F^i = -e^{G/2}G^i$

 Substituting back the expressions for the auxiliary fields into the Lagrangian, the scalar potential is found to be:

$$V=e^{G}\left(G_{iar{j}}G^{i}G^{ar{j}}-3
ight)$$

Cremmer, Julia, Scherk, Ferrara, Girardello, Van Nieuwenhuizen Bagger, Witten

 If Gⁱ ≠ 0 at the vacuum, supersymmetry is spontaneously broken and the gravitino mass is:

$$m_{3/2} = e^{G/2}$$

and the direction given by the G^i parametrizes the Goldstino direction.

Chiral Models: Finding Viable Vacua

• The flatness condition (V = 0) fixes that at the vacuum:

$$g_{i\bar{j}}G^{i}G^{\bar{j}}=3$$

• The stationary condition ($\nabla_i V = 0$) implies that:

$$G_i + G^k \nabla_i G_k = 0$$

 Finally, the stability condition requires that the matrix of second derivatives is positive definite

$$\left(egin{array}{cc} m_{i\overline{j}}^2 & m_{ij}^2 \ m_{\overline{i}\overline{j}}^2 & m_{\overline{i}j}^2 \end{array}
ight) > 0$$

where $m_{i\bar{j}}^2 = \nabla_i \nabla_{\bar{j}} V$ and $m_{ij}^2 = \nabla_i \nabla_j V$ and are given by: $m_{i\bar{j}}^2 = e^G \left(G_{i\bar{j}} + \nabla_i G_k \nabla_{\bar{j}} G^k - R_{i\bar{j}p\bar{q}} G^p G^{\bar{q}} \right)$ $m_{ij}^2 = e^G \left(\nabla_i G_j + \nabla_j G_i + \frac{1}{2} G^k \{ \nabla_i, \nabla_j \} G_k \right)$

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

Chiral Models: Finding Viable Vacua

- To see if the matrix m_{IJ}^2 is positive definite one should check the behavior of the 2n eigenvalues.
- This is in general a complicated task and should be studied model by model. However it is possible to find simple necessary (but not sufficient) conditions:
 - Remark: If m²_{1,j} is positive definite then all its upper left submatrices are also positive definite.
 - Necessary condition for the existence of viable vacua: the quadratic form m²_{iī}zⁱz^j > 0 for any vector zⁱ.
 - Strategy: Find simple conditions by looking at particular directions in field space!
- In this case there is only one special direction in field space: the Goldstino direction *Gⁱ*. Looking in that direction:

$$m_{i\bar{j}}^2 G^i G^{\bar{j}} = e^G \Big(6 - R_{i\bar{j}\,\rho\,\bar{q}} G^i G^{\bar{j}} G^{\rho} G^{\bar{q}} \Big)$$

・ロ・ ・ 四・ ・ 回・ ・ 日・

• We define the rescaled variables:

$$f^i = -rac{1}{\sqrt{3}}G^i$$

• The necessary conditions for the existence of non-susy Minkowski minima can then be written as:

Flatness: $g_{i\bar{j}}f^if^{\bar{j}} = 1$

• Fixes the amount of susy breaking

Stability: $R_{i\bar{j}p\bar{q}}f^if^{\bar{j}}f^pf^{\bar{q}} < \frac{2}{3}$

 Requires the existence of directions with R < 2/3 and constraints the direction of susy breaking to be aligned with it.

Gauge Invariant Models: Generalities

- A theory with *n* chiral multiplets Φⁱ and *m* vector multiplets V^a is specified by three functions:
 - A real Kähler function $G = K(\Phi_i, \Phi_i^{\dagger}) + \log W(\Phi_i) + \log \overline{W}(\Phi_i^{\dagger})$.
 - A set of holomorphic Killing vectors Xⁱ_a.
 - A holomorphic gauge kinetic matrix H_{ab}.
- Gauge transformations of chiral and vector multiplets are:

$$\delta \Phi^{i} = \Lambda^{a} X_{a}^{i}$$
 $\delta V^{a} = -i(\Lambda^{a} - \bar{\Lambda}^{a})$

• The function *G* should be invariant under the gauge transformations:

$$G_a = -i X_a^i G_i = i X_a^{\overline{i}} G_{\overline{i}}$$

Gauge Invariant Models: Generalities

- As before for the chiral indices the metric is g_{ij} = G_{ij}, and also now the real part the gauge kinetic matrix h_{ab} = ReH_{ab} acts as a metric for the vector indices G_a = h_{ab}G^b.
- The auxiliary fields are fixed from the Lagrangian by the e.o.m.:

 $F_i = -e^{G/2} G_i$

$$D_a = -G_a = i \, X^i_a \, G_i = -i \, X^{\overline{i}}_a \, G_{\overline{i}}$$

• The vector auxiliary fields *D_a* are the Killing potentials:

 $X_a^i = -i \nabla^i D_a$

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Gauge Invariant Models: Generalities

 The vector auxiliary fields D^a induce a new contribution to the scalar potential (in addition to the standard one coming from the chiral auxiliary fields Fⁱ):

$$V=e^G\Bigl(G^kG_k-3\Bigr)+rac{1}{2}G^aG_a$$

Cremmer,Ferrara,Girardello,Van Proeyen Bagger

 As before, if Gⁱ ≠ 0 at the vacuum supersymmetry is spontaneously broken and the gravitino mass is:

$$m_{3/2} = e^{G/2}$$

• Gauge symmetries are also spontaneously broken and the *m*-dimensional mass matrix for the vector fields is:

$$M_{ab}^2 = 2 g_{i\bar{j}} X_a^i X_b^{\bar{j}} = 2 g_{i\bar{j}} \nabla^i G_a \nabla^{\bar{j}} G_b$$

Gauge Invariant Models: Finding Viable Vacua

• The flatness condition (V = 0) fixes at the vacuum:

$$-3 + G^{i}G_{i} + \frac{1}{2}e^{-G}G^{a}G_{a} = 0$$

• The stationarity condition ($\nabla_i V = 0$) implies:

$$G_i + G^k \nabla_i G_k + e^{-G} \Big[G^a \Big(\nabla_i - \frac{1}{2} G_i \Big) G_a + \frac{1}{2} h_{abi} G^a G^b \Big] = 0$$

• The stability condition requires in this case the slightly weaker condition:

$$m_{IJ} = \begin{pmatrix} m_{\tilde{i}\tilde{j}}^2 & m_{\tilde{i}j}^2 \\ m_{\tilde{i}\tilde{j}}^2 & m_{\tilde{i}j}^2 \end{pmatrix} \geq 0$$

where $m_{i\bar{i}}^2 = \nabla_i \nabla_{\bar{j}} V$ and $m_{ij}^2 = \nabla_i \nabla_j V$.

• The equality sign takes care of the flat directions associated with the *m* scalars that are absorbed by the gauge fields and get a positive mass.

Gauge Invariant Models: Finding Viable Vacua

• The two different *n*-dimensional blocks of the mass matrix are given by:

$$\begin{split} m_{i\bar{j}}^{2} &= e^{G} \Big[G_{i\bar{j}} - R_{i\bar{j}}\rho\bar{q}} G^{\rho} G^{\bar{q}} + \nabla_{i}G_{k}\nabla_{\bar{j}}G^{k} \Big] - \frac{1}{2} \left(G_{i\bar{j}} - G_{i}G_{\bar{j}} \right) G^{a}G_{a} \\ &+ \left(G_{(i}h_{ab\bar{j})} + h^{c\,d}h_{a\,c\,i}h_{b\,d\bar{j}} \right) G^{a}G^{b} - 2\,G^{a}G_{(i}\nabla_{\bar{j}})G_{a} \\ &- 2\,G^{a}h^{b\,c}h_{a\,b\,(i}\nabla_{\bar{j}})G_{c} + h^{a\,b}\nabla_{i}G_{a}\nabla_{\bar{j}}G_{b} + G^{a}\nabla_{i}\nabla_{\bar{j}}G_{a} \\ \end{split} \\ m_{ij}^{2} &= e^{G} \Big[2\,\nabla_{(i}G_{j)} + G^{k}\nabla_{(i}\nabla_{j)}G_{k} \Big] - \frac{1}{2} \Big(\nabla_{(i}G_{j)} - G_{i}G_{j} \Big) G^{a}G_{a} \\ &+ \Big(G_{(i}h_{a\,b\,j)} + h^{c\,d}h_{a\,c\,i}h_{b\,d\,j} - \frac{1}{2}h_{a\,b\,i\,j} \Big) G^{a}G^{b} - 2\,G^{a}G_{(i}\nabla_{j)}G_{a} \\ &- 2\,G^{a}h^{b\,c}h_{a\,b\,(i}\nabla_{j)}G_{c} + h^{a\,b}\nabla_{i}G_{a}\nabla_{j}G_{b} \end{split}$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Gauge Invariant Models: Finding Viable Vacua

- Aim: study the constraints imposed in this case by the flatness condition and the stability condition.
- Strategy: same as before, find simple conditions by looking at particular directions in field space!
- In this case, there exist two types of special complex directions one could look at: Gⁱ and Xⁱ_a.
 - From G^i we get the condition $m_{i\bar{i}}^2 G^i G^{\bar{j}} \ge 0$, which simplifies to:

 $\begin{aligned} R_{i\bar{j}p\bar{q}} G^{i}G^{\bar{j}}G^{p}G^{\bar{q}} &\leq 6 + e^{-G} \Big[-2 G^{a}G_{a} + h^{c\,d}h_{a\,c\,i}h_{b\,d\,\bar{j}} G^{i}G^{\bar{j}}G^{a}G^{b} \Big] \\ &+ e^{-2G} \Big[M_{ab}^{2} G^{a}G^{b} - \frac{3}{2} (\nabla^{i}G_{a})h_{b\,c\,i} G^{a}G^{b}G^{c} \\ &- \frac{1}{2} \Big(G^{a}G_{a} \Big)^{2} + \frac{1}{4} h_{a\,b}^{\ k}h_{c\,d\,k} G^{a}G^{b}G^{c}G^{d} \Big] \end{aligned}$

From Xⁱ_a we get the condition m²_{ij}Xⁱ_aX^j_a ≥ 0, one finds a complicated expression:

no extra useful condition!

(日)

Gauge Invariant Models: Constraints

We introduce the rescaled variables

$$f_i = \frac{1}{\sqrt{3}} \frac{F_i}{m_{3/2}} = -\frac{1}{\sqrt{3}} G_i, \qquad d_a = \frac{1}{\sqrt{6}} \frac{D_a}{m_{3/2}} = -\frac{1}{\sqrt{6}} e^{-G/2} G_a$$

 In terms of the rescaled variables fⁱ and d^a, the flatness and stability conditions take then the following form:

$$\begin{cases} f^{i}f_{i} + d^{a}d_{a} = 1 \\ R_{i\bar{j}p\bar{q}} f^{i}f^{\bar{j}}f^{p}f^{\bar{q}} \leq \frac{2}{3} + \frac{4}{3} \left(\frac{M_{ab}^{2}}{m_{3/2}} - h_{ab}\right) d^{a}d^{b} + 2h^{cd}h_{aci}h_{bd\bar{j}}f^{i}f^{\bar{j}}d^{a}d^{b} \\ -(2h_{ab}h_{cd} - \frac{1}{2}h_{ab}^{i}h_{cdi}) d^{a}d^{b}d^{c}d^{d} \\ -3(G^{i}d_{a} + 2\nabla^{i}d_{a})h_{bci}d^{a}d^{b}d^{c} \end{cases}$$

 But now there is the additional complication coming from the fact that fⁱ and d^a are not independent of each other.

Gauge Invariant Models: Constraints

- The fields *fⁱ* and *d^a* are related in several ways:
 - As a consequence of gauge invariance:

$$d^{a} = -rac{i \, X_{i}^{a}}{\sqrt{2}m_{3/2}} \, f^{i} \quad \Longrightarrow \quad |d_{a}| \leq rac{1}{2} rac{M_{aa}}{m_{3/2}} \sqrt{f^{i} f_{i}}$$

 Projecting the stationarity condition along the directions X^a_i (valid only at the stationary points of the potential):

$$i \nabla_i X_{a\bar{j}} f^i f^{\bar{j}} - \sqrt{\frac{2}{3}} m_{3/2} \left(3f^i f_i - 1 \right) d_a - \frac{M_{ab}^2}{\sqrt{6} m_{3/2}} d^b - 2i X_a^i h_{bci} d^b d^c = 0$$

Kawamura

 The fⁱ represent the basic qualitative seed for susy breaking whereas the d^a provide additional quantitative effects.

Analysis of the Constraints

 To see the implications of the constraints we restrict to constant and diagonal gauge kinetic function of the form:

 $h_{ab} = g_a^{-2} \delta_{ab}$

- We can rescale the vector variables so that the metric becomes just δ_{ab} by including a factor g_a for each index a.
- Using this the flatness and stability conditions take the following form:

 $\begin{cases} f^{i}f_{i} + \sum_{a} d_{a}^{2} = 1\\ R_{i\bar{j}\,p\,\bar{q}} f^{i}f^{\bar{j}}f^{p}f^{\bar{q}} \leq \frac{2}{3} + \frac{4}{3}\,\sum_{a}\left(2\,m_{a}^{2} - 1\right)d_{a}^{2} - 2\,\sum_{a,b}d_{a}^{2}d_{b}^{2} \end{cases}$

• As before the flatness condition fixes the amount of susy breaking and the stability condition fixes the direction.

Analysis of the Constraints

• The relations between f^i and d^a read:

$$d_a = i \, m_a v_a^j f_i \implies |d_a| \le m_a \sqrt{f^i f_i}$$

 $d_a = \sqrt{\frac{3}{2}} \, \frac{m_a \, q_{a\,i\bar{j}} \, f^i f^{\bar{j}}}{m_a^2 - 1/2 + 3/2 \, f^i f_i}$

where:

$$v_a^i = rac{\sqrt{2}X_a^i}{M_a}\,, \qquad q_{a\,i\overline{j}} = rac{i\,
abla_i X_{a\overline{j}}}{M_a}$$

and we also define the quantity:

$$m_a = \frac{M_a}{2 \, m_{3/2}}$$

measuring the hierarchies between scales

• To see the interplay between the *F* and *D* breaking effects we introduce variables:

$$z^{i} = \frac{f^{i}}{\sqrt{1 - \sum_{a} d_{a}^{2}}}$$

• Using these variables the conditions can be rewritten as:

$$\begin{cases} z^i z_i = 1 \\ R_{i\overline{j}\,p\,\overline{q}} \, z^i z^{\overline{j}} z^p z^{\overline{q}} \leq \frac{2}{3} \, K(d_a^2, m_a^2) \end{cases}$$

where:

$$K(d_a^2, m_a^2) = 1 + 4 \frac{\sum_a m_a^2 d_a^2 - \left(\sum_a d_a^2\right)^2}{\left(1 - \sum_b d_b^2\right)^2}$$

And the relations between auxiliary fields:

$$d_{a} \frac{1 + m_{a}^{2} - 3/2 \sum_{b} d_{b}^{2}}{1 - \sum_{b} d_{b}^{2}} = \sqrt{\frac{3}{2}} m_{a} q_{ai\bar{j}} z^{i} z^{\bar{j}}}$$
$$\frac{d_{a}}{\sqrt{1 - \sum_{b} d_{b}^{2}}} = i m_{a} v_{a}^{i} z_{i}$$
$$\frac{|d_{a}|}{\sqrt{1 - \sum_{b} d_{b}^{2}}} \leq m_{a}$$

• In the limit *d_a* << 1:

$$d_a\simeq \sqrt{rac{3}{8}}rac{1}{1+m_a^2}\,q_{a\,i\,\overline{j}}\,z^i\,z^{\overline{j}}$$

and $z^i \simeq f^i$.

• At first order In the limit *d_a* << 1:

$$K \simeq 1 + rac{3}{2} \sum_{a} \left(rac{m_{a}^{2}}{1 + m_{a}^{2}}
ight) q_{a i \bar{j}} q_{a p \bar{q}} z^{i} z^{\bar{j}} z^{p} z^{\bar{q}}$$

Therefore we can write the flatness and stability conditions as:

$$\begin{cases} z^i z_i = 1 \\ \hat{R}_{i\bar{j}\,p\,\bar{q}} \, z^i z^{\bar{j}} z^p z^{\bar{q}} \leq \frac{2}{3} \end{cases}$$

where:

$$\hat{R}_{i\bar{j}p\bar{q}} = R_{i\bar{j}p\bar{q}} - \sum_{a} \left[\frac{m_{a}^{2}}{1 + m_{a}^{2}} \right]^{2} q_{a\,i\,(\bar{j}}\,q_{a\,p\,\bar{q})}$$

 The net effect in this case is to change the curvature felt by the chiral multiplets. Not necessarily a small effect!

For larger values of d_a one can find an upper bound to K:

$$\mathcal{K} \leq 1 + rac{3}{2} \sum_{a} \left[rac{m_a^2 \left(1 + \sum_b m_b^2
ight)}{1 + m_a^2 + \left(m_a^2 - rac{1}{2}
ight) \sum_b m_b^2}
ight]^2 q_{a i ar{j}} q_{a p ar{q}} z^i z^{ar{j}} z^p z^{ar{q}}$$

 So in this general case we get as well that the effect of vector multiplets can be encoded into an effective curvature:

$$\hat{R}_{i\bar{j}p\bar{q}} = R_{i\bar{j}p\bar{q}} - \sum_{a} \left[\frac{m_a^2 (1 + \sum_b m_b^2)}{1 + m_a^2 + (m_a^2 - \frac{1}{2}) \sum_b m_b^2} \right]^2 q_{ai(\bar{j}} q_{ap\bar{q})}$$

Some Examples: Simple Scalar Geometries

 In certain situations the conditions for flatness and stability can be solved exactly.

One chiral field and one isometry

$$\mathcal{K} = -n \operatorname{Log}(\Phi + \overline{\Phi}) \implies \begin{cases} R = rac{2}{n} \\ X = i\xi \end{cases}$$

 The flatness condition can be solved by parametrizing |f|² = cos² δ and |d|² = sin² δ, and the stability condition is:

$$n > \frac{3}{1+4 \, |d/f|^6}$$

• For example for the dilaton field *n* = 1, so the *D*-term should contribute significantly to susy breaking.

0

$$\mathcal{K} = -n_1 \operatorname{Log}(\Phi_1 + \bar{\Phi}_1) - n_2 \operatorname{Log}(\Phi_2 + \bar{\Phi}_2) \implies \begin{cases} R_i = \frac{2}{n_i} \\ X = i(\xi^1, \xi^2) \end{cases}$$

• Parametrizing $|f_1|^2 = \cos^2 \theta \cos^2 \delta$, $|f_2|^2 = \sin^2 \theta \cos^2 \delta$, $|d|^2 = \sin^2 \delta$ we solve the flatness condition, and from the stability condition we derive the bound $(f = \sqrt{|f1|^2 + |f2^2|})$:

$$n_1 + n_2 \ge 3 \begin{cases} \frac{1 - |d/f|^2}{1 - |d/f|^2 + |d/f|^4}, & \text{if } |d/f| \le 1/2\\ \\ \frac{1}{1 + 4 |d/f|^6}, & \text{if } |d/f| > 1/2 \end{cases}$$

• Also solvable for other relevant models, as for Kähler potentials of the type $K = -\sum_{i} n_i \operatorname{Log}(\Phi_i + \overline{\Phi}_i - \sum_{a_i=1}^{N_i-1} X_{a_i} X_{a_i}^{\dagger})$ whose Kähler manifold is given by the coset spaces $\frac{SU(N_i, 1)}{SU(N_i) \times U(1)}$.

Conclusions

- In a general $\mathcal{N} = 1$ supergravity theory with chiral and vector multiplets there are strong necessary conditions for the existence of phenomenologically viable vacua.
- These necessary conditions severely constrain the geometry of the scalar manifold as well as the direction of susy breaking and the size of the auxiliary fields (relevant for soft terms).
- When susy breaking is dominated by the *F*-terms the conditions restrict the Kähler curvature.
- When the *D*-terms participate also to susy breaking the net effect is to alleviate the constraints through a lower effective curvature (although restrict the theory as well!).
- These conditions should be useful to identify phenomenologically viable theories.

・ロッ ・回 ・ ・ 回 ・ ・ 日 ・