Q-branes in IIB Supergravity

Jelle Hartong

University of Groningen

Based on
hep-th/0612072 Bergshoeff, Hartong, Ortín, Roest
Q7-branes 0708.2287 [hep-th] Bergshoeff, Hartong, Sorokin
Q-instantons (to appear) Bergshoeff, Hartong, Ploegh, Sorokin
Q-strings (in progress) Bergshoeff, Hartong, Sorokin

Outline

- Isometries and the quantum moduli space
$P S L(2, \mathbb{Z}) \backslash P S L(2, \mathbb{R}) / S O(2)$
- Q7-branes and Q-'orientifolds'
- Q-strings

IIB Supergravity

- Type IIB supergravity has two scalars:

1. the RR 0 -form χ
2. the dilaton ϕ

- Together they form the complex axidilaton field

$$
\tau=\chi+i e^{-\phi}
$$

- τ parametrizes the coset space $\operatorname{PSL}(2, \mathbb{R}) / S O(2)$

Duality

- The $\operatorname{PSL}(2, \mathbb{R})$ duality of τ :
$\tau \rightarrow \frac{a \tau+b}{c \tau+d} \equiv \Lambda \tau \quad$ with $\quad \Lambda=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad \operatorname{det} \Lambda=1 \quad \Lambda \sim-\Lambda$
- Instead of 4 constrained parameters a, b, c, d with $a d-b c=1$ use 3 unconstrained parameters p, q, r

$$
\Lambda=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=e^{Q} \quad \text { with } \quad Q=\left(\begin{array}{cc}
r / 2 & p \\
-q & -r / 2
\end{array}\right)
$$

Quantum moduli space

- Fundamental domain F of $P S L(2, \mathbb{Z}) \backslash P S L(2, \mathbb{R}) / S O(2)$
- Orbifold points τ_{0} :
$e^{Q} \tau_{0}=\tau_{0}$
$\tau_{0}=-\frac{r}{2 q}+\frac{i}{|q|} \sqrt{\operatorname{det} Q}$
- Special cases $\tau_{0}=i \infty, i, \rho$
- Metric on moduli space: $\frac{d \pi d \overline{ }}{(\operatorname{lm} \tau)^{2}}$
- The isometries are rotations around τ_{0}

Quantum moduli space II

- j-function expanded around the orbifold points:

$$
j(\tau)= \begin{cases}e^{2 \pi i \tau} & \text { around } \tau_{0}=i \infty \\ \left(\frac{\tau-\tau_{0}}{\tau-\bar{\tau}_{0}}\right)^{\pi / \sqrt{\operatorname{det} Q}} \equiv e^{2 \pi i \tau} & \text { around } \tau_{0}=i, \rho\end{cases}
$$

- When $\tau \rightarrow e^{Q} \tau$ with $\operatorname{det} Q>0$ we have

$$
\left(\frac{\tau-\tau_{0}}{\tau-\bar{\tau}_{0}}\right)^{\pi / \sqrt{\operatorname{det} Q}} \rightarrow e^{2 \pi i}\left(\frac{\tau-\tau_{0}}{\tau-\bar{\tau}_{0}}\right)^{\pi / \sqrt{\operatorname{det} Q}}
$$

- Isometries:
- $\operatorname{Re} \tau \rightarrow \operatorname{Re} \tau+1$ for $\tau_{0}=i \infty$
- $\operatorname{Re} \mathcal{T} \rightarrow \operatorname{Re} \mathcal{T}+1$ for $\tau_{0}=i, \rho$

IIB actions adapted to orbifold points

- Define a new complex scalar field \mathcal{T} by

$$
\mathcal{T} \equiv \chi^{\prime}+\frac{i}{4 \sqrt{\operatorname{det} Q}} \log \frac{T+2 \sqrt{\operatorname{det} Q}}{T-2 \sqrt{\operatorname{det} Q}}
$$

- IIB Lagrangian adapted to the orbifold point τ_{0}

$$
\mathcal{L}=\left(\star 1 R-\frac{d T \wedge \star d T}{2\left(T^{2}-4 \operatorname{det} Q\right)}-\frac{1}{2}\left(T^{2}-4 \operatorname{det} Q\right) d \chi^{\prime} \wedge \star d \chi^{\prime}+\ldots\right)
$$

- Dualization of χ^{\prime} into C_{8}^{\prime} :

$$
\left(T^{2}-4 \operatorname{det} Q\right) \star d \chi^{\prime}=F_{9}^{\prime} \quad \text { and } \quad F_{9}^{\prime}=d C_{8}^{\prime}+\ldots
$$

Q7-branes I

- Q7-brane: magnetic w.r.t. χ^{\prime} and electric w.r.t. C_{8}^{\prime}
- At leading order the $1 / 2$ BPS Q7-brane action is [Bergshoeff, de Roo, Kerstan, Ortín, Riccioni 2006] :

$$
\begin{aligned}
& S=-\int d^{8} \xi T \sqrt{-g_{(8)}}-\int C_{8}^{\prime} \\
& T=\frac{q}{2 \operatorname{lm} \tau}\left(\left|\tau-\tau_{0}\right|^{2}+\left|\tau-\bar{\tau}_{0}\right|^{2}\right)
\end{aligned}
$$

- $q>0$: positive tension Q7-brane and $q<0$: negative tension Q-'orientifold'

Q7-brane Wess-Zumino term

- Demand that the Q7-brane WZ term satisfies:

1. gauge invariance
2. invariance under $\chi^{\prime} \rightarrow \chi^{\prime}+c$
3. when $\operatorname{det} Q \rightarrow 0$ it reduces to the $(p, q) 7$-brane WZ term of [Bergshoeff, de Roo, Kerstan, Ortín, Riccioni 2007]

- Q7 WZ term is given by [Bergshoeff, Hartong, Sorokin 2007]

$$
-C_{8}^{\prime}+\ldots+\left[b(T) e^{-4 i} \sqrt{\operatorname{det} Q} \chi^{\prime} \frac{i}{\left(\operatorname{lm} \tau_{0}\right)^{2}}\left(-\mathcal{G}_{2}+\tau_{0} \mathcal{F}_{2}\right)^{4}+\text { c.c. }\right]
$$

- 2 BI vectors: $\mathcal{G}_{2}=C_{2}+d V_{C}$ and $\mathcal{F}_{2}=B_{2}+d V_{B}$.

SUSY 7-brane solutions

- The metric: $d s^{2}=-d t^{2}+d \vec{x}_{7}^{2}+(\operatorname{Im} \tau)|f|^{2} d z d \bar{z}$ [Greene,

Shapere, Vafa, Yau 1989], [Gibbons, Green, Perry 1995]

$$
j(\tau)=\frac{P(z)}{Q(z)}
$$

- General structure of f [Bergshoeff, Hartong, Ortín, Roest 2006]:

$$
\begin{aligned}
& f=\eta^{2} \underbrace{\left(z-z_{i \infty}\right)^{-1 / 12}}_{\text {D7 }} \cdots \underbrace{\left(z-z_{\rho}\right)^{-1 / 6}}_{\text {Q7 at } \tau_{0}=\rho} \cdots \underbrace{\left(z-z_{i}\right)^{-1 / 4}}_{\text {Q7 at } \tau_{0}=i} \cdots \\
& \underbrace{\left(z-z_{\rho}^{\prime}\right)^{1 / 3}}_{\text {Q-07 at } \tau_{0}=\rho} \cdots \underbrace{\left(z-z_{i}^{\prime}\right)^{1 / 4}}_{\text {Q-07 at } \tau_{0}=i} \\
& j=\infty \quad \text { at } z_{i \infty}, \quad j=0 \quad \text { at } \quad z_{\rho}, \quad j=1 \quad \text { at } z_{i}
\end{aligned}
$$

Q-strings I

- $T \tau=\tau+1$ and $S \tau=-1 / \tau$

- 2 D7's at $z_{i \infty}^{1,2}$ and 2 Q7's at $z_{\rho}^{1,2}$
- No Q-'orientifolds'
- τ_{∞} arbitrary
- red line: Q-string stretched along γ between 2 Q7's
- Mass of a stretched Q-string inspired by [Sen 1996]

$$
m_{Q 1}=\int_{\gamma} b(T) d s
$$

$$
b(T) \text { is the tension of the Q-string }
$$

Q-strings II

- If we take for the tension: $b(T)=\left(T^{2}-4 \operatorname{det} Q\right)^{1 / 4}$ then

$$
m_{Q 1}=q^{1 / 2} \int_{\gamma}\left|\left(\tau-\tau_{0}\right)^{1 / 2}\left(\tau-\bar{\tau}_{0}\right)^{1 / 2} f d z\right|
$$

and

$$
\left(\tau-\tau_{0}\right)^{1 / 2}\left(\tau-\bar{\tau}_{0}\right)^{1 / 2} f
$$

is regular everywhere along γ. In particular near z_{ρ}^{1}
$\left(\tau-\tau_{0}\right)^{1 / 2}\left(\tau-\bar{\tau}_{0}\right)^{1 / 2} \sim\left(z-z_{\rho}^{1}\right)^{1 / 6} \quad$ and $\quad f \sim\left(z-z_{\rho}^{1}\right)^{-1 / 6}$

1. The stretched Q-string can be BPS
2. Q-strings can only end on positive tension Q7's
3. The Q-string tension is close to zero near $\tau=\tau_{0}$

Q-strings III

- Consider a Q-string whose tension is $\left(T^{2}-4 \operatorname{det} Q\right)^{1 / 4}$.
- Construct a WZ term with the properties:

1. It is gauge invariant
2. It is invariant under $\chi^{\prime} \rightarrow \chi^{\prime}+1$
3. It reduces to the (p, q) string WZ term when $\operatorname{det} Q \rightarrow 0$

- Such a WZ term is given by

$$
\int\left(a(T) e^{-i \sqrt{\operatorname{det} Q} \chi^{\prime}}\left(-\mathcal{G}_{2}+\tau_{0} \mathcal{F}_{2}\right)+\text { c.c. }\right)
$$

- $\mathcal{G}_{2}=C_{2}+d V_{C}$ and $\mathcal{F}_{2}=B_{2}+d V_{B}$ with C_{2} the RR and B_{2} the NSNS 2-forms and V_{C} and V_{B} two Bl vectors.

Q-strings IV

- The Q-string source term is proposed to be

$$
\begin{aligned}
& S=\int d^{2} \xi\left(T^{2}-4 \operatorname{det} Q\right)^{1 / 4} \sqrt{-g_{(2)}+} \\
& \int\left(a(T) e^{-i \sqrt{\operatorname{det} Q} \chi^{\prime}}\left(-\mathcal{G}_{2}+\tau_{0} \mathcal{F}_{2}\right)+\text { c.c. }\right)
\end{aligned}
$$

- This source term is $1 / 2$ BPS provided

$$
q\left(T^{2}-4 \operatorname{det} Q\right)^{1 / 2}=2 a^{2}\left(T+\left(T^{2}-4 \operatorname{det} Q\right)^{1 / 2}\right)
$$

- The projector is given by
$\gamma_{0} \gamma_{1}\left(\epsilon_{1}-i \epsilon_{2}\right)=e^{i \varphi}\left(\epsilon_{1}+i \epsilon_{2}\right) \quad$ where φ is a function of T and χ^{\prime}

Questions

- Can we define a Q7-brane as that brane on which a Q-string is ending?
- The Q-string is a source for two BI vectors.
- The gauge invariant Q7-brane WZ term also requires 2 BI vectors.
- Does there exist a kappa-symmetric Q-string action?
- What do Q-branes say about IIB near the orbifold points $\tau_{0}=i, \rho$? Is IIB perturbative near $\tau_{0}=i, \rho$ w.r.t. the Q-string tension?

