Higher-spin dynamics and Chern-Simons theories

Olaf Hohm

Based on:

- Johan Engquist, O.H., Higher-spin Chern-Simons theories in odd dimensions, arXiv:0705.3714 [hep-th]
- Johan Engquist, O.H., Geometry and dynamics of higher-spin frame fields, arXiv:0708.1391 [hep-th]

The higher-spin problem:

Consistent interactions of Higher-Spin (HS) fields?

Free HS theories [Fronsdal (1978), de Wit, Freedman (1980)]

Massless spin-s field: totally symmetric $h_{\mu_1...\mu_s}$ with gauge symmetry

$$\delta_{\epsilon}h_{\mu_1\dots\mu_s} = \partial_{(\mu_1}\epsilon_{\mu_2\dots\mu_s)}$$

Gravity coupling $\partial \rightarrow \nabla$ violates HS symmetry \longrightarrow Inconsistency!

Vasiliev's proposal:

non-vanishing cosmological constant $\Lambda \rightarrow \text{no flat-space limit}$ Gauging of HS algebra $\mathfrak{ho}(D-1,2) \supset \mathfrak{so}(D-1,2)$

$$A_{\mu} = \underbrace{e_{\mu}{}^{a}P_{a} + \frac{1}{2} \omega_{\mu}{}^{ab}M_{ab}}_{\mathfrak{so}(D-1,2)} + \text{ infinite HS sum}$$

Dynamics? \longrightarrow 'unfolded formulation' [Vasiliev (1994)]

Chern-Simons theory

Chern-Simons theory in D = 3:

$$S = \int \mathrm{Tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)$$

 \rightarrow Gravity [Witten (1988)], SUGRA [Achucarro & Townsend (1986)], HS [Blencowe (1989)]

e.o.m. $F_{\mu\nu} = 0 \rightarrow \text{topological}$, no local d.o.f.

Chern-Simons theory in $D \ge 5$:

$$S = \int g_{abc} A^a \wedge dA^b \wedge dA^c + \dots$$

Gauge algebra $\mathfrak{g} = \mathfrak{so}(2n, 2) \rightarrow \text{Lovelock gravities in } D = 2n + 1.$ e.o.m.:

$$g_{abc}F^a \wedge F^b = 0$$

Background $\overline{F}^a = 0 \rightarrow$ no propagator, topological phase KK background in D = 5: $AdS_4 \times S^1 \rightarrow$ non-topological phase [Chamseddine (1990)]

Higher-spin Chern-Simons theory

<u>Gauge algebra</u>: Infinite-dimensional extension of $\mathfrak{so}(4,2)$ [Vasiliev (2003)]: HS generator in definite Young tableau (spin-s):

$$Q_{A_1...A_{s-1},B_1...B_{s-1}}$$
:

Linearisation around gravitational background for spin-3:

gauge field in $\mathfrak{so}(4,1)$ basis

$$\mathcal{W}_{\mu} = \bar{e}_{\mu}{}^{a}P_{a} + \frac{1}{2}\bar{\omega}_{\mu}{}^{ab}M_{ab} + \kappa \left(\frac{1}{2}e_{\mu}{}^{ab}Q_{ab} + \frac{1}{3}\omega_{\mu}{}^{ab,c}Q_{ab,c} + \frac{1}{12}\omega_{\mu}{}^{ab,cd}Q_{ab,cd}\right)$$

Spin-3 field and symmetries (after gauge-fixing to zero):

$$h_{\mu\nu\rho} = \bar{e}_{(\mu}^{\ a} \bar{e}_{\nu}^{\ b} e_{\rho)ab}, \qquad \delta_{\epsilon} h_{\mu\nu\rho} = \bar{D}_{(\mu} \epsilon_{\nu\rho)}$$

HS geometry: connections, curvature and torsion

Linearized field strength:

$$\mathcal{F}_{\mu\nu} = \bar{T}_{\mu\nu}^{\ a} P_a + \frac{1}{2} \bar{\mathcal{R}}_{\mu\nu}^{\ ab} M_{ab} + \kappa \Big(\frac{1}{2} T_{\mu\nu}^{\ ab} Q_{ab} + \frac{1}{3} T_{\mu\nu}^{\ ab,c} Q_{ab,c} + \frac{1}{12} R_{\mu\nu}^{\ ab,cd} Q_{ab,cd} \Big) + \dots$$

with

$$T^{ab} = \bar{D}e^{ab} + \omega^{ab,c} \wedge \bar{e}_c$$

$$T^{ab,c} = \bar{D}\omega^{ab,c} + 3e^{\langle ab} \wedge \bar{e}^{c\rangle} + \omega^{ab,cd} \wedge \bar{e}_d ,$$

$$R^{ab,cd} = \bar{D}\omega^{ab,cd} + 4\omega^{\langle ab,c} \wedge \bar{e}^{d\rangle}$$

Torsion constraints:

$$T^{ab} = 0 \implies \omega^{ab,c} = \omega^{ab,c}(\partial e)$$

$$T^{ab,c} = 0 \implies \omega^{ab,cd} = \omega^{ab,cd}(\partial \omega^{ab,c}) = \omega^{ab,cd}(\partial^2 e)$$

[\rightarrow hierarchy of de Wit–Freedman connections in metric-like formulation]

Spin-3 Riemann tensor: $R_{\mu\nu}^{ab,cd}$ 3rd derivative-order!

HS Dynamics:

How are e.o.m. of *s*-th derivative order consistent with Fronsdal eq.?

Damour-Deser identity:

$$(\operatorname{Ric})_{\mu\nu|\rho\sigma} = 2\partial_{[\mu}\mathcal{F}_{\nu]\rho\sigma} = 0$$
,

 $\mathcal{F}_{\mu\nu\rho} = \Box h_{\mu\nu\rho} + \dots$ HS-invariant 2nd order <u>Fronsdal</u> operator. \Rightarrow locally solvable (Poincaré lemma)

$$\mathcal{F}_{\mu\nu\rho} = \partial_{\mu}\partial_{\nu}\partial_{\rho}\alpha \; .$$

 \Rightarrow invariant under <u>unconstrained</u> HS transformations, provided [Francia & Sagnotti (2002)]

$$\delta_{\epsilon}\alpha = \eta^{\mu\nu}\epsilon_{\mu\nu} \; .$$

 $\Rightarrow \text{ gauge-fixing } \alpha = 0 \Rightarrow \text{ Fronsdal equations recovered!}$ [Bekaert & Boulanger (2003), Sagnotti, Sezgin & Sundell (2005)]

<u>Generalization</u> to arbitrary spin on AdS, in particular: correct free field limit around AdS_4 .

Summary & Outlook:

- We constructed consistent HS–gravity coupling $\leftrightarrow \rightarrow$ consistent deformation of free HS symmetry $\delta_{\epsilon}h_{\mu_1...\mu_s} = \partial_{(\mu_1}\epsilon_{\mu_2...\mu_s)}$
- $AdS_4 \times S^1$ background: Correct free field equations despite higher-derivative nature of Ricci tensor
 - \leftrightarrow contact with compensator formulation (<u>trace-full</u> generator)
- Dynamics for non-trivial HS torsion?
- Meaning of higher derivatives at non-linear level?
- Closed form of HS Lie algebra \longleftrightarrow interactions?
- Organization into ho(D 1, 2) multiplets? No dynamics around AdS₅, but on AdS₄ off-diagonal KK components (scalar?)
- M theory as Chern-Simons theory of Osp(1|32)? [Horava (1999)] Recently: 'Non-critial M-theory' in D = 3 \leftrightarrow HS Chern-Simons theory on $AdS_2 \times S^1$ [Horava & Keeler (2007)]