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Goal

Most general susy compactification with fluxes from 10d type
IIA/IIB to 4d Minkowski or AdS

Preserve N = 1 susy in 4d (fluxes, D-branes, orientifolds):

ǫ1 = ζ+ ⊗ η
(1)
+ + ζ− ⊗ η

(1)
− ,

ǫ2 = ζ+ ⊗ η
(2)
∓ + ζ− ⊗ η

(2)
± ,

ζ: 4d spinor characterizes susy
η(1,2): fixed 6d-spinor, property background.
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Most general susy compactification with fluxes from 10d type
IIA/IIB to 4d Minkowski or AdS

Preserve N = 1 susy in 4d (fluxes, D-branes, orientifolds):

ǫ1 = ζ+ ⊗ η
(1)
+ + ζ− ⊗ η

(1)
− ,

ǫ2 = ζ+ ⊗ η
(2)
∓ + ζ− ⊗ η

(2)
± ,

ζ: 4d spinor characterizes susy
η(1,2): fixed 6d-spinor, property background.

Study 4d effective theory
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||η(1)||2
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l η
(2)†
± γi1...il

η
(1)
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Susy equations

Use the language of generalized geometry Hitchin, Gualtieri

Ψ± = − i
||η(1)||2

∑

l η
(2)†
± γi1...il

η
(1)
+ γil...i1 pure spinors

Ψ1 = Ψ∓, Ψ2 = Ψ± for IIA/IIB

F : sum RR-fluxes, Φ: dilaton, A: warp factor, H NSNS 3-form,
dH = d+H∧

Susy equations Graña, Minasian, Petrini, Tomasiello:

dH

(
e4A−ΦReΨ1

)
= ∓e4Aα(⋆6F ) ,

dH

(
e3A−ΦΨ2

)
= 0 ,

dH(e2A−ΦImΨ1) = 0 ,

for Minkowski.
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Susy equations

Use the language of generalized geometry Hitchin, Gualtieri

Ψ± = − i
||η(1)||2

∑

l η
(2)†
± γi1...il

η
(1)
+ γil...i1 pure spinors

Ψ1 = Ψ∓, Ψ2 = Ψ± for IIA/IIB

F : sum RR-fluxes, Φ: dilaton, A: warp factor, H NSNS 3-form,
dH = d+H∧

Susy equations Graña, Minasian, Petrini, Tomasiello:

dH

(
e4A−ΦReΨ1

)
= (3/R) e3A−ΦRe(eiθΨ2) ∓ e4Aα(⋆6F ) ,

dH

(
e3A−ΦΨ2

)
= (2/R)i e2A−Φe−iθImΨ1 ,

dH(e2A−ΦImΨ1) = 0 ,

for AdS: ∇µζ− = ± e−iθ

2R γµζ+.
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Comments

SU(3)-structure: η(2) = cη(1) (e.g. D3/D7 c = ±i)

⇒ Ψ+ = −ic−1eiJ , Ψ− = Ω
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susy equations and Bianchi/eom RR-fluxes, H
⇒Einstein equation, dilaton equation of motion
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Comments

SU(3)-structure: η(2) = cη(1) (e.g. D3/D7 c = ±i)

⇒ Ψ+ = −ic−1eiJ , Ψ− = Ω

susy equations and Bianchi/eom RR-fluxes, H
⇒Einstein equation, dilaton equation of motion
without sources:
Lüst, Tsimpis (IIA) Gauntlett, Martelli, Sparks, Waldram (IIB)
with sources: PK, Tsimpis
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Low-energy theory

Difficult to identify light modes
⇒ Strategy: keep all KK modes

How we handled the warp factor:

ds2 = e2A(y)g4d
µν(x)dxµdxν + gmn(y)dymdyn ,

has symmetry:

A → A + σ and g4d → e−2σg4d ,

Conformal supergravity formalism

Gauge-fixing local Weyl transformation leads to standard N = 1
sugra in Einstein frame
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Superpotential

Generalize the GVW superpotential:

W =

∫

M

e3A−ΦΩ ∧ G ,
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M

〈e3A−ΦΨ2, F 〉 ,

with the Mukai pairing 〈φ1, φ2〉 = φ1 ∧ α(φ2)|top.
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Superpotential

Superpotential:

W =

∫

M

〈e3A−ΦΨ2, F 〉 ,

with the Mukai pairing 〈φ1, φ2〉 = φ1 ∧ α(φ2)|top.

On-shell: from tension of DW separating two vacua: TDW = 2|∆W|

Vacuum 1 Vacuum 2

DW

DW: generalized calibrated PK, Martucci
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Superpotential:

W =

∫

M

〈e3A−ΦΨ2, F 〉 ,

with the Mukai pairing 〈φ1, φ2〉 = φ1 ∧ α(φ2)|top.

On-shell: from tension of DW separating two vacua: TDW = 2|∆W|
Off-shell: superpotential should depend on holomorphic variables:

Z = e
3A−ΦΨ2 .

The second holomorphic variable we find from the susy D-brane

instanton action:

SE(T ) =

∫

Σ

(e−ΦReΨ1 − iC)
︸ ︷︷ ︸

T

|Σ ∧ e
F
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Superpotential

Superpotential:

W =

∫

M

〈e3A−ΦΨ2,

dHT
︷ ︸︸ ︷

F+idH

(
e−ΦReΨ1

)
〉 ,

with the Mukai pairing 〈φ1, φ2〉 = φ1 ∧ α(φ2)|top.

On-shell: from tension of DW separating two vacua: TDW = 2|∆W|
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Kähler potential

Hitchin has shown that the moduli space of the deformation of one
pure spinor is special Kähler and that the Kähler potential is

K = − log

(

i

∫

M

〈Ψ, Ψ̄〉

)

.
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Kähler potential

Hitchin has shown that the moduli space of the deformation of one
pure spinor is special Kähler and that the Kähler potential is

K = − log

(

i

∫

M

〈Ψ, Ψ̄〉

)

.

It is more complicated when considering the deformations of the two
pure spinors together for the N = 1 theory. Nevertheless

K = −2 log
(

i

∫

M

e2A−Φ〈Ψ1, Ψ̄1〉
)

− log
(

i

∫

M

e−4A〈Z, Z̄〉
)

.
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Effective theory

Superpotential

W =

∫

M

〈Z, F0 + idHT 〉 .

Kähler potential

K = −2 log
(

i

∫

M

e2A−Φ〈Ψ1, Ψ̄1〉
)

− log
(

i

∫

M

e−4A〈Z, Z̄〉
)

.
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δZ,T W − (δZ,T K)W = 0

AdS: reproduces all susy equations
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Check on W and K

δZ,T W − (δZ,T K)W = 0

AdS: reproduces all susy equations

Minkowski: reproduces all susy equations except:

dH(e2A−ΦImΨ1) = 0 .

This latter equation can be interpreted as a D-flatness condition
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Non-perturbative corrections

Add:

Wnp = A exp
(

−
2π

n

∫

Σ

T |Σ ∧ eF
)

,

from D-brane instantons (n = 1) or gaugino condensation.
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,
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Non-perturbative corrections

Add:

Wnp = A exp
(

−
2π

n

∫

Σ

T |Σ ∧ eF
)

,

from D-brane instantons (n = 1) or gaugino condensation.

The susy equations change

dH

(
e3A−Φ Ψ2

︸︷︷︸

Ω : 3

)
= (2/R)i e2A−Φe−iθIm Ψ1

︸︷︷︸

eiJ : 0 + 2 + 4 + 6

+
2i

n
Wnp jnp .

Applications:

IIB SU(3)-structure compactifications to AdS

⇒ classically disallowed
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Applications:

IIB SU(3)-structure compactifications to AdS

⇒ classically disallowed

However: non-perturbative correction ⇒ cancel 1st term RHS

→ 10-dimensional interpretation of KKLT
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−
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n
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)

,

from D-brane instantons (n = 1) or gaugino condensation.

The susy equations change

dH

(
e3A−ΦΨ2

)
= (2/R)i e2A−Φe−iθImΨ1+

2i

n
Wnp jnp .

Applications:

IIB SU(3)-structure compactifications to AdS

⇒ classically disallowed

However: non-perturbative correction ⇒ cancel 1st term RHS

→ 10-dimensional interpretation of KKLT

mobile D3-branes.
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For a complex structure Z = e3A−ΦΩ
⇒ space-filling susy D3-branes no potential
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Mobile D3-branes

For a complex structure Z = e3A−ΦΩ
⇒ space-filling susy D3-branes no potential

With D3-brane instantons
dHZ = 2i

n Wnp jnp ⇒ dZ(1) = − 2i
n Wnp δ(2)(Σ)
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⇒ space-filling susy D3-branes no potential

With D3-brane instantons
dHZ = 2i

n Wnp jnp ⇒ dZ(1) = − 2i
n Wnp δ(2)(Σ)

Complex structure ⇒ generalized
⇒ D3-branes get superpotential PK, Martucci

Z(1) = −∂WD3
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Mobile D3-branes

For a complex structure Z = e3A−ΦΩ
⇒ space-filling susy D3-branes no potential

With D3-brane instantons
dHZ = 2i

n Wnp jnp ⇒ dZ(1) = − 2i
n Wnp δ(2)(Σ)

Complex structure ⇒ generalized
⇒ D3-branes get superpotential PK, Martucci

Z(1) = −∂WD3

∂̄(∂ logWnp) = 2πi
n δ(2)(Σ)

Solution: Wnp = f1/nW̃np,
with f holomorphic section line bundle associated to divisor Σ
Ganor, Baumann, Dymarsky, Klebanov, Berg, Haack, Körs
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Conclusions

Superpotential W and Kähler potential K
with correct warp factor A dependence

As a check W and K ⇒ all susy equations

We can add Wnp

⇒ non-perturbative correction to susy equations

Applications: KKLT and mobile D3-branes

Further work: make actual reduction and keep only “light” modes
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⇒ non-perturbative correction to susy equations

Applications: KKLT and mobile D3-branes

Further work: make actual reduction and keep only “light” modes
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