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Goal

@ Most general susy compactification with fluxes from 10d type
[IA/11B to 4d Minkowski or AdS

@ Preserve N = 1 susy in 4d (fluxes, D-branes, orientifolds):

a=¢on’ + o,

62:C+®77§;2) + C7®77(¢2)7

(: 4d spinor characterizes susy
n(12); fixed 6d-spinor, property background.

@ Study 4d effective theory
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.
Susy equations

@ Use the language of generalized geometry Hitchin, Gualtieri

; 2 U i :
o U, = —W > 77§[)T%1...il775r)’7”“'“ pure spinors

O Uy =0, 0¥y =T, for IA/IIB

@ F: sum RR-fluxes, ®: dilaton, A: warp factor, H NSNS 3-form,
dy = d+HN

@ Susy equations Grada, Minasian, Petrini, Tomasiello:
dg (e4A_‘I)Re\I/1) = :Fe4Aa(*6F) ,
di (e3472%,) =0,
dH(e2A_‘I>Im\I/1) =0,

for Minkowski.
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Susy equations

@ Use the language of generalized geometry Hitchin, Gualtieri

i 2 1
o U, = —W 2 UEE)T%'L..imSF)

O Uy =0, 0¥y =T, for IA/IIB

@ F: sum RR-fluxes, ®: dilaton, A: warp factor, H NSNS 3-form,
dy = d+HN

~#-4 pure spinors

@ Susy equations Grada, Minasian, Petrini, Tomasiello:

dy (e4A*¢Re \Ill)
dH (63147(1)\1/2)

dp (e*A~*ImUy)

(3/R) e* 7 PRe (e Wy) T e* (g F),
(2/R)ie?4 =% OIm ¥, |
0

)

for AdS: V(= +507,Cy.
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Comments
@ SU(3)-structure: n® = (M (e.g. D3/D7 ¢ = +i)

=V, =—ic e, V_=0

@ susy equations and Bianchi/eom RR-fluxes, H
=-Einstein equation, dilaton equation of motion
without sources:
Liist, Tsimpis (IIA) Gauntlett, Martelli, Sparks, Waldram (11B)
with sources: PK, Tsimpis
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Low-energy theory

@ Difficult to identify light modes
= Strategy: keep all KK modes

@ How we handled the warp factor:

ds® = e2A(y)gﬁ‘fj(x)dx“d$” + Gmn (y)dy ™ dy™
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Low-energy theory
@ Difficult to identify light modes
= Strategy: keep all KK modes

@ How we handled the warp factor:
d82 _ 62A(y)gﬁfljj(x)dxudmu + gmn(y)dynbdyn ,

has symmetry:

A—A+o and ¢g¥ — e 20gM

@ Conformal supergravity formalism
@ Gauge-fixing local Weyl transformation leads to standard N =1
sugra in Einstein frame
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W:/ SAPONG,
M
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Superpotential

@ Superpotential:
Wz/ (3472, FY,
M

with the Mukai pairing (¢1, ¢2) = ¢1 A a(¢2) top-
@ On-shell: from tension of DW separating two vacua: Tpw = 2|AW]|

DW

Vacuum 1 Vacuum 2

DW: generalized calibrated PK, Martucci




Introduction (Law—energy effective theory) Non-perturbative corrections Conclusions

Superpotential
@ Superpotential:
Wz/ (3472, FY,
M

with the Mukai pairing (¢1, ¢2) = d1 A a(92) top-

@ On-shell: from tension of DW separating two vacua: Tpw = 2|AW]|
@ Off-shell: superpotential should depend on holomorphic variables:

6 /12



Introduction (Law—energy effective theory) Non-perturbative corrections Conclusions

Superpotential

@ Superpotential:
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Superpotential

@ Superpotential:
Wz/ (e3A=2Wy, F)
M

with the Mukai pairing (¢1, ¢2) = d1 A a(p2) top-

@ On-shell: from tension of DW separating two vacua: Tpw = 2|AW]|
@ Off-shell: superpotential should depend on holomorphic variables:

Z =370y, .

The second holomorphic variable we find from the susy D-brane
instanton action:

Se(T) = / (e""ReW; —iC) |z Ae”
3 N —— e’
T
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Superpotential

@ Superpotential:
de

W= / (347 PWy, Ftidy (e
M

6\111)> ,

with the Mukai pairing (¢1, ¢2) = &1 A a(@2)]top

& On-shell: from tension of DW separating two vacua: Tpw = 2|AW)|
@ Off-shell: superpotential should depend on holgmorphic variables:
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Kahler potential

@ Hitchin has shown that the moduli space of the deformation of one
pure spinor is special Kahler and that the Kahler potential is

K = —log (i/M(\I/,\E) :
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Kahler potential

@ Hitchin has shown that the moduli space of the deformation of one
pure spinor is special Kahler and that the Kahler potential is

K = —log (i/M(\I/,\E) :

@ It is more complicated when considering the deformations of the two
pure spinors together for the NV = 1 theory. Nevertheless

K = —2log (z /M XA~ \I:1>) — log (z /M e (2, Z)) .




Effective theory

W = / (Z,Fy +idHT>.
M

K = —2log (z /M eQA_‘I’(lIll,\E)) —log (z /M e_4A(Z,Z>) :

From ten to four and back again, Paul Koerber
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Check on )V and K
® z7W—(0z7K)W=0

@ AdS: reproduces all susy equations
@ Minkowski: reproduces all susy equations except:

dp (e *ImW¥;) =0 .

This latter equation can be interpreted as a D-flatness condition
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Non-perturbative corrections

@ Add: 5
™

o = - [ TIsne”

Wp Aexp( ”/2 5 e),

from D-brane instantons (n = 1) or gaugino condensation.
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Non-perturbative corrections

o Add: 5
T

np = - = [ Tlsne?),

Wp Aexp( ”/2 5 e)

from D-brane instantons (n = 1) or gaugino condensation.

@ The susy equations change

) 21
du (€3A_‘I>\I/2) = (2/R)Z €2A_q>€_l91m\1/1+—IWnpjnp .
n
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Non-perturbative corrections

@ Add: 5
™

o = - [ TIsne”

Wp Aexp( ”/2 5 e),

from D-brane instantons (n = 1) or gaugino condensation.

@ The susy equations change

. 24
dp (340 Wy ) = (2/R)i 24~ Tm Uy + =Wy jop -
~~ N
Q:3 e’ 0+2+4+6
@ Applications:

o 1IB SU(3)-structure compactifications to AdS
= classically disallowed

10 / 12



Introduction Low-energy effective theory (Non-perturbative corrections) Conclusions

Non-perturbative corrections

o Add: 5
T

np = - — ne'),

Wp Aexp( n/22|2 e)

from D-brane instantons (n = 1) or gaugino condensation.

The susy equations change
: 2i
dy (63147(1)\1/2) = (2/R)i*2=%¢ Im\I/1+;M'

Applications:

[

8 1IB SU(3)-structure compactifications to AdS
= classically disallowed
However: non-perturbative correction = cancel 1st term RHS
— 10-dimensional interpretation of KKLT
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Non-perturbative corrections

@ Add: 5
™

o = - [ TIsne”

Wp Aexp( n/z 5 e),

from D-brane instantons (n = 1) or gaugino condensation.

The susy equations change

. 21
it (47 0Ws) = (2/R)i A~ Tm Wy + 2 W, o
n

Applications:

o 1IB SU(3)-structure compactifications to AdS
= classically disallowed
However: non-perturbative correction = cancel 1st term RHS
— 10-dimensional interpretation of KKLT

@ mobile D3-branes.
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Mobile D3-branes

3A7<I>Q

For a complex structure Z = ¢
= space-filling susy D3-branes no potential

With D3—brane instantons .
duZ = ZWyp finp = dZ(1) = —ZEW,, 6D (%)

Complex structure = generalized
= D3-branes get superpotential PK, Martucci
Z(l) - *8WD3

0(01og Whp) = % 52 (%)

Solution: Whp = fl/nwnpv
with f holomorphic section line bundle associated to divisor %
Ganor, Baumann, Dymarsky, Klebanov, Berg, Haack, Kérs

11/ 12



Introduction Low-energy effective theory Non-perturbative corrections

Conclusions

[

Superpotential W and Kahler potential K
with correct warp factor A dependence

® As a check W and K = all susy equations

@ We can add W,,
= non-perturbative correction to susy equations

(]

Applications: KKLT and mobile D3-branes

(]

Further work: make actual reduction and keep only “light” modes
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Superpotential W and Kahler potential K
with correct warp factor A dependence

® As a check W and K = all susy equations

@ We can add W,,
= non-perturbative correction to susy equations

(]

Applications: KKLT and mobile D3-branes

(]

Further work: make actual reduction and kee 7;Iy “light” modes
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