From ten to four and back again: how to generalize the geometry

Paul Koerber

Valencia, 3rd RTN workshop

2 October 2007

Goal

 Most general susy compactification with fluxes from 10d type IIA/IIB to 4d Minkowski or AdS

Goal

- Most general susy compactification with fluxes from 10d type IIA/IIB to 4d Minkowski or AdS
- Preserve N = 1 susy in 4d (fluxes, D-branes, orientifolds):

$$\begin{aligned} \epsilon_1 &= \zeta_+ \otimes \eta_+^{(1)} + \zeta_- \otimes \eta_-^{(1)} ,\\ \epsilon_2 &= \zeta_+ \otimes \eta_{\mp}^{(2)} + \zeta_- \otimes \eta_{\pm}^{(2)} , \end{aligned}$$

 $\zeta: \mbox{ 4d spinor characterizes susy} \\ \eta^{(1,2)}: \mbox{ fixed 6d-spinor, property background.}$

Goal

- Most general susy compactification with fluxes from 10d type IIA/IIB to 4d Minkowski or AdS
- Preserve N = 1 susy in 4d (fluxes, D-branes, orientifolds):

$$\epsilon_1 = \zeta_+ \otimes \eta_+^{(1)} + \zeta_- \otimes \eta_-^{(1)} ,$$

$$\epsilon_2 = \zeta_+ \otimes \eta_{\mp}^{(2)} + \zeta_- \otimes \eta_{\pm}^{(2)} ,$$

- $\zeta: \mbox{ 4d spinor characterizes susy} \\ \eta^{(1,2)}: \mbox{ fixed 6d-spinor, property background.}$
- Study 4d effective theory

• Use the language of generalized geometry Hitchin, Gualtieri

Introduction)

Susy equations

• Use the language of generalized geometry Hitchin, Gualtieri

•
$$\Psi_{\pm} = -\frac{i}{||\eta^{(1)}||^2} \sum_l \eta^{(2)\dagger}_{\pm} \gamma_{i_1...i_l} \eta^{(1)}_{+} \gamma^{i_l...i_1}$$
 pure spinors

•
$$\Psi_1 = \Psi_{\mp}, \Psi_2 = \Psi_{\pm}$$
 for IIA/IIB

Susy equations

• Use the language of generalized geometry Hitchin, Gualtieri

•
$$\Psi_{\pm} = -\frac{i}{||\eta^{(1)}||^2} \sum_l \eta_{\pm}^{(2)\dagger} \gamma_{i_1...i_l} \eta_{\pm}^{(1)} \gamma^{i_l...i_1}$$
 pure spinors

- $\bullet \ \Psi_1 = \Psi_{\mp}, \Psi_2 = \Psi_{\pm} \text{ for IIA/IIB}$
- F: sum RR-fluxes, Φ : dilaton, A: warp factor, H NSNS 3-form, $d_H = d + H \wedge$

Susy equations

• Use the language of generalized geometry Hitchin, Gualtieri

•
$$\Psi_{\pm} = -\frac{i}{||\eta^{(1)}||^2} \sum_l \eta_{\pm}^{(2)\dagger} \gamma_{i_1...i_l} \eta_{\pm}^{(1)} \gamma^{i_l...i_1}$$
 pure spinors

$$\bullet \ \Psi_1 = \Psi_{\mp}, \Psi_2 = \Psi_{\pm} \text{ for IIA/IIB}$$

- F: sum RR-fluxes, Φ : dilaton, A: warp factor, H NSNS 3-form, $d_H = d + H \wedge$
- Susy equations Graña, Minasian, Petrini, Tomasiello:

$$d_H \left(e^{4A - \Phi} \operatorname{Re} \Psi_1 \right) = \mp e^{4A} \alpha(\star_6 F)$$
$$d_H \left(e^{3A - \Phi} \Psi_2 \right) = 0,$$
$$d_H \left(e^{2A - \Phi} \operatorname{Im} \Psi_1 \right) = 0,$$

for Minkowski.

3 / 12

Susy equations

• Use the language of generalized geometry Hitchin, Gualtieri

•
$$\Psi_{\pm} = -\frac{i}{||\eta^{(1)}||^2} \sum_l \eta_{\pm}^{(2)\dagger} \gamma_{i_1...i_l} \eta_{\pm}^{(1)} \gamma^{i_l...i_1}$$
 pure spinors

•
$$\Psi_1 = \Psi_{\mp}, \Psi_2 = \Psi_{\pm}$$
 for IIA/IIB

- F: sum RR-fluxes, Φ : dilaton, A: warp factor, H NSNS 3-form, $d_{H}=d{+}H{\wedge}$
- Susy equations Graña, Minasian, Petrini, Tomasiello:

$$d_H \left(e^{4A-\Phi} \operatorname{Re} \Psi_1 \right) = (3/R) e^{3A-\Phi} \operatorname{Re} \left(e^{i\theta} \Psi_2 \right) \mp e^{4A} \alpha(\star_6 F) ,$$

$$d_H \left(e^{3A-\Phi} \Psi_2 \right) = (2/R) i e^{2A-\Phi} e^{-i\theta} \operatorname{Im} \Psi_1 ,$$

$$d_H (e^{2A-\Phi} \operatorname{Im} \Psi_1) = 0 ,$$

for AdS: $\nabla_{\mu}\zeta_{-} = \pm \frac{e^{-i\theta}}{2R}\gamma_{\mu}\zeta_{+}$.

Comments

•
$$SU(3)$$
-structure: $\eta^{(2)} = c\eta^{(1)}$ (e.g. D3/D7 $c = \pm i$)

$$\Rightarrow \Psi_+ = -ic^{-1}e^{iJ}, \quad \Psi_- = \Omega$$

Comments

•
$$SU(3)$$
-structure: $\eta^{(2)}=c\eta^{(1)}$ (e.g. D3/D7 $c=\pm i$)

$$\Rightarrow \Psi_+ = -ic^{-1}e^{iJ}, \quad \Psi_- = \Omega$$

• susy equations and Bianchi/eom RR-fluxes, $H \Rightarrow$ Einstein equation, dilaton equation of motion

Comments

• SU(3)-structure: $\eta^{(2)} = c\eta^{(1)}$ (e.g. D3/D7 $c = \pm i$)

$$\Rightarrow \Psi_+ = -ic^{-1}e^{iJ}, \quad \Psi_- = \Omega$$

susy equations and Bianchi/eom RR-fluxes, H
 ⇒Einstein equation, dilaton equation of motion
 without sources:
 Lüst, Tsimpis (IIA) Gauntlett, Martelli, Sparks, Waldram (IIB)
 with sources: PK, Tsimpis

Low-energy theory

• Difficult to identify light modes

● Difficult to identify light modes
 ⇒ Strategy: keep all KK modes

- Difficult to identify light modes
 ⇒ Strategy: keep all KK modes
- How we handled the warp factor:

$$ds^{2} = e^{2A(y)}g^{\rm 4d}_{\mu\nu}(x)dx^{\mu}dx^{\nu} + g_{mn}(y)dy^{m}dy^{n} ,$$

- Difficult to identify light modes
 ⇒ Strategy: keep all KK modes
- How we handled the warp factor:

$$ds^{2} = e^{2A(y)} g_{\mu\nu}^{4d}(x) dx^{\mu} dx^{\nu} + g_{mn}(y) dy^{m} dy^{n} ,$$

has symmetry:

$$A \to A + \sigma \quad \text{and} \quad g^{\rm 4d} \to e^{-2\sigma}g^{\rm 4d} \;,$$

- Difficult to identify light modes
 ⇒ Strategy: keep all KK modes
- How we handled the warp factor:

$$ds^{2} = e^{2A(y)} g_{\mu\nu}^{4d}(x) dx^{\mu} dx^{\nu} + g_{mn}(y) dy^{m} dy^{n} ,$$

has symmetry:

$$A \to A + \sigma \quad \text{and} \quad g^{\rm 4d} \to e^{-2\sigma} g^{\rm 4d} \ ,$$

• Conformal supergravity formalism

- Difficult to identify light modes
 ⇒ Strategy: keep all KK modes
- How we handled the warp factor:

$$ds^{2} = e^{2A(y)} g_{\mu\nu}^{4d}(x) dx^{\mu} dx^{\nu} + g_{mn}(y) dy^{m} dy^{n} ,$$

has symmetry:

$$A \to A + \sigma \quad \text{and} \quad g^{\rm 4d} \to e^{-2\sigma} g^{\rm 4d} \ ,$$

• Conformal supergravity formalism

• Gauge-fixing local Weyl transformation leads to standard ${\cal N}=1$ sugra in Einstein frame

5 / 12

Superpotential

• Generalize the GVW superpotential:

$$\mathcal{W} = \int_M e^{3A - \Phi} \Omega \wedge G \,,$$

Superpotential

• Superpotential:

$$\mathcal{W} = \int_M \langle e^{3A - \Phi} \Psi_2, F \rangle \,,$$

with the Mukai pairing $\langle \phi_1, \phi_2 \rangle = \phi_1 \wedge \alpha(\phi_2)|_{top}.$

From ten to four and back again, Paul Koerber

6 / 12

Superpotential

• Superpotential:

$$\mathcal{W} = \int_M \langle e^{3A - \Phi} \Psi_2, F \rangle \,,$$

with the Mukai pairing $\langle \phi_1, \phi_2 \rangle = \phi_1 \wedge \alpha(\phi_2)|_{top}$.

• On-shell: from tension of DW separating two vacua: $T_{\rm DW}=2|\Delta {\cal W}|$

DW: generalized calibrated PK, Martucci

Superpotential

• Superpotential:

$$\mathcal{W} = \int_M \langle e^{3A - \Phi} \Psi_2, F \rangle \,,$$

with the Mukai pairing $\langle \phi_1, \phi_2 \rangle = \phi_1 \wedge \alpha(\phi_2)|_{top}$.

- On-shell: from tension of DW separating two vacua: $T_{\rm DW}=2|\Delta \mathcal{W}|$
- Off-shell: superpotential should depend on holomorphic variables:

Superpotential

• Superpotential:

$$\mathcal{W} = \int_M \langle e^{3A - \Phi} \Psi_2, F \rangle \,,$$

with the Mukai pairing $\langle \phi_1, \phi_2 \rangle = \phi_1 \bigwedge \alpha(\phi_2)|_{top}$.

- On-shell: from tension of DW separating two vacua: $T_{\rm DW}=2|\Delta {\cal W}|$
- Off-shell: superpotential should depend on holomorphic variables:

$$\mathcal{Z} = e^{3A - \Phi} \Psi_2 \,.$$

Superpotential

• Superpotential:

$$\mathcal{W} = \int_M \langle e^{3A - \Phi} \Psi_2, F \rangle \,,$$

with the Mukai pairing $\langle \phi_1, \phi_2 \rangle = \phi_1 \wedge \alpha(\phi_2)|_{top}$.

- On-shell: from tension of DW separating two vacua: $T_{\rm DW}=2|\Delta {\cal W}|$
- Off-shell: superpotential should depend on holomorphic variables:

$$\mathcal{Z} = e^{3A - \Phi} \Psi_2 \,.$$

The second holomorphic variable we find from the susy D-brane instanton action:

$$S_{\mathsf{E}}(\mathcal{T}) = \int_{\Sigma} \underbrace{(e^{-\Phi} \operatorname{Re} \Psi_1 - iC)}_{\mathcal{T}} |_{\Sigma} \wedge e^{\mathcal{F}}$$

6 / 12

Low-energy effective theory

Superpotential

• Superpotential:

$$\mathcal{W} = \int_{M} \langle e^{3A - \Phi} \Psi_2, \widetilde{F + id_H \left(e^{-\Phi} \operatorname{Re} \Psi_1 \right)} \rangle,$$

with the Mukai pairing $\langle \phi_1, \phi_2 \rangle = \phi_1 \wedge \alpha(\phi_2)|_{top}$

- On-shell: from tension of DW separating two vacua: $T_{\text{DW}} = 2|\Delta W|$
- Off-shell: superpotential should depend on holdmorphic variables:

$$\mathcal{Z} = e^{3A - \Phi} \Psi_2 \,.$$

The second holomorphic variable we find from the susy D-brane instanton action:

$$S_{\mathsf{E}}(\mathcal{T}) = \int_{\Sigma} \underbrace{(e^{-\Phi} \operatorname{Re} \Psi_1 \not iC)}_{\mathcal{T}} |_{\Sigma} \wedge e^{\mathcal{F}}$$

6 / 12

From ten to four and back again, Paul Koerbe

Conclusions

Kähler potential

 Hitchin has shown that the moduli space of the deformation of one pure spinor is special Kähler and that the Kähler potential is

$$\mathcal{K} = -\log\left(i\int_M \langle \Psi, \bar{\Psi} \rangle\right) \,.$$

7 / 12

Kähler potential

 Hitchin has shown that the moduli space of the deformation of one pure spinor is special Kähler and that the Kähler potential is

$$\mathcal{K} = -\log\left(i\int_M \langle \Psi, \bar{\Psi}
angle
ight)\,.$$

• It is more complicated when considering the deformations of the two pure spinors together for the ${\cal N}=1$ theory. Nevertheless

$$\mathcal{K} = -2\log\left(i\int_{M}e^{2A-\Phi}\langle\Psi_{1},\bar{\Psi}_{1}\rangle\right) - \log\left(i\int_{M}e^{-4A}\langle\mathcal{Z},\bar{\mathcal{Z}}\rangle\right)\,.$$

7 / 12

Effective theory

Superpotential

$$\mathcal{W} = \int_M \langle \mathcal{Z}, F_0 + i d_H \mathcal{T} \rangle.$$

Kähler potential

$$\mathcal{K} = -2\log\left(i\int_{M}e^{2A-\Phi}\langle\Psi_{1},\bar{\Psi}_{1}\rangle\right) - \log\left(i\int_{M}e^{-4A}\langle\mathcal{Z},\bar{\mathcal{Z}}\rangle\right) \,.$$

From ten to four and back again, Paul Koerber

8 / 12

Check on ${\mathcal W}$ and ${\mathcal K}$

•
$$\delta_{\mathcal{Z},\mathcal{T}}\mathcal{W} - (\delta_{\mathcal{Z},\mathcal{T}}\mathcal{K})\mathcal{W} = 0$$

• AdS: reproduces all susy equations

Check on ${\mathcal W}$ and ${\mathcal K}$

- $\delta_{\mathcal{Z},\mathcal{T}}\mathcal{W} (\delta_{\mathcal{Z},\mathcal{T}}\mathcal{K})\mathcal{W} = 0$
 - AdS: reproduces all susy equations
 - Minkowski: reproduces all susy equations except:

$$d_H(e^{2A-\Phi}\mathrm{Im}\,\Psi_1)=0\;.$$

Check on ${\mathcal W}$ and ${\mathcal K}$

- $\delta_{\mathcal{Z},\mathcal{T}}\mathcal{W} (\delta_{\mathcal{Z},\mathcal{T}}\mathcal{K})\mathcal{W} = 0$
 - AdS: reproduces all susy equations
 - Minkowski: reproduces all susy equations except:

$$d_H(e^{2A-\Phi}\mathrm{Im}\,\Psi_1)=0\;.$$

This latter equation can be interpreted as a D-flatness condition

Add:

$$\mathcal{W}_{np} = \mathcal{A} \exp\left(-\frac{2\pi}{n}\int_{\Sigma}\mathcal{T}|_{\Sigma}\wedge e^{\mathcal{F}}
ight),$$

from D-brane instantons (n = 1) or gaugino condensation.

10 / 12

Add:

$$\mathcal{W}_{\mathsf{np}} = \mathcal{A} \, \exp\left(-rac{2\pi}{n}\int_{\Sigma}\mathcal{T}|_{\Sigma}\wedge e^{\mathcal{F}}
ight),$$

from D-brane instantons (n = 1) or gaugino condensation.

• The susy equations change

$$d_H \left(e^{3A - \Phi} \Psi_2 \right) = (2/R) i \, e^{2A - \Phi} e^{-i\theta} \operatorname{Im} \Psi_1 + \frac{2i}{n} \mathcal{W}_{\mathsf{np}} \, j_{\mathsf{np}} \, .$$

Add:

$$\mathcal{W}_{\mathsf{np}} = \mathcal{A} \, \exp\left(-\frac{2\pi}{n}\int_{\Sigma}\mathcal{T}|_{\Sigma}\wedge e^{\mathcal{F}}
ight),$$

from D-brane instantons (n = 1) or gaugino condensation.

• The susy equations change

$$d_H \left(e^{3A - \Phi} \underbrace{\Psi_2}_{\Omega:3} \right) = (2/R)i \, e^{2A - \Phi} e^{-i\theta} \operatorname{Im} \underbrace{\Psi_1}_{0} + \frac{2i}{n} \mathcal{W}_{\mathsf{np}} \, j_{\mathsf{np}} \, .$$
$$e^{iJ} : 0 + 2 + 4 + 6$$

- Applications:
 - IIB SU(3)-structure compactifications to AdS \Rightarrow classically disallowed

10 / 12

Add:

$$\mathcal{W}_{\mathsf{np}} = \mathcal{A} \, \exp\left(-\frac{2\pi}{n}\int_{\Sigma}\mathcal{T}|_{\Sigma}\wedge e^{\mathcal{F}}
ight),$$

from D-brane instantons (n = 1) or gaugino condensation.

• The susy equations change

$$d_H(e^{3A-\Phi}\Psi_2) = (2/R)ie^{2A-\Phi}e^{-i\theta}\mathrm{Im}\Psi_1 + \frac{2i}{\mu}\mathcal{W}_{np}j_{np}.$$

Applications:

• IIB SU(3)-structure compactifications to AdS \Rightarrow classically disallowed However: non-perturbative correction \Rightarrow cancel 1st term RHS \rightarrow 10-dimensional interpretation of KKLT

10 / 12

Add:

$$\mathcal{W}_{\mathsf{np}} = \mathcal{A} \, \exp\left(-\frac{2\pi}{n}\int_{\Sigma}\mathcal{T}|_{\Sigma}\wedge e^{\mathcal{F}}
ight),$$

from D-brane instantons (n = 1) or gaugino condensation.

• The susy equations change

$$d_H\left(e^{3A-\Phi}\Psi_2\right) = (2/R)i\,e^{2A-\Phi}e^{-i\theta}\operatorname{Im}\Psi_1 + \frac{2i}{n}\mathcal{W}_{\mathsf{np}}\,j_{\mathsf{np}}\,.$$

• Applications:

IIB SU(3)-structure compactifications to AdS
 ⇒ classically disallowed
 However: non-perturbative correction ⇒ cancel 1st term RHS
 → 10-dimensional interpretation of KKLT
 mobile D3-branes

10 / 12

- For a complex structure $\mathcal{Z} = e^{3A \Phi}\Omega$
 - \Rightarrow space-filling susy D3-branes no potential

11 / 12

- For a complex structure Z = e^{3A-Φ}Ω
 ⇒ space-filling susy D3-branes no potential
- With D3-brane instantons

$$d_H \mathcal{Z} = \frac{2i}{n} \mathcal{W}_{np} \, j_{np} \Rightarrow d\mathcal{Z}_{(1)} = -\frac{2i}{n} \mathcal{W}_{np} \, \delta^{(2)}(\Sigma)$$

For a complex structure Z = e^{3A-Φ}Ω
 ⇒ space-filling susy D3-branes no potential

Low-energy effective theory

- With D3-brane instantons $d_H \mathcal{Z} = \frac{2i}{n} \mathcal{W}_{np} \, j_{np} \Rightarrow d\mathcal{Z}_{(1)} = -\frac{2i}{n} \mathcal{W}_{np} \, \delta^{(2)}(\Sigma)$
- Complex structure \Rightarrow generalized \Rightarrow D3-branes get superpotential *PK*, *Martucci* $\mathcal{Z}_{(1)} = -\partial \mathcal{W}_{D3}$

11 / 12

For a complex structure Z = e^{3A-Φ}Ω
 ⇒ space-filling susy D3-branes no potential

Low-energy effective theory

- With D3-brane instantons $d_H \mathcal{Z} = \frac{2i}{n} \mathcal{W}_{np} \, j_{np} \Rightarrow d\mathcal{Z}_{(1)} = -\frac{2i}{n} \mathcal{W}_{np} \, \delta^{(2)}(\Sigma)$
- Complex structure \Rightarrow generalized \Rightarrow D3-branes get superpotential *PK*, *Martucci* $Z_{(1)} = -\partial W_{D3}$

•
$$\bar{\partial}(\partial \log \mathcal{W}_{np}) = \frac{2\pi i}{n} \, \delta^{(2)}(\Sigma)$$

11 / 12

.

Mobile D3-branes

- For a complex structure Z = e^{3A-Φ}Ω
 ⇒ space-filling susy D3-branes no potential
- With D3-brane instantons $d_H \mathcal{Z} = \frac{2i}{n} \mathcal{W}_{np} \, j_{np} \Rightarrow d\mathcal{Z}_{(1)} = -\frac{2i}{n} \mathcal{W}_{np} \, \delta^{(2)}(\Sigma)$
- Complex structure \Rightarrow generalized \Rightarrow D3-branes get superpotential *PK*, *Martucci* $Z_{(1)} = -\partial W_{D3}$

•
$$\bar{\partial}(\partial \log \mathcal{W}_{np}) = \frac{2\pi i}{n} \,\delta^{(2)}(\Sigma)$$

• Solution: $W_{np} = f^{1/n} \tilde{W}_{np}$, with f holomorphic section line bundle associated to divisor Σ Ganor, Baumann, Dymarsky, Klebanov, Berg, Haack, Körs

11 / 12

- Superpotential W and Kähler potential K with correct warp factor A dependence
- As a check ${\mathcal W}$ and ${\mathcal K} \Rightarrow {\sf all}$ susy equations
- We can add W_{np}
 ⇒ non-perturbative correction to susy equations
- Applications: KKLT and mobile D3-branes
- Further work: make actual reduction and keep only "light" modes

12 / 12

- Superpotential W and Kähler potential K with correct warp factor A dependence
- As a check ${\mathcal W}$ and ${\mathcal K} \Rightarrow {\sf all}$ susy equations
- We can add W_{np}
 ⇒ non-perturbative correction to susy equations
- Applications: KKLT and mobile D3-branes

The end.

• Further work: make actual reduction and keep only "light" modes The end.

12 / 12