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Motivations

D-branes as classical solutions

• Very difficult to find multiple D-branes in OSFT

• N.C. field theory captures some essential feature of open
string (field) theory

• How the shape of a brane emerges?

• Are there new degrees of freedom when two D-branes
become coincident?

N.C. gauge theory will give a precise gauge invariant descrip-
tion of the above

The Setting

• Put a Dp-brane on the flat space time. (U(1) gauge
theory)

• Put a B-field on two spacelike world-volume direction
(n.c. U(1) gauge theory)

• Describe the Dp-2 branes obtained by tachyon conden-
sation on the n.c. direction
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Plan of the talk

z Non commutative Moyal Plane

z Non commutative scalars at infinite θ

– Projectors as D-branes

– Partial Isometry

z Working at finite θ

– Gauge field and covariantization

– Moduli and gauge invariance (moduli are positions)

z Adding commutative directions

– Solutions by superposition of Moyal planes

z Coincident D-branes

– New physical degrees of freedom: puffing

– Puffed vortices probed by Wilson lines

– Evolution of puffed vortices

z Open Problems
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MOYAL PLANE

Take R2 and substitute the commuting coordinates with the
Heisemberg Algebra

[x1, x2] = 0 → [x̂1, x̂2] = iθ

algebra of commuting functions → noncommutative as-
sociative algebra of operators.

Let Â be some operator, by choosing symmetric ordering I
can associate a function on R2 (Weyl Transform)

A(x1, x2) = WÂ(x1, x2) =

∫
dy〈x1 − y|Â|x1 + y〉 e2iyx2

θ

Operator product is mapped to the Moyal product by the
Weyl Transform

WÂ B̂(x1, x2) = WÂ ∗ WB̂(x1, x2)

where

A ∗B(x1, x2) = A(x1, x2) exp
(←−

∂ i θ
ij −→∂ j

)
B(x1, x2)
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Relevant example

w =
1√
θ
(x1 + ix2)

→ [w, w̄] = 1

w̄ =
1√
θ
(x1 − ix2)

A basis for operators is given by |n〉〈m|, the whole noncom-
mutative algebra can be written as

|n〉〈m| · |p〉〈q| = δmp |n〉〈q|
using h.o. eigenfunctions

〈x1|n〉 = N Hn

(
x1

√
θ

)
e−

x2
1

2θ

one finds (r2 = |w|2, φ = arg(w))

Λn,m(x1, x2) = W|n〉〈m|(x1, x2)

=
1

πθ
e−r2

√
n!

m!
(2r2)

m−n

2 ei(n−m)φLm−n
n (2r2)

basis for functions vanishing at infinity which obeys

Λn,m ∗ Λp,q(w, w̄) = δmpΛn,q(w, w̄)

In particular I get a (numerable) infinite set of moyal projec-
tors by Weyl transforming the density operators of the h.o.
eigenstates |n〉〈n|
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Non commutative solitons at large θ
(Gopakumar, Minwalla, Strominger)

Consider the toy model of a scalar with a suppressed kinetic
term in 2 n.c. dimensions

S[φ] =

∫
d2x

(
1

2
∂iφ∂iφ− V∗(φ)

)

=

∫
dwdw̄

(
∂φ∂̄φ− θV∗(φ)

)

for very large θ only the potential term survives, in operator
formalism

S[φ̂] = −Tr
[
V (φ̂)

]

The action has a U(∞) gauge symmetry φ → UφU †, with
U †U = UU † = 1.

Eoms: V ′(φ̂) = 0

Let V (z) be a polynomial with k extrema

V ′(z) = N

k∏

i=1

(z − zi),

then for each rank one projector |n >< n| I have a solution
zi|n >< n| whose energy is just V (zi) (the shape of the
potential gives no contribution, just the extrema do).

For a rank N projector PN =
∑N

n=0 |n >< n| I have the
solution zi PN whose energy is just N V (zi).

All these solutions are represented by localized lumps of
width θ in the noncommutative plane.

Note that in the commutative limit this solitons is not stable
as it can shrink to zero size
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Partial Isometry

To map eoms to eoms it is sufficient to ask S†S = 1 with
φ → SφS†, but if SS† 6= 1 this is not a symmetry of the action

consider for example the shift operator

S =
∑

n

|n + 1 >< n|

we have

S†S = 1 but SS† = 1− |0 >< 0|
and more generically

Sn(S†)n = 1− Pn

Starting from the trivial vacuum solution

φ = φ∗ I

with

V (φ∗) = 0

the absolute minimum, I can simply generate a rank n so-
lution that is just

φ̂n = φ∗Sn(S†)n,

with energy

−S[φ̂n] = n
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WORKING AT FINITE θ

• Derivatives

Under Weyl transform we have

∂if(x1, x2) → −iθij[x̂
j, f̂ ]

So, in operator formalism, derivatives are inner operators.

Going to complex coordinates w, w̄

∂ = −θ−1/2[w̄, ·]
∂̄ = θ−1/2[w, ·]

The action for scalars is

S[φ] = 2πθ Tr

[
−1

θ
[w, φ][w̄, φ]− V∗(φ)

]

Note that the U(∞) is broken by the kinetic terms. To
restore the symmetry we add a gauge field and introduce
covariant derivatives (from now on θ = 1)

Dφ = −[C, φ]
D̄φ = [C̄, φ]

where
C = w̄ + iA

C̄ = w − iĀ

we have

Dφ → UDφŪ

provided

A → UAŪ − iU [w̄, Ū ]
φ → UφŪ
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N.C. GAUGE THEORY

The connection A has a curvature

Fww̄ = ∂Ā− ∂̄A− i[A, Ā] = −i([C, C̄] + 1)

Yang Mills action

S = 2πTr(−1

4
FijF

ij − [C, φ][C, φ]− V (φ))

gauge invariance UU † = U †U = 1

δφ = UφU †

δC = UCU †

eoms:

[C, [C, φ]]− V ′(φ) = 0

[C, [C, C]]− [φ, [C, φ]] = 0

Again one can start from the vacuum solution (zero energy)

φ0 = φ∗ I
C0 = w̄ → F = 0

and use partial isometry to generate higher rank solutions
(vortices+solitons)

φn = φ∗SnI(S†)n = φ∗(1− Pn)

Cn = Snw̄(S†)n → F = Pn

The total energy is thus given by

E = n(1 + V (φ∗))
Rank n vortices have a 2n (real) dimensional moduli space.

Cn =
n−1∑

i=0

αi|i >< i|+ Snw̄(S†)n → F = Pn
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N.C. WILSON LINES

To understand the meaning of the complex moduli αi we
need to introduce Wilson lines. In function language

W (x, C) = P∗exp
(

i

∫ x+l

x

dξiAi

)

under a gauge tranformation (∗–rotation)
W (x, C) → U(x) ∗W (x, C) ∗ U−1

∗ (x + l)

To get some gauge invariant quantity we need to integrate
over the whole NC plane (trace). It is useful to give mo-
mentum k

W (k, C) =

∫
d2xW (x, C) ∗ eik·x

under a ∗-rotation

W (k, C) →
∫

d2xU(x) ∗W (x, C) ∗ U †(x + l) ∗ eik·x

But ∗ multiplication with plane waves gives translation
(which hence are part of the gauge group!)

eik·x ∗ f(x) = f(x + k · θ) ∗ eik·x

In particular

W (k, C) →
∫

d2xU(x) ∗W (x, C) ∗ eik·x ∗ U †(x + l − kθ)

by ciclicity W (k, C) is gauge invariant if l = k · θ.
Open Wilson lines are gauge invariant if the lenght and the
momentum are related!
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In operator formalism the gauge invariant Wilson line is given
by

W (l = kθ) = Tr el·C = Tr el̄C−lC̄

Gross-Nekrasov: This object can be used to define the po-
sition of the vortices in an unambiguous way (as translation
are gauge symmetries the naive concept of position, for ex-
ample the core of the gaussian given by the projector, is
meaningless)

Evaluating W on the rank n vortex C =
∑n−1

i=0 αi|i >< i|+
Snw̄(S†)n

W (l) =
n−1∑

i=0

el̄αi−lᾱi

by Fourier transforming the momentum l to position space
x we find delta-function distributions centered at the moduli
α

W (x) =
1

(2π)2

∫
d2l W (l) ei(lx̄+l̄x) =

n−1∑

k=0

δ(x− iαk)

... Other gauge invariant observables (for example fermion
condensates) can be used to prove that the moduli α repre-
sent the position of the vortices.
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ADDING COMMUTATIVE DIRECTIONS
Take R1,p×R2

θ and consider the gauge system as before (U(1)
with adjoint matter)

S =

∫
dzmdwdw(−1

4
FMNF MN +

1

2
DMφDMφ− V (φ))

that can be written using 2d operator formalism as

S =

∫
dzmTr

(
− 1

4
FµνF

µν + DµCDµC − 1

2
([C, C] + 1)2

+
1

2
DµφDµφ− [C, φ][C, φ]− V (φ)

)

This now looks like a U(∞) gauge theory with adjoint mat-
ter in m + 1 dimensions and

Dµ(φ, C) = ∂µ(φ, C) + i[Aµ, (φ, C)]

the eoms are given by

DµDµφ + [C, [φ, C]] + [C, [φ, C]] + V ′(φ) = 0

DµDµC + [C, [C, C]] + [φ, [C, φ]] = 0

DµDµC + [C, [C, C]] + [φ, [C, φ]] = 0

DµF µν − i([C, DνC] + [C, DνC] + [φ, Dνφ]) = 0

again solutions can be found using the partial isometry trick,

φ = φ∗(1− PN), C(z) =
∑N−1

i=0 αi(z)|i〉〈i|+ SNa†S̄N , Aµ(z) = 0

∂µ∂µαi(z) = 0

Note that the αi(z) parametrize the worldvolume of the
n vortices in the transverse directions and are constrained
to be of minimal volume by the D’Alembert equation (non
trivial shapes given by non trivial boundary conditions at
infinity which cannot be changed by finite variations of the
fields)
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PUFFED VORTICES

Consider a rank 2 solution with degenerated eigenvalues
(only the top part is shown)

C2(z) =

(
α(z) 0
0 α(z)

)
.

However C is not hermitian, so it does not need to be
diagonalizable. The most general gauge invariant ansatz is
indeed given by the (non normalized) Jordan block

C2(z) =

(
α(z) β(z)
0 α(z)

)
.

the phase of beta can be changed by gauge transformation,
only the modulus is gauge invariant. The Wilson line on this
background is given by

Tr el̄C−lC̄ = Tr el̄α−lᾱ cos(|l β|)
(

1 tan(|l β|) l̄
|l|

− tan(|l β|) l
|l| 1

)

= 2 el̄α−lᾱ cos(|l β|).
Fourier transforming to space we get

W (x) =
2

(2π)2

∫
d2q ei(q̄xα+qx̄α)cos(|q|β)

= − 1

2π

β

(β + r)
3

2

(
1

(β − r − iε)
3

2

+
1

(β − r + iε)
3

2

)

the two pointlike vortices are puffed into a a shell with
radius β!
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Profile of a rank 2 puffed vortex as probed by Wilson lines
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EVOLUTION OF THE SHELLS

This gauge invariant configuration is a solution to the equa-
tion of motion if

¤zβ(z) = −2β3(z)

We concentrate on two special cases

• Homogeneus time dependent solution: β(z) = β(t)

The equation is given by

d2β

dt2
= −2β3

The 2-parameters solution is given in term of a Jacobi
Elliptic Function

β(t) = adn(a(t− t0), 2)
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• Static solution which depends on just one space–like
coordinate: β(z) = β(x)

d2β

dx2
= 2β3

The solution is (remarkably) given by the Wick rotation of
the latter and it is still real

β(x) = bdn(ib(x− x0), 2) ,
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Vortex stretched between two domain walls
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SUMMARY

• The position of n.c. vortices can be defined in a gauge
invariant way by open Wilson lines

• This prescription gives to vortices minimal area world-
volumes

• When two or more vortices coincide they can be ”puffed”
to a shell which propagates according to the eoms

• In strict d=2 the radius of the shell is forced to vanish
on shell, still it is a gauge invariant quantity

• Time dependent bouncing solutions

• Static solutions in which a vortex is stretched between
two domain walls (codimension 1)

In progress

• Higher rank puffed vortices (do we need extra gauge
invariant quantities to describe them?)

• The Type II case (Is this phenomenon present on the
brane/anti–brane system?)
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