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Why gaugings and fluxes?

Usual caveats of string compactifications:

I Supersymmetry breaking: N = 4 or 8→ N = 1 and 0
I Many massless neutral scalars: moduli stabilization
I Cosmological constant (?)

Tool for a better control of the situation: give vev’s to
antisymmetric-tensor fields such as NS–NS, R–R, spin connection
[many groups – long literature – see M. Graña’s ’05 review]



From 4 to 10 dimensions

From the low-energy viewpoint

I Toroidal compactifications: N = 8 or N = 4 ungauged sugras
with neutral scalars without potential

I Flux compactifications: N = 8 or N = 4 (or less) gauged
sugras with charged scalars under (non-)Abelian gauge groups
and moduli-dependent superpotential (and potential)

The method [Derendinger, Kounnas, Petropoulos, Zwirner ’05]

I Start with phenomenologically relevant 4-dim gauged sugras
I Translate the gauging parameters into fluxes
I Reconstruct the fundamental theory



About the bottom-up programme

I Complementary to the 10-dim generalized-geometry
approaches

I No systematic oxidation recipe
I Not all 4-dim gauged N = 4 (N = 8) sugras are heterotic,

type-I or type-II-orientifold (M-theory) vacua
I Captures everything, including 4-dim remnants of

non-geometric string backgrounds



Here

We focus on 4-dim N = 4 theories (seeds for “realistic” vacua)

I Remind the basics on the gauging procedure using the
embedding tensor – outstanding tool

I Analyze the gauging of axionic shifts and rescalings
I Trace its 10-dim origin – not straightforward

I requires a generalized Scherk–Schwarz with twist by the
scaling symmetries

I relies on a duality between massive vectors and massive
two-forms
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Ungauged 4-dim N = 4 supergravity

Spectrum, interactions and symmetries

I 1 gravitational and n vector multiplets
I Bosonic content of the multiplets

I gravitational multiplet: 1 graviton, 6 graviphotons, 2 real
scalars combined into the axion-dilaton τ = χ + i exp−2φ

I vector multiplet: 1 vector, 6 real scalars

I Gauge group: U(1)6+n

I All scalars are neutral and non-minimally coupled to the
vectors: interaction terms of the type f (scalars) F 2

I There is no scalar potential
I The elimination of the auxiliary fields generates the scalar

manifold:

M =
SL(2, R)
U(1)

× SO(6, n)
SO(6)× SO(n)



I The SL(2, R)× SO(6, n) ⊂ Sp(12+ 2n, R) is realized as a
U-duality symmetry of the full theory [Gaillard, Zumino ’81]

I The SO(1, 1)× SO(6, n) is realized off-shell in heterotic
I the SO(1, 1) does not mix electric and magnetic gauge fields
I genuine electric–magnetic duality transformations relate

different Lagrangians written in different “symplectic frames”

Putting electric and magnetic duals together

I The 2× (6+ n) fields
({

AM+} ,
{
AM−}) ,M = 1, . . . , 6+ n

form a (2,Vec) of SL(2, R)× SO(6, n)
I A Lagrangian exists that captures their dynamics without

altering the number of propagating degrees of freedom – no
kinetic terms for

{
AM−}, extra 2-form auxiliary fields dual to

the scalars [de Wit, Samtleben, Trigiante ’02 –]



Gauging: deformation compatible with supersymmetry

Promotion of a subgroup of the U-duality group to a local gauge
symmetry supported by (part of) the existing U(1)n+6 vectors

I The generators of the duality group are
1. TMN = −TNM , M, . . . = 1, . . . , 6+ n generate the SO(6, n)
2. Sβγ = Sγβ, β, . . . = +,− generate the SL(2, R)

I The generators of the gauge algebra are

ΞαL =
1
2

(
ΘαLMN TMN + ΘαLβγ S βγ

)
where {ΘαLMN , ΘαLβγ} ∈ (2,Vec×Adj) + (2× 3,Vec) of
SL(2, R)× SO(6, n) is the embedding tensor

I At most 6+ n Ξ’s are independent and the Θ’s are subject to
constraints



Consistency constraints for the embedding tensor

Gauge invariance and supersymmetry [linear constraints]
This reduces the embedding tensor to (2,Ant[3]) + (2,Vec):

ΞαL =
1
2

(
fαLMN TMN + ηLQ ξαP TQP + εγβ ξβL Sγα

)

The fundamental of Sp(12+ 2n, R) must contain the adjoint of the
gauge algebra and the latter must close [quadratic constraints]

(i) ηMN ξαM ξβN = 0

(ii) ηMN ξ(αM fβ)NIJ = 0

(iii) εαβ
(
ξαI ξβJ + ηMN ξαM fβNIJ

)
= 0

(iv) ηMN fαMI [J fβKL]N − 1
2ξα[J fβKL]I − 1

6εαβ εγδ ξγI fδJKL +
1
2ηMN ξαM fβN [JK ηL]I + 1

6 fαJKL ξβI = 0 (Jacobi-like)



Important remarks

I f ’s and ξ’s are the gauging parameters which determine
- the algebra and its commutators
- the charges and covariant derivatives
- the scalar potential
- the mass matrices
- . . .

I fαJKL are not necessarily structure constants of some algebra



Examples

Gaugings with non-vanishing fαLMN only

I Pure SO(6, n) gaugings, extensively studied in the literature
I Large variety of gauge algebras as e.g. flat algebras related to

unimodular Scherk–Schwarz reductions, de Roo–Wagemans
phases, . . .

Gaugings with non-vanishing ξαL

I Only some isolated examples have been studied that fall in this
class [Villadoro, Zwirner ’04; Schön and Weidner ’06]

I Their systematic analysis is the subject of the next chapters



Lagrangian formulation – including electric and magnetic

An explicit Lagrangian is associated with any consistent gauging and
its bosonic sector has three parts [Schön and Weidner ’06]

I Lkin – kinetic terms for graviton, electric vectors and scalars
I Ltop – auxiliary-field contributions (magnetic vectors and

two-forms) necessary to maintain the correct number of
propagating fields

I Lpot = − e
16

(
fαMNP fβQRS Mαβ

( 1
3M

MQ MNR MPS +
( 2

3ηMQ −
MMQ)ηNRηPS)− 4

9 fαMNP fβQRS εαβ MMNPQRS +

3ξM
α ξN

β MαβMMN

)
– the scalar potential

I Mαβ are the components of 1
Imτ

(
1 −Reτ
−Reτ |τ|2

)
I MMQ and MMNPQRS are constructed similarly with the

remaining 6n scalars
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The axionic transformations and their gaugings

The axionic transformations are generated by the SL(2, R)(
a b
c d

)
∈ SL(2, R) acts on the axion-dilaton as τ → aτ+b

cτ+d

I S−− =
(
0 0
2 0

)
generates the electric–magnetic duality

I S++ =
(
0 −2
0 0

)
generates the axionic shifts τ → τ + b

I S+− =
(
1 0
0 −1

)
generates the axionic rescalings τ → a2τ

Gauging the axionic symmetries [see the embedding tensor]

I requires an embedding tensor with ξαM 6= 0
I is necessarily accompanied by a partial gauging of SO(6, n)



Aim: gauge the axionic shifts S++ and rescalings S+− but not the
electric–magnetic duality transformation S−− – “electric gaugings”

I We must set ξ−I = 0 [see embedding tensor]
I Our further choice: f−LMN = 0 (not compulsory)
I The quadratic constraints for ξI , fLMN are simpler (“+” index

dropped)

A solution: non-unimodular gaugings captured by {λi , i = 1, . . . , 6}

I We focus on n = 6: 12 vectors in total

I Light-cone-like convention: {I} ≡ {i , i ′}, η =
(
0 I6
I6 0

)
I ξi = λi , ξi ′ = 0 and fiji ′ = −λ[i δj ]i ′ ⇒ f j

ij = − 5
2λi



Remarks

I Here all other f ’s vanish: fijk , fii ′j ′ , fi ′j ′k ′
I The f ’s are not Lie-algebra structure constants

The gauge algebra [see embedding tensor] has 8 independent
generators out of 2× 12: {Υ, Ξ, Ξi ′}

- Ξ−i = −λi
2 S

++ ≡ λi Ξ
- Ξ−i ′ = 0

- Ξ+i = −λi
2

(
T j

j + S+−
)
≡ λi Υ

- Ξ+i ′ = −λjT
j
i ′ ≡ Ξi ′

Axionic symmetries are gauged along with 6 {Ξi ′} ⊂ SO(6, 6)



Commutation relations for {Υ, Ξ, Ξi ′} ⊂ SL(2, R)× SO(6, 6)

- [Ξi ′ , Ξj ′ ] = 0
- [Ξ, Ξj ′ ] = 0
- [Ξi ′ , Υ] = Ξi ′

- [Ξ, Υ] = −Ξ

More remarks and summary

I {Υ, Ξ, Ξi ′} is non-flat in contrast to the algebras obtained by
standard Scherk–Schwarz reductions [see latter]

I {Υ, Ξ} is the non-semi-simple subalgebra A2,2 ⊂ SL(2, R) of
axionic rescalings and axionic shifts

I {Υ, Ξ, Ξi ′} = {Υ}n {Ξ, Ξi ′}
I non-Abelian extensions exist (with e.g. fijk 6= 0)



The dynamics of non-unimodular gaugings

The 12 vectors
4 inert and 2+ 6 embedded in SL(2, R)× SO(6, 6) as generators
of local symmetries – enter in covariant derivatives acting on scalars

The 36 = 21+ 15 scalars of SO(6,6)
SO(6)×SO(6)

I The usual coset parameterization is

MMN =
(

hij −hik bkj
bik hkj hij − bik hk` b`j

)
I The gauging at hand generates Lpot

1
16

e2φλi

(
8hij − hij hk` b`m hmn bnk + 2hik bkm hmn bnr hrj

)
λj

(positive definite in analogous 5- to 4-dim reduction [VZ ’04])



The axion-dilaton

I The kinetic term is

e−1Lkin:axion-dilaton = −Dµ φDµφ− 1
4
e4φDµχDµχ

- Dµφ = ∂µφ− 1
2Yµ

- Dµχ = ∂µχ + Xµ + Yµχ

I Physical vectors involve electric and magnetic potentials:

Yµ = λi A
i+
µ Xµ = λi A

i−
µ

I Yµ ↔ Υ (axion rescalings: χ→ a2χ, φ→ φ− log a)
I Xµ ↔ Ξ (axion shifts: χ→ χ + b)

I The axion can be gauged away – Xµ acquires a mass in this
process via its Stückelberg coupling to χ and is traded for a
massive two-form Cνρ



The final bosonic content of the non-unimodular gauging

I The dilaton
I 4+ 1+ 6 vectors with Abelian algebra

I 4 inert
I 1 associated with the axionic rescalings of SL(2, R)
I 6 associated with MASA transformations of SO(6, 6)

I 1 massive two-form
I 36 scalars

I with scalar potential
I and minimal couplings to the 1+ 6 vectors
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Heterotic 10-dim pure supergravity
The SO(1, 1) symmetry

I Action for the bosonic sector (H = dB)∫
M4

dx
∫
K6

dy
√
−G e−Φ

(
R + GMN ∂MΦ ∂NΦ− 1

12
HMNKHMNK

)
I Invariance under SO(1, 1)

Φ→ Φ + 4λ, GMN → eλGMN , BMN → eλBMN

Dimensional reduction

I K6 is compact: infinitude of 4-dim modes
I Reduction: effective theory on M4 for a finite subset
I Data: K6 plus an ansatz for the y -dependance of all fields
I Necessary consistency condition: L independent of y



Ordinary vs. Scherk–Schwarz reduction

Standard reduction on flat torus

I Ansatz: no y -dependance
I Bosonic spectrum:

- 1 graviton
- 6+ 6 Abelian vectors
- 36 scalars
- 1 dilaton
- 1 axion (dual to the NS–NS form)

all massless and neutral



Ordinary vs. Scherk–Schwarz reduction

Scherk–Schwarz reduction [Scherk, Schwarz ’79; long literature]

I Ansatz: y -dependance compatible with internal symmetries
I Introduction of geometric (spin connection) fluxes γi

jk

I dθi = −γi
jk θj ∧ θk

I Bianchi–Jacobi γi
j [k γj

`m] = 0
I f i

jk = 2γi
jk structure constants of a locally group manifold

I γi
ij = 0: unimodularity property (truncation consistency)

I Results: non-Abelian vectors, massive scalars and vectors,
spontaneous breaking of supersymmetry – gauging

I Note: unimodularity captures semi-simplicity or flatness
I Example: twisted tori leading to gaugings in SO(6, 6)



External Scherk–Schwarz reduction

Using the “duality” SO(1, 1) 10-dim symmetry

I Ansatz: Φ(x , y) = Φ(x) + 4λiy i GMN(x , y) = eλiy i
GMN(x)

BMN(x , y) = eλiy i
BMN(x)

I Usual decomposition:
- GMN → gµν,Aµk , hij
- BMN → Bµν,Bµk , bij

- φ = Φ− 1
2 log deth

I The ansatz is consistent: the y -dependence drops



External Scherk–Schwarz reduction

Various couplings emerge

I Aµk and Bµk carry Abelian gauge symmetry
I hij charged under Aµk with charges λk

I bij charged under Bµk and Stückelberg-coupled to Aµk

I φ Stückelberg-coupled to Aµk with charges λk

I scalar potential for hij and bij

“duality-twisted tori”



Contact with axionic gaugings

After field redefinitions and integrations one vector drops and the
two-form becomes massive due to the Stückelberg couplings –
indicative of the gauging of a shift symmetry

I The reduced theory is the gauged N = 4 supergravity studied
in the last chapter: exact matching of the Lagrangians

I The specific choice of generalized Scherk–Schwarz allows to
1. turn on the 4-dim gauging parameters ξi as 10-dim SO(1, 1)-

-shift parameters λi along the torus one-cycles and therefore
gauge the 4-dim SL(2, R) axionic shifts and rescalings

2. evade unimodularity (here γj
ij ≡

1
2 f j

ij = − 5
4λi ⇒

non-unimodular geometric fluxes)

All this elegantly demonstrates the power of the gauging procedure
for describing diverse flux compactifications



Highlights

Motivations and summary

Gauged supergravities and the embedding tensor

The non-unimodular gaugings

Higher-dimensional origin: generalized Scherk–Schwarz reduction

Outcome



The outcome

This analysis closes the chapter of characterizing a whole class of
heterotic gaugings in terms of NS–NS and spin-connection fluxes

What are the geometrical features of the fundamental theory on the
top that translate into the consistency constraints imposed to the
embedding tensor from the bottom?

It calls for further investigation of other classes of gaugings related to
the previous by duality transformations



Last slide
Further gaugings further fluxes

I f+IJK , ξ+L: 232 electric parameters
- f+ijk NS–NS, f+ijk ′ spin-connection [studied here
in relation with axionic symmetries; Kaloper,
Myers ’99 in the unimodular case; . . . ]

- f+ij ′k ′ T-dual NS–NS, f+i ′j ′k ′ T-dual
spin-connection: “non-geometric” [Hull et al.
’05; Shelton, Taylor, Wecht ’05; . . . ]

I f−IJK , ξ−L: 232 magnetic-dual parameters
- f−ijk NS–NS, f−ijk ′ spin-connection
- f−ij ′k ′ T-dual NS–NS, f−i ′j ′k ′ T-dual
spin-connection

The number of degrees of freedom does not change – the algebra, its
SL(2, R)× SO(6, n) embedding and the higher-dimensional setup do
What is precisely the higher-dimensional setup?
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