Marco Pirrone

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA Dipartimento di Fisica G. Occhialini

Mesons in marginally deformed AdS/CFT

(M.P. in collaboration with S. Penati and C. Ratti) arXiv:071*.**** [hep-th]

Valencia 2007 3rd RTN Workshop

October 1-5, 2007

Outline

- 1) Exactly marginal deformations & SUGRA duals
- 2) Adding flavor to the AdS/CFT duality
- 3) Flavor on deformed backgrounds
- 4) The mesonic spectrum
- 5) Dual field theory picture
- 6) Conclusions

Exactly Marginal Deformations of $\mathcal{N}=4$ SYM

- Superpotential of $\mathcal{N}=4$ superconformal theory:

$$g\operatorname{Tr}(\Phi_1\Phi_2\Phi_3-\Phi_1\Phi_3\Phi_2)$$

- Exactly marginal γ -deformation \longrightarrow Superpotential of the $\mathcal{N}=1$ theory:

$$h\operatorname{Tr}(e^{i\pi\gamma}\Phi_1\Phi_2\Phi_3 - e^{-i\pi\gamma}\Phi_1\Phi_3\Phi_2)$$

[Leigh, Strassler '95]

- This $\mathcal{N}=1$ theory is superconformal invariant in the large N limit at all loop orders if

$$g^2 = |h|^2$$

[Mauri, Penati, Santambrogio, Zanon '05]

- Global symmetries of the original theory:

$$U(1)_1: (\Phi_1, \Phi_2, \Phi_3) \to (\Phi_1, e^{i\alpha_1}\Phi_2, e^{-i\alpha_1}\Phi_3)$$

$$U(1)_2: (\Phi_1, \Phi_2, \Phi_3) \to (e^{-i\alpha_2}\Phi_1, e^{i\alpha_2}\Phi_2, \Phi_3)$$

- γ -deformation and noncommutativity:

$$f * g = exp \left[i\pi \gamma (Q_f^1 Q_g^2 - Q_g^1 Q_f^2) \right] fg$$

The Supergravity Dual

- Start from $AdS_5 \times S^5 \to \text{Select a } T^2 \text{ in } S^5 \to \text{Perform a}$ TsT (T-duality, shift, T-duality).
- TsT on each of the 3 "natural" tori of S^5 with different $\hat{\gamma}_i$ \Rightarrow Non-supersymmetric deformation:

[Lunin, Maldacena '05, Frolov '05]

$$\begin{split} ds^2 &= \frac{u^2}{R^2} \eta_{\mu\nu} dx^\mu dx^\nu + \frac{R^2}{u^2} \left(d\rho^2 + \rho^2 d\theta^2 + G_{mn} dX^m dX^n \right) \\ u^2 &= \rho^2 + X_5^2 + X_6^2 \quad \rho_1^2 = \frac{X_5^2 + X_6^2}{u^2} \quad \rho_2^2 = \frac{\rho^2 c_\theta^2}{u^2} \quad \rho_3^2 = \frac{\rho^2 s_\theta^2}{u^2} \\ G_{\phi_2 \phi_2} &= G(1 + \hat{\gamma}_2^2 \rho_1^2 \rho_3^2) \rho_2^2 u^2 \qquad G_{\phi_3 \phi_3} = G(1 + \hat{\gamma}_3^2 \rho_1^2 \rho_2^2) \rho_3^2 u^2 \\ G_{\phi_2 \phi_3} &= G \hat{\gamma}_2 \hat{\gamma}_3 \rho_1^2 \rho_2^2 \rho_3^2 u^2 \qquad \hat{\gamma}_i = R^2 \gamma_i \\ G_{\phi_2 X_5} &= -G \hat{\gamma}_1 \hat{\gamma}_2 \rho_2^2 \rho_3^2 X_6 \qquad G_{\phi_2 X_6} = G \hat{\gamma}_1 \hat{\gamma}_2 \rho_2^2 \rho_3^2 X_5 \\ G_{\phi_3 X_5} &= -G \hat{\gamma}_1 \hat{\gamma}_3 \rho_2^2 \rho_3^2 X_6 \qquad G_{\phi_3 X_6} &= G \hat{\gamma}_1 \hat{\gamma}_3 \rho_2^2 \rho_3^2 X_5 \\ G_{X_5 X_5} &= 1 - X_6^2 \left[1 - G \left(1 + \hat{\gamma}_1^2 \rho_2^2 \rho_3^2 \right) \right] / \left(u^2 \rho_1^2 \right) \\ G_{X_6 X_6} &= 1 - X_5^2 \left[1 - G \left(1 + \hat{\gamma}_1^2 \rho_2^2 \rho_3^2 \right) \right] / \left(u^2 \rho_1^2 \right) \\ G_{X_5 X_6} &= X_5 X_6 \left[1 - G \left(1 + \hat{\gamma}_1^2 \rho_2^2 \rho_3^2 \right) \right] / \left(u^2 \rho_1^2 \right) \\ e^{2\phi} &= e^{2\phi_0} G \qquad G^{-1} &= 1 + \hat{\gamma}_1^2 \rho_2^2 \rho_3^2 + \hat{\gamma}_2^2 \rho_1^2 \rho_3^2 + \hat{\gamma}_3^2 \rho_1^2 \rho_2^2 \end{split}$$

- There are also non-vanishing $B(\hat{\gamma}_i)$, $C_2(\hat{\gamma}_i)$ in the internal directions.
- Finally $C_4 = C_4(\mathsf{Minkowski}) + C_4(\hat{\gamma}_i)$ and $C_6 = C_4 \wedge B$

Adding flavor to AdS/CFT

[Karch, Katz '02]

- Holographic dual of 4d SYM with fundamental matter \rightarrow near-horizon limit of a (N)D3- (N_f) D7 system $(N \gg N_f)$

Type IIB SUGRA on $AdS_5 \times S^5 + {\sf DBI}$ theory on $AdS_5 \times S^3$

- Open strings in this set-up:

D3-D3	$\mathcal{N}=4$ SYM theory			
D3-D7	$\mathcal{N}=2$ fundamental hypermultiplets			

- On the field theory side:

$$\mathcal{W} = \operatorname{Tr}\left(\Phi_1[\Phi_2, \Phi_3]\right) + \operatorname{tr}\left(\tilde{Q}\Phi_1Q\right) + m\operatorname{tr}\left(\tilde{Q}Q\right)$$

where the chiral superfields Q and \tilde{Q} transform in the (N, \bar{N}_f) and (\bar{N}, N_f) of $SU(N) \times SU(N_f)$.

- Holographic dictionary:

$$\langle \Phi_1 \rangle \sim m \,
ightarrow \, L \equiv$$
 distance between D3 and D7

- Quenching & $L=0 \Rightarrow$ Conformal theory.

Flavor in marginally deformed $AdS_5 \times S^5$

[Penati, M.P., Ratti '07]

- D7-brane action in $AdS_5 imes ilde{S}^3$: $S = S_{DBI} + S_{WZ}$

$$S_{DBI} = -T_7 \int_{\Sigma_8} e^{-\phi} \sqrt{-\det(g_{ab} - b_{ab} + 2\pi\alpha' F_{ab})}$$

$$S_{WZ} = T_7 \int_{\Sigma_8} P \left[\sum_q C_q e^{-B} \right] e^{2\pi lpha' F}$$

- Non-supersymmetric $AdS_5(x_\mu,\rho) imes ilde{S}^5(\theta,\phi_2,\phi_3,X_5,X_6)$:

$$(G_{MN}, e^{\phi}, B, C_q) \longrightarrow \text{functions of } \hat{\gamma}_{1,2,3}$$

- D7-brane worldvolume $(x_{\mu}, \rho, \theta, \phi_2, \phi_3)$ in the static gauge and consider the embedding

$$X^{M} = (x_{\mu}, \rho, \theta, \phi_{2}, \phi_{3}, X_{5}(\rho), X_{6}(\rho))$$
 $F = F(X^{M})$

$$\{X_5 = L, X_6 = 0, F = 0\}$$
:

$$S = -T_7 \int_{\Sigma_8} d\sigma^8 \rho^3 \sin\theta \cos\theta$$

Identical situation to the undeformed case!

$$SUSY \leftrightarrow NON-SUSY$$

- This configuration is stable (BPS):
 - 1) no dependence on $\hat{\gamma}_i$,
 - 2) no-force condition (energy independent of L),
 - 3) [adding probes, TsT] = 0:

$$egin{array}{c|c} {\sf D3-D7} \ {\sf system} + {\sf near-horizon} + TsT \\ & & ||| \\ & AdS_5 imes S^5 + TsT + {\sf D7-probe} \end{array}$$

(for instance [Imeroni, Naqvi '07])

- 4) no tachyonic modes in the spectrum of small fluctuations around the ground state,
- 5) when $\hat{\gamma}_i = \hat{\gamma}$, it is supersymmetric.

[Mariotti '07]

Probe fluctuations

- Stability & mesonic spectrum \rightarrow vibrations of the D7:

$$X_5 = L + 2\pi\alpha'\chi(\sigma_i), \qquad X_6 = 2\pi\alpha'\varphi(\sigma_i) \qquad A_a \neq 0$$

$$\downarrow \downarrow$$

$$S = \int_{\Sigma_8} d^8\sigma \{\mathcal{L}_0 + 2\pi\alpha'\mathcal{L}_1 + (2\pi\alpha')^2\mathcal{L}_2 + \cdots \}$$

- Introduce the undeformed induced metric \mathcal{G}^{ac} :

$$\mathcal{G}^{\mu\nu} = \frac{R^2}{L^2 + \rho^2} \eta^{\mu\nu}, \quad \mathcal{G}^{\rho\rho} = \frac{L^2 + \rho^2}{R^2}, \quad \mathcal{G}^{ij} = \frac{L^2 + \rho^2}{R^2 \rho^2} g^{ij}$$

and the deformation matrix \mathcal{T}^{ac} :

$$\mathcal{T}^{\phi_2\phi_2}=\hat{\gamma}_3^2 \hspace{0.5cm} \mathcal{T}^{\phi_3\phi_3}=\hat{\gamma}_2^2 \hspace{0.5cm} \mathcal{T}^{\phi_2\phi_3}=\mathcal{T}^{\phi_3\phi_2}=-\hat{\gamma}_2\hat{\gamma}_3$$

- Equations of motion from the quadratic \mathcal{L}_2 :

$$\partial_a \left[\sqrt{-\det(\mathcal{G})} \frac{R^2}{(L^2 + \rho^2)} \left(\mathcal{G}^{ac} + \frac{L^2}{R^2(L^2 + \rho^2)} \mathcal{T}^{ac} \right) \partial_c \chi \right] = 0$$

$$\partial_a \left[\sqrt{-det(\mathcal{G})} \, rac{R^2}{(L^2 +
ho^2)} \, \mathcal{G}^{ac} \, rac{D_c}{D_c}
ight] = 0$$

$$\partial_{a} \left[\sqrt{-\det(\mathcal{G})} \, \mathcal{G}^{ac} \mathcal{G}^{bd} \, F_{cd} \right] - \frac{4\rho(L^{2} + \rho^{2})}{R^{4}} \epsilon^{bjk} \partial_{j} A_{k}$$

$$- \sqrt{-\det(\mathcal{G})} \, \frac{L}{(L^{2} + \rho^{2})} \, \left(\hat{\gamma}_{2} \, \partial_{\phi_{3}} - \hat{\gamma}_{3} \, \partial_{\phi_{2}} \right) \mathcal{G}^{bc} \, \mathbf{D}_{c} = 0$$

where for simplicity $D_c \equiv \partial_c \Phi - \frac{L}{R^2} (\hat{\gamma}_2 \partial_{\phi_3} - \hat{\gamma}_3 \partial_{\phi_2}) A_c$ and

$$\Phi \equiv \varphi + \frac{L}{R^2} \left(\hat{\gamma}_2 A_{\phi_3} - \hat{\gamma}_3 A_{\phi_2} \right)$$

- In the conformal case (L=0) or in the UV $(\rho\gg L)$ the effect of the deformation disappears.

The mesonic spectrum

- Expand $\chi,\,\Phi,\,A_\mu,\,A_\rho$ in scalar spherical harmonics on S^3 :

$$X(\sigma_i) = x(\rho) e^{ikx} \mathcal{Y}_l^{m_2, m_3}(\theta, \phi_2, \phi_3)$$

where

$$\Delta_{S^{3}} \mathcal{Y}_{l}^{m_{2},m_{3}} = -l(l+2)\mathcal{Y}_{l}^{m_{2},m_{3}}$$

$$\frac{\partial}{\partial \phi_{2,3}} \mathcal{Y}_{l}^{m_{2},m_{3}} = i m_{2,3} \mathcal{Y}_{l}^{m_{2},m_{3}}$$

- And A_i in vector spherical harmonics $abla_i \mathcal{Y}_l^{m_2,m_3}$ and $\mathcal{Y}_i^{l;\pm}$.
- 1) The scalar mode χ and and the vector A_{μ} (in the Lorentz gauge $\partial^{\mu}A_{\mu}=0$) are decoupled and have the same mass:

$$M_{\hat{\gamma}_i} = \frac{2L}{R^2} \sqrt{(n+l+1)(n+l+2) + \left(\frac{\hat{\gamma}_2 m_3 - \hat{\gamma}_3 m_2}{2}\right)^2}$$

- 2) If A_i are expanded with $\mathcal{Y}_i^{l;\pm}$, they are decoupled form Φ and A_{ρ} since in different representation of $SO(4) \Rightarrow M_{\hat{\gamma}_i}$.
- 3) If A_i are expanded with $\nabla_i \mathcal{Y}_l^{m_2,m_3} \Rightarrow 4$ coupled equations for Φ , A_{ρ} , A_i : only 2 independent differential equations and 1 algebraic \Rightarrow 2 scalars with the same mass

$$M_3 = ?$$

Analysis of the spectrum

- In general the deformation manifests itself in the meson masses:

$$M_{\hat{\gamma}_i} = \frac{2L}{R^2} \sqrt{(n+l+1)(n+l+2) + \left(\frac{\hat{\gamma}_2 m_3 - \hat{\gamma}_3 m_2}{2}\right)^2}$$

Zeeman—like splitting

- The same $\hat{\gamma}_i$ —behavior found in the bosonic fluctuations of giant gravitons (wrapped on \tilde{S}^3) in the LM–Frolov models!

[M.P. '06]

- For fixed $\hat{\gamma}_i$ the spectrum is discrete.
- It has the same mass gap of the undeformed case:

$$(n = l = m_{2,3} = 0) \longrightarrow M_{gap} = \frac{2\sqrt{2}L}{R^2}$$

- In the SUSY case \Rightarrow mesons should fill massive $\mathcal{N}=1$ multiplets: 3 scalars and 1 vector with $M_{\hat{\gamma}}$ and 2 scalars with M_3 \Rightarrow

$$\mathcal{V}_{\hat{\gamma}} \equiv (spin - 0, spin - 1)$$
 $\mathcal{S}_{\hat{\gamma}} \equiv (spin - 0, spin - 0)$
 $\mathcal{S}_{3} \equiv (spin - 0, spin - 0)$

[in progress]

- What about the fermions?

The dual field theory

- Since [adding probe, TsT] = $0 \Rightarrow$

[adding fundamental,
$$*$$
-product] = 0

- Start from the undeformed conformal superpotential

$$\mathcal{W} = \mathsf{Tr}\left(\Phi_1[\Phi_2,\Phi_3]\right) + \mathsf{tr}\left(\tilde{Q}\Phi_1Q\right)$$

with $U(1)_1 \times U(1)_2$ global symmetries:

	Φ^1	Φ^2	Φ^3	Q	$ ilde{Q}$
Q_1	0	1	-1	0	0
Q_2	-1	1	0	1/2	1/2

 Next, modify with the *-product and introduce the mass term as a relevant operator:

$$\mathcal{W} = \operatorname{Tr} \left(e^{i\pi\gamma} \Phi_1 \Phi_2 \Phi_3 - e^{-i\pi\gamma} \Phi_1 \Phi_3 \Phi_2 \right)$$

$$+ \operatorname{tr} \left(\tilde{Q} \Phi_1 Q \right) + m \operatorname{tr} \left(\tilde{Q} Q \right)$$

- γ enters only in the adjoint sector \rightarrow expected?

$$\langle \Phi_1 \rangle \sim m \, \rightarrow \, L \equiv$$
 as in the undeformed case

- Non–supersymmetric case \rightarrow work in components and implementing the *-product \Rightarrow dependence on γ_1 and $(\gamma_2 - \gamma_3)$.

Summary

- 1) We find STABLE and EXACT D7-embedding in $AdS_5 \times \tilde{S}^5$.
- 2) INDEPENDENCE of the deformation parameters \rightarrow It remains BPS despite the values of $\hat{\gamma}_i$.
- 3) Exact solutions for the mesonic spectrum:

$$M_{\hat{\gamma}_i}^2 \sim M_0^2 + \left(\frac{\hat{\gamma}_2 m_3 - \hat{\gamma}_3 m_2}{2}\right)^2$$

4) FIELD THEORY dual in the SUSY and NON-SUSY case.

Future

- \$\rightarrow\$ Study of the fermionic sector in the spectrum.
- ♦ Consider other SUSY embeddings.

(for instance [Mariotti '07])

 \spadesuit Backreaction & dual gauge operators.