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On Sen’s entropy function



On Sen’s Entropy function

e [0 calculate the entropy S for extremal BH use only the
Near-Horizon geometry (attractor mechanism). The NH is

of the form Ads> @ SP—2,

2 2 dp? 2
dsc = V1| —p dr —I— p—2 + UdeD_Q ,
Fp(;;‘):eia ¢S:u87 (1)
It is defined f and S such that
f(@,5.8)= | V=g (lagrangian),
0(2
5 =20 5 (2)
867;

extremizing — S(gq;) with electric charges q; = 9(2nf)/0e;
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On Sen’'s Entropy function

e [ he attractor mechanism is used to fix the metric form, and
extremization of entropy reproduce the usual BH entropy as
a function of the conserved charges.

e T his framework is powerful enough to include higher deriva-
tive corrections to the supergravity action (just use Wald
generalization whenever is need it).

e But, what is the geometric origin or motivation for these
definitions?, What is this f77



On Sen’s Entropy function

e Notice that

q; = (%g_gf) is defined as the conjugated variable to e; and

there is like a Legendre transformation between (S, f)*.

e [ his reminds the usual manipulations of thermodynamics but
we are working at zero temperature with extremal solutions

e [ here should be an underlying thermodynamic framework
where to base the discussions for extremal BH, after all, this
should be dual to ensembles in matrix quantum mechanics!!!!

*All the above can be generalized to include magnetic charges and rotation.
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On GR thermodynamics



On GR thermodynamics

e Black Hole show Thermodynamic properties... like

where (E, J,Q) are charges and (3,2, ®) are potentials

e ...But in the extremal cases we do not write

(E,Q,J) OK  (3=7,Q=1,=1) NOT OK

e In particular starting from non-extremal cases, taking the
extremal limit we get

B—00 e T —0



On GR thermodynamics

e Yes, it is possible to extend the usual BH thermodynamics
to the extremal casell!l

e [ his is done by noticing that the near-extremal solution are
such that,

B — oo, QHQext_%‘I'O(ﬁ_Q)a ¢_>¢ext_%+o<6_2)

and

E — Bey+0(872), J— Jer+0(B72), Q — Qext+0(872)
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e then,

I = 5 (Eezvt — Qe:ctje:ct — q)ea:thzct) + wdegt + Qer:ct - Sezct + O(ﬁ_l)

e wWhere the extremal condition reads

Eegt — Qextjea:t - q)ea:th:ct =0

e therefore we get

where Iezt(w, ¢) and S(Jext, Qext)



On GR thermodynamics

e In fact all the statistical mechanics is recovered

e It is useful to find phase transitions and curves of marginal
stability for all extremal BH

e [ he above analysis has a dual CFT picture in 5D for asymp-
totic AdS BH and for D1/D5/P BH

e Since there is a NH AdS> geometry, the analysis should tell
information on the unknown dual quantum mechanics...
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Entropy function and Euclidean action



Entropy function and Euclidean action

e comparison between both equations tell us that,
27Tf: ext
€, — (wa ¢7 etc)

e but how? well, put the BH in a box at r =r_, then it is easy
to show

VS p(cbea:t _VCD)Q — Sj + ?(E _fbe:z:tQZ :
r=Th T4
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Entropy function and Euclidean action

e Taking the extremal limit

lim 5(¢ext — CD)Q — S = ¢Qext — Sext NH region

ext limat

im (GB(FE — ®.+Q) =0 Asymp region

ext limat

e and we have

that makes clear the identification of 2« f and I,
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Entropy function and Euclidean action

e regarding the NH electric fields e; and the potentials (w, ¢)
we have

oP

P = Be where S = Alp, — Alry
8A|

e = —
or'h

but the variation with respect to the near-extremality param-
eter ¢ translates into a variation on the position of the event
horizon r4 and hence both expressions agree!!!
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Concluding remarks

e \We have defined the extension of Euclidean methods to ex-
treme BH

e \We understood sen’s entropy functional within this frame-
work of " BH statistical mechanics”

e \We have found, using this framework, a rich phase diagram
with phase transitions for AdS BH

e Opens up a avenue to study AdS/CFT duality.
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