Dilatation Operator

Corneliu Sochichiu
INFN - LNF, Frascati \& IAP, Chișinău, Moldova

3d RTN Workshop "ForcesUniverse" Valencia

October 5, 2007

Outline

(1) Introduction

- Main motivation
- Setup
- Renormalization \& Operator mixing
(2) General construction \& Tools
- Operator Product Expansion
- Differential regularization
- Results
(3) Example
(4) Conclusion

Related Publications

- based on: JHEP09(2007)025
- BG: hep-th/0410010 (with S. Bellucci), hep-th/0506186, hep-th/0508056, hep-th/0608028, hep-th/0611274, hep-th/0701089

AdS/CFT correspondence

AdS/CFT correspondence (planar limit: $N \rightarrow \infty$):

$$
(\mathcal{N}=4 \mathrm{SYM})_{\mathcal{M}_{1,3}} \Leftrightarrow(\text { string theory })_{\mathrm{AdS}_{5} \times S^{5}}
$$

Recorded a considerable progress since ' 97 . Can be mapped to a spin chain. Integrability... [Minahan-Zarembo, Staudacher-Beisert,...]
Can be extended to include $1 / N$ corrections, which correspond to string interactions. Still can be mapped to a spin system: dynamical model, but no integrability!
Available tools: Statistical physics/Thermodynamics
Object of study: Dilatation operator/Mixing matrix

AdS/CFT correspondence

AdS/CFT correspondence (planar limit: $N \rightarrow \infty$):

$$
(\mathcal{N}=4 \mathrm{SYM})_{\mathcal{M}_{1,3}} \Leftrightarrow(\text { string theory })_{\mathrm{AdS}_{5} \times S^{5}}
$$

Recorded a considerable progress since ' 97 . Can be mapped to a spin chain. Integrability... [Minahan-Zarembo, Staudacher-Beisert,...]
Can be extended to include $1 / N$ corrections, which correspond to string interactions. Still can be mapped to a spin system: dynamical model, but no integrability!
Available tools: Statistical physics/Thermodynamics
Object of study: Dilatation operator/Mixing matrix [Beisert-Kristjansen-Plefka-Semenoff-Staudacher]

AdS/CFT correspondence

AdS/CFT correspondence (planar limit: $N \rightarrow \infty$):

$$
(\mathcal{N}=4 \mathrm{SYM})_{\mathcal{M}_{1,3}} \Leftrightarrow(\text { string theory })_{\mathrm{AdS}_{5} \times 5^{5}}
$$

Recorded a considerable progress since ' 97 . Can be mapped to a spin chain. Integrability... [Minahan-Zarembo, Staudacher-Beisert,...]
Can be extended to include $1 / N$ corrections, which correspond to string interactions. Still can be mapped to a spin system: dynamical model, but no integrability!
Available tools: Statistical physics/Thermodynamics
Object of study: Dilatation operator/Mixing matrix [Beisert-Kristjansen-Plefka-Semenoff-Staudacher]

$$
\text { Two approaches: }\left\{\begin{array}{c}
\text { Spin } \\
\text { Matrix }
\end{array}\right\} \text { parametrization. }
$$

Spin vs. Matrix approach

Spin description:

The planar limit is easy
(Planar) Integrability is manifest
Non-planar corrections are difficult
Semi-classical limit is difficult

Matrix description:

Planar limit requires some effort
No integrability for any finite matrix size
Non-planarity is natural
Semi-classical limit is easy
Taking into account the non-planar contribution to AdS/CFT requires matrix model approach

Spin vs. Matrix approach

Spin description:
The planar limit is easy
(Planar) Integrability is manifest
Non-planar corrections are difficult
X Semi-classical limit is difficult
Matrix description:
Planar limit requires some effort
No integrability for any finite matrix size
Non-planarity is natural
Semi-classical limit is easy
Taking into account the non-planar contribution to AdS/CFT requires matrix model approach

Spin vs. Matrix approach

Spin description:
The planar limit is easy
(Planar) Integrability is manifest
X Non-planar corrections are difficult
X Semi-classical limit is difficult
Matrix description:
X Planar limit requires some effort
X No integrability for any finite matrix size
Non-planarity is natural
Semi-classical limit is easy

Spin vs. Matrix approach

Spin description:
The planar limit is easy
(Planar) Integrability is manifest
X Non-planar corrections are difficult
X Semi-classical limit is difficult
Matrix description:
X Planar limit requires some effort
X No integrability for any finite matrix size
\checkmark Non-planarity is natural
Semi-classical limit is easy
Taking into account the non-planar contribution to AdS/CFT requires matrix model approach.

Dilatation Operator. . .

- ... corresponds to a dynamical system through the identification RG-flow \Leftrightarrow Dynamics
- ... in terms of a differential operator can be directly interpreted as a Hamiltonian of QM system ${ }^{\text {IIII }}$ Matrix Model description.
- ... is well studied in (mostly compact sectors of) $\Lambda \Gamma=4 \mathrm{SYM}$.
- ... plays key role in theories with conformal invariance: $\mathcal{N}=4 \mathrm{SYM}$, β-deformed versions, Quiver theories as well as in ordinary gauge theories e.g. QCD.
- ... we need to know it for a generic gauge theory

Dilatation Operator. . .

- ...corresponds to a dynamical system through the identification RG-flow \Leftrightarrow Dynamics
- ... in terms of a differential operator can be directly interpreted as a Hamiltonian of QM system ${ }^{\text {IIII }}$ Matrix Model description.
-

0
is well studied in (mostly compact sectors of) $\mathcal{N}=4 \mathrm{SYM}$.
plays key role in theories with conformal invariance: $\mathcal{N}=4$ SYM, β-deformed versions, Quiver theories as well as in ordinary gauge theories e.g. QCD.

- ... we need to know it for a generic gauge theory

Dilatation Operator. . .

- ...corresponds to a dynamical system through the identification RG-flow \Leftrightarrow Dynamics
- ...in terms of a differential operator can be directly interpreted as a Hamiltonian of QM system ${ }^{\text {IIIIt }}$ Matrix Model description.
。

β-deformed versions, Quiver theories as well as in ordinary gauge

 theories e.g. QCD.we need to know it for a generic gauge theory

Dilatation Operator. . .

- ...corresponds to a dynamical system through the identification RG-flow \Leftrightarrow Dynamics
- ...in terms of a differential operator can be directly interpreted as a Hamiltonian of QM system ${ }^{\text {IIIIt }}$ Matrix Model description.
- ... is well studied in (mostly compact sectors of) $\mathcal{N}=4$ SYM. β-deformed versions, Quiver theories as well as in ordinary gauge theories e.g. QCD.
we need to know it for a generic gauge theory

Dilatation Operator. . .

- ...corresponds to a dynamical system through the identification RG-flow \Leftrightarrow Dynamics
- ...in terms of a differential operator can be directly interpreted as a Hamiltonian of QM system ${ }^{\text {IIIt }}$ Matrix Model description.
- ... is well studied in (mostly compact sectors of) $\mathcal{N}=4$ SYM.
- ... plays key role in theories with conformal invariance: $\mathcal{N}=4$ SYM, β-deformed versions, Quiver theories as well as in ordinary gauge theories e.g. QCD.
- ... we need to know it for a generic gauge theory

Dilatation Operator. . .

- ...corresponds to a dynamical system through the identification RG-flow \Leftrightarrow Dynamics
- ... in terms of a differential operator can be directly interpreted as a Hamiltonian of QM system ${ }^{\text {IIIIt Matrix Model description. }}$
- ... is well studied in (mostly compact sectors of) $\mathcal{N}=4$ SYM.
- ... plays key role in theories with conformal invariance: $\mathcal{N}=4$ SYM, β-deformed versions, Quiver theories as well as in ordinary gauge theories e.g. QCD.
- ... we need to know it for a generic gauge theory

Objective

To propose a recipe to construct the dilatation operator as a differential operator acting on the space of normal symbols of local composite operators.
The procedure should...
> - ... apply to renormalizable models with massless fields - ... be as "Geometric" as possible

Objective

To propose a recipe to construct the dilatation operator as a differential operator acting on the space of normal symbols of local composite operators.
The procedure should...

- ... apply to renormalizable models with massless fields
\square

Objective

To propose a recipe to construct the dilatation operator as a differential operator acting on the space of normal symbols of local composite operators.
The procedure should...

-apply to renormalizable models with massless fields
- ... be as "Geometric" as possible

The Setup [Polyakov]

> "Alphabet": $\left\{\phi_{A}\right\}$ localized fields and their derivatives in SYM:
> $\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
> "Language": (gauge invariant) combinations of letters
> "Words" : simplest gauge invariants, one-trace composite operators,

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=1+W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases":

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L_{1}}} \mathcal{O}_{B_{1} B_{2} \ldots B_{L_{2}}} \ldots \mathcal{O}_{C_{1} C_{2} \ldots C_{L_{r}}}
$$

"Dual states":

$$
\check{\mathcal{O}}=\left.\mathcal{O}\right|_{\phi \rightarrow \check{\phi}} \quad \check{\phi}(x) \equiv \frac{\partial}{\partial \phi(x)}
$$

The Setup [Polyakov]

"Alphabet": $\left\{\phi_{A}\right\}$ localized fields and their derivatives in SYM: $\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": (gauge invariant) combinations of letters
"Words" : simplest gauge invariants, one-trace composite operators,

"Phrases"

The Setup [Polyakov]

"Alphabet": $\left\{\phi_{A}\right\}$ localized fields and their derivatives in SYM:
$\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": (gauge invariant) combinations of letters

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=\operatorname{tr} W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases"

"Dual states"

The Setup [Polyakov]

"Alphabet": $\left\{\phi_{A}\right\}$ localized fields and their derivatives in SYM:
$\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": (gauge invariant) combinations of letters
"Words" : simplest gauge invariants, one-trace composite operators,

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=\operatorname{tr} W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases":

The Setup [Polyakov]

"Alphabet": $\left\{\phi_{A}\right\}$ localized fields and their derivatives in SYM:
$\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": (gauge invariant) combinations of letters
"Words" : simplest gauge invariants, one-trace composite operators,

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=\operatorname{tr} W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases":

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L_{1}}} \mathcal{O}_{B_{1} B_{2} \ldots B_{L_{2}}} \ldots \mathcal{O}_{C_{1} C_{2} \ldots C_{L_{r}}}
$$

"Dual states"

The Setup [Polyakov]

"Alphabet": $\left\{\phi_{A}\right\}$ localized fields and their derivatives in SYM:
$\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": (gauge invariant) combinations of letters
"Words" : simplest gauge invariants, one-trace composite operators,

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=\operatorname{tr} W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases":

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L_{1}}} \mathcal{O}_{B_{1} B_{2} \ldots B_{L_{2}}} \ldots \mathcal{O}_{C_{1} C_{2} \ldots C_{L_{r}}}
$$

"Dual states":

$$
\check{\mathcal{O}}=\left.\mathcal{O}\right|_{\phi \rightarrow \check{\phi}} \quad \check{\phi}(x) \equiv \frac{\partial}{\partial \phi(x)}
$$

Renormalization \& Operator mixing

Dimension is given by the renormalization scale.
Consider a set of composite local operators \mathcal{O}_{J} closed under renormalization (mixing)

$$
\mathcal{O}_{J}^{\text {Ren }}=Z(\Lambda)_{J}^{\prime} \mathcal{O}_{l}
$$

Anomalous part of Dilatation Operator

$$
\Delta=-Z^{-1} \cdot \frac{\partial Z(\Lambda)}{\partial \log \Lambda}
$$

Anomalous dimensions

$$
\Delta \mathcal{O}_{\lambda}=\lambda \mathcal{O}_{\lambda}
$$

General Construction

We have to analyze the RG-transformation of a composite operator \mathcal{O} in perturbation theory. Mixing matrix $Z(\Lambda)$ can be found considering divergent terms in correlators of \mathcal{O} with another probe operator \mathcal{O}^{\prime},

$$
\left\langle: \mathcal{O}_{y}^{\prime}(\phi):: \mathcal{O}_{0}:\right\rangle=\left\langle: \mathcal{O}_{y}^{\prime}: \mathrm{e}^{-\int: V(\phi):}: \mathcal{O}_{0}:\right\rangle_{0}
$$

The source of relevant divergences is the Wick expansion of products
$e^{-\int: V(\phi):}: \mathcal{O}_{0}:=\left(1-\int: V(\phi):+\frac{1}{2!} \iint: V(\phi):: V(\phi):+\ldots\right): \mathcal{O}_{0}:$
So, we should modify \mathcal{O}_{0} in such a way to cancel divergences and find the scale dependence after the cancelation.

Tools

Wick expansion in functional form can be cast into [see Kleinert]

$$
: \mathcal{O}_{y}^{\prime}:: \mathcal{O}_{x}:=\mathrm{e}^{\breve{\phi}_{A y} D_{A B}(y-x) \check{\phi}_{B x}} \mathcal{O}_{y}^{\prime} \mathcal{O}_{x} \equiv \mathcal{O}^{\prime} * \mathcal{O}(x, y)
$$

* - star product resembles one in noncommutative theories!

$$
\check{\phi}_{A x}=\frac{\partial}{\partial \phi_{A}(x)} \quad \text { Not a functional derivative! }
$$

e.g. Euclidean massless propagator for a scalar field,

$$
D_{a b}(x-y)=\frac{1}{4 \pi^{2}} \frac{\delta_{a b}}{(x-y)^{2}}
$$

Functional Wick expansion can be generalized to the product of 3 , 4,... factors

Tools

Differential regularization/renormalization scheme in real space allows to regularize singular expressions like [Freedman-Johnson-Latorre],

$$
\frac{1}{x^{2 k}}=-\frac{1}{4^{k-1}(k-1)!(k-2)!} \square^{k-1} \frac{\ln \mu^{2} x^{2}}{x^{2}}, \quad k \geq 2
$$

introduces a scale dependence:

$$
\mu \frac{\partial}{\partial \mu}\left[\frac{1}{x^{2 k}}\right]_{\mathrm{reg}} \equiv\left[\frac{1}{x^{2 k}}\right]=\frac{8 \pi^{2}}{4^{k-1}(k-1)!(k-2)!} \square^{k-2} \delta(x)
$$

where we used the property

$$
\square \frac{1}{x^{2}}=-4 \pi^{2} \delta(x)
$$

One vertex level

Regularizing the terms in the - Wick Expansion interaction potential

$$
\begin{aligned}
-\int \mathrm{d} y & {\left[V_{\mathrm{int}}(y) *\right]=-\int \mathrm{d} y\left[\mathrm{e}^{\check{\phi}_{y} \cdot D_{y} \cdot \check{\phi}}\right] V_{y} } \\
= & -\int \mathrm{d} y\left(\check{\phi}_{y} \cdot\left[D_{y}\right] \cdot \check{\phi}+\frac{1}{2}\left(\check{\phi}_{y} \otimes \check{\phi}_{y}\right) \cdot\left[D_{y} \otimes D_{y}\right] \cdot(\check{\phi} \otimes \check{\phi})\right. \\
& \left.+\frac{1}{3!}\left(\check{\phi}^{\otimes 3}\right) \cdot\left[D_{y}^{\otimes 3}\right] \cdot\left(\check{\phi}^{\otimes 3}\right)+\frac{1}{4!}\left(\check{\phi}^{\otimes 4}\right) \cdot\left[D_{y}^{\otimes 4}\right] \cdot\left(\check{\phi}^{\otimes 4}\right)+\ldots\right) V_{y},
\end{aligned}
$$

One vertex level

Regularizing the terms in the - Wick Expansion we get for the first order in interaction potential

$$
\begin{aligned}
& -\int \mathrm{d} y\left[V_{\mathrm{int}}(y) *\right]=-\int \mathrm{d} y\left[\mathrm{e}^{\left.\check{\phi}_{y} \cdot D_{y} \cdot \check{\phi}\right]} V_{y}\right. \\
& =-\int \mathrm{d} y\left(\begin{array}{c}
\frac{1}{2}\left(\check{\phi}_{y} \otimes \check{\phi}_{y}\right) \cdot\left[D_{y} \otimes D_{y}\right] \cdot(\check{\phi} \otimes \check{\phi}) \\
\\
\quad+\frac{1}{3!}\left(\check{\phi}^{\otimes 3}\right) \cdot\left[D_{y}^{\otimes 3}\right] \cdot\left(\check{\phi}^{\otimes 3}\right)+\frac{1}{4!}\left(\check{\phi}^{\otimes 4}\right) \cdot\left[D_{y}^{\otimes 4}\right] \cdot\left(\check{\phi}^{\otimes 4}\right)
\end{array}\right) V_{y},
\end{aligned}
$$

Two vertex level

Second level yields

$$
\begin{aligned}
& \frac{1}{2!} \int \mathrm{d} y_{1} \int \mathrm{~d} y_{2}\left[V_{\mathrm{int}}\left(y_{1}\right) * V_{\mathrm{int}}\left(y_{2}\right) *\right] \\
& \quad=\frac{1}{2} \int \mathrm{~d} y_{1} \int \mathrm{~d} y_{2} \times \\
& \left\{\left(\check{\phi}_{y_{1}} \otimes \check{\phi}_{y_{1}} \otimes \check{\phi}_{y_{2}}\right) \cdot\left[D_{y_{1}} \otimes D_{y_{1}-y_{2}} \otimes D_{y_{2}}\right] \cdot\left(\check{\phi} \otimes \check{\phi}_{y_{2}} \otimes \check{\phi}\right)+\right. \\
& \left.\left(\check{\phi}_{y_{1}}^{\otimes 3} \otimes \check{\phi}_{y_{2}}\right) \cdot\left[D_{y_{1}}^{\otimes 2} \otimes D_{y_{1}-y_{2}} \otimes D_{y_{2}}\right] \cdot\left(\check{\phi}^{\otimes 2} \otimes \check{\phi}_{y_{2}} \otimes \check{\phi}\right)+\ldots\right\} V_{y_{1}} V_{y_{2}} .
\end{aligned}
$$

Example: Compact sector of $\mathcal{N}=4$ SYM at one loop

The compact sector is generated by scalar fields only and no derivatives,

$$
\mathcal{O}_{a_{1} \ldots a_{1} ; b_{1} \ldots b_{L_{2}} ; \ldots}=\operatorname{tr} \phi_{a_{1}} \ldots \phi_{a_{L_{1}}} \operatorname{tr} \phi_{b_{1}} \ldots \phi_{b_{L_{2}}} \ldots
$$

The one-loop part comes from the first term in of the list level Wick expansion:

$$
\int \mathrm{d} y\left[V_{\mathrm{int}}(y) *\right]=\frac{1}{8 \pi^{2}} \check{\delta}^{2} V_{\mathrm{int}}(\phi)
$$

where

$$
\check{\delta} f(\phi)=\check{\phi}_{a}(f(\phi)) \check{\phi}_{a}, \quad V(\phi)=\frac{g^{2}}{4} \operatorname{tr}\left[\phi_{a}, \phi_{b}\right]^{2}
$$

Conclusions

- Non-planar gauge string duality can be described using matrix models if we know the mixing matrix as a differential operator
- The problem can be solved by (almost) no Feynman diagram computation of at each order
- Simple examples give perfect agreement with known results
- more work to be done: two loops, application to more explicit examples etc

Conclusions

- Non-planar gauge string duality can be described using matrix models if we know the mixing matrix as a differential operator
- The problem can be solved by (almost) no Feynman diagram computation of at each order
- Simple examples give perfect agreement with known results
- more work to be done: two loops, application to more explicit examples etc

Conclusions

- Non-planar gauge string duality can be described using matrix models if we know the mixing matrix as a differential operator
- The problem can be solved by (almost) no Feynman diagram computation of at each order
- Simple examples give perfect agreement with known results
- more work to be done: two loops, application to more explicit examples etc

Conclusions

- Non-planar gauge string duality can be described using matrix models if we know the mixing matrix as a differential operator
- The problem can be solved by (almost) no Feynman diagram computation of at each order
- Simple examples give perfect agreement with known results
- more work to be done: two loops, application to more explicit examples etc

Conclusions

- Non-planar gauge string duality can be described using matrix models if we know the mixing matrix as a differential operator
- The problem can be solved by (almost) no Feynman diagram computation of at each order
- Simple examples give perfect agreement with known results
- more work to be done: two loops, application to more explicit examples etc

Conclusions

- Non-planar gauge string duality can be described using matrix models if we know the mixing matrix as a differential operator
- The problem can be solved by (almost) no Feynman diagram computation of at each order
- Simple examples give perfect agreement with known results
- more work to be done: two loops, application to more explicit examples etc

