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AdS/CFT correspondence

AdS/CFT correspondence (planar limit: N →∞):

(N = 4 SYM)M1,3 ⇔ (string theory)AdS5×S5

Recorded a considerable progress since ’97. Can be mapped to a spin
chain. Integrability... [Minahan-Zarembo, Staudacher-Beisert,...]
Can be extended to include 1/N corrections, which correspond to string
interactions. Still can be mapped to a spin system: dynamical model, but
no integrability!
Available tools: Statistical physics/Thermodynamics

Object of study: Dilatation operator/Mixing matrix
[Beisert-Kristjansen-Plefka-Semenoff-Staudacher]

Two approaches:

{
Spin

Matrix

}
parametrization.
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Spin vs. Matrix approach

Spin description:

" The planar limit is easy

" (Planar) Integrability is manifest

% Non-planar corrections are difficult

% Semi-classical limit is difficult

Matrix description:

% Planar limit requires some effort

% No integrability for any finite matrix size

" Non-planarity is natural

" Semi-classical limit is easy

Taking into account the non-planar contribution to AdS/CFT requires
matrix model approach.
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Dilatation Operator. . .

. . . corresponds to a dynamical system through the identification
RG-flow ⇔ Dynamics

. . . in terms of a differential operator can be directly interpreted as a
Hamiltonian of QM system w Matrix Model description.

. . . is well studied in (mostly compact sectors of) N = 4 SYM.

. . . plays key role in theories with conformal invariance: N = 4 SYM,
β-deformed versions, Quiver theories as well as in ordinary gauge
theories e.g. QCD.

. . . we need to know it for a generic gauge theory
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Objective

To propose a recipe to construct the dilatation operator as a differen-
tial operator acting on the space of normal symbols of local composite
operators.
The procedure should. . .

. . . apply to renormalizable models with massless fields

. . . be as “Geometric” as possible

Corneliu Sochichiu (INFN – LNF, Frascati & IAP, Chişinău, Moldova [3cm] 3d RTN Workshop “ForcesUniverse” Valencia)Dilatation Operator October 5, 2007 7 / 16



Objective

To propose a recipe to construct the dilatation operator as a differen-
tial operator acting on the space of normal symbols of local composite
operators.
The procedure should. . .

. . . apply to renormalizable models with massless fields

. . . be as “Geometric” as possible
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The Setup [Polyakov]

“Alphabet”: {φA} localized fields and their derivatives in SYM:
{WA} = {Fµν , φ, ψ,∇F ,∇φ,∇ψ . . . }
“Language”: (gauge invariant) combinations of letters
“Words”: simplest gauge invariants, one-trace composite operators,

OA1A2...AL
= tr WA1WA2 . . .WAL

“Phrases”:
OA1A2...AL1

OB1B2...BL2
. . .OC1C2...CLr

“Dual states”:

Ǒ = O
∣∣∣φ→φ̌ φ̌(x) ≡ ∂

∂φ(x)
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Ǒ = O
∣∣∣φ→φ̌ φ̌(x) ≡ ∂

∂φ(x)
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Renormalization & Operator mixing

Dimension is given by the renormalization scale.
Consider a set of composite local operators OJ closed under
renormalization (mixing)

ORen
J = Z (Λ)J

IOI

Anomalous part of Dilatation Operator

∆ = −Z−1 · ∂Z (Λ)

∂ log Λ

Anomalous dimensions
∆Oλ = λOλ
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General Construction

We have to analyze the RG-transformation of a composite operator O in
perturbation theory. Mixing matrix Z (Λ) can be found considering
divergent terms in correlators of O with another probe operator O′,

〈: O′y (φ) :: O0 :〉 = 〈: O′y : e−
∫

:V (φ):: O0 :〉0

The source of relevant divergences is the Wick expansion of products

e−
∫

:V (φ):: O0 : =

(
1−

∫
: V (φ) : +

1

2!

∫∫
: V (φ) :: V (φ) : + . . .

)
: O0 :

So, we should modify O0 in such a way to cancel divergences and find the
scale dependence after the cancelation.
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Tools

Wick expansion in functional form can be cast into [see Kleinert]

: O′y :: Ox := eφ̌AyDAB(y−x)φ̌BxO′yOx ≡ O′∗O(x , y)

∗ — star product resembles one in noncommutative theories!

φ̌Ax =
∂

∂φA(x)
Not a functional derivative!

e.g. Euclidean massless propagator for a scalar field,

Dab(x − y) =
1

4π2

δab
(x − y)2

Functional Wick expansion can be generalized to the product of 3,
4,. . . factors
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Tools

Differential regularization/renormalization scheme in real space allows to
regularize singular expressions like [Freedman-Johnson-Latorre],

1

x2k
= − 1

4k−1(k − 1)!(k − 2)!
�k−1 lnµ2x2

x2
, k ≥ 2

introduces a scale dependence:

µ
∂

∂µ

[
1

x2k

]
reg

≡
[

1

x2k

]
=

8π2

4k−1(k − 1)!(k − 2)!
�k−2δ(x)

where we used the property

�
1

x2
= −4π2δ(x)
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One vertex level

Regularizing the terms in the Wick Expansion we get for the first order in
interaction potential

−
∫

dy [Vint(y)∗] = −
∫

dy
[
eφ̌y ·Dy ·φ̌

]
Vy

= −
∫

dy

(
φ̌y · [Dy ] · φ̌+

1

2
(φ̌y ⊗ φ̌y ) · [Dy ⊗ Dy ] · (φ̌⊗ φ̌)

+
1

3!
(φ̌⊗3) · [D⊗3

y ] · (φ̌⊗3) +
1

4!
(φ̌⊗4) · [D⊗4

y ] · (φ̌⊗4) + . . .

)
Vy ,
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Two vertex level

Second level yields

1

2!

∫
dy1

∫
dy2[Vint(y1) ∗ Vint(y2)∗]

=
1

2

∫
dy1

∫
dy2×{

(φ̌y1 ⊗ φ̌y1 ⊗ φ̌y2) · [Dy1 ⊗ Dy1−y2 ⊗ Dy2 ] · (φ̌⊗ φ̌y2 ⊗ φ̌)+

(φ̌⊗3
y1
⊗ φ̌y2) · [D⊗2

y1
⊗ Dy1−y2 ⊗ Dy2 ] · (φ̌⊗2 ⊗ φ̌y2 ⊗ φ̌) + . . .

}
Vy1Vy2 .
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Example: Compact sector of N = 4 SYM at one loop

The compact sector is generated by scalar fields only and no derivatives,

Oa1...aL1
;b1...bL2

;... = trφa1 . . . φaL1
trφb1 . . . φbL2

. . .

The one-loop part comes from the first term in of the 1st level Wick
expansion: ∫

dy [Vint(y)∗] =
1

8π2
δ̌2Vint(φ)

where

δ̌f (φ) = φ̌a(f (φ))φ̌a, V (φ) =
g2

4
tr[φa, φb]2
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Conclusions

Non-planar gauge string duality can be described using matrix models
if we know the mixing matrix as a differential operator

The problem can be solved by (almost) no Feynman diagram
computation of at each order

Simple examples give perfect agreement with known results

more work to be done: two loops, application to more explicit
examples etc
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