World-sheet description of A and B branes revisited

Alexander Wijns (University of Iceland)

in collaboration with A. Sevrin and W. Staessens (V.U. Brussels) [arXiv: 0709.3733]

Valencia, October 5, 2007

- ullet Nonlinear σ -models in superspace
- D-brane effective actions

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2
- Type A branes
 - Formalism
 - Coisotropic branes

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2
- Type A branes
 - Formalism
 - Coisotropic branes
- Type B branes
 - Formalism
 - Derivative corrections

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2
- Type A branes
 - Formalism
 - Coisotropic branes
- Type B branes
 - Formalism
 - Derivative corrections
- 5 Duality transformations

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2
- Type A branes
 - Formalism
 - Coisotropic branes
- Type B branes
 - Formalism
 - Derivative corrections
- 5 Duality transformations
- 6 Remarks

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2
- Type A branes
 - Formalism
 - Coisotropic branes
- 4 Type B branes
 - Formalism
 - Derivative corrections
- 5 Duality transformations
- 6 Remarks

ullet RNS superstring: gauge ${\it N}=(1,1)$ supersymmetry on the world-sheet

- ullet RNS superstring: gauge ${\it N}=(1,1)$ supersymmetry on the world-sheet
- ullet Supersymmetry in target space \to extended supersymmetry on the world-sheet

- RNS superstring: gauge N = (1,1) supersymmetry on the world-sheet
- ullet Supersymmetry in target space o extended supersymmetry on the world-sheet
- N=(2,2) supersymmetry for general metric g and Kalb-Ramond field b (take ϕ constant) \rightarrow target space geometry is bihermitian/generalized Kähler

- RNS superstring: gauge N = (1,1) supersymmetry on the world-sheet
- ullet Supersymmetry in target space o extended supersymmetry on the world-sheet
- N = (2,2) supersymmetry for general metric g and Kalb-Ramond field b (take ϕ constant) \rightarrow target space geometry is bihermitian/generalized Kähler
- Geometry of target space clarified by using N = (2, 2) superspace

• N = (2,2) superspace action determined by Kähler potential

$$S_{(2,2)} = \int d^2 \sigma \, D_+ D_- \hat{D}_+ \hat{D}_- \, V(X, \bar{X})$$

BUT one needs constrained superfields!

• N = (2,2) superspace action determined by Kähler potential

$$S_{(2,2)} = \int d^2 \sigma \, D_+ D_- \hat{D}_+ \hat{D}_- \, V(X, \bar{X})$$

BUT one needs constrained superfields!

 Most general N = (2,2) superspace description in terms of chiral, twisted chiral and semi-chiral fields [LINDSTRÖM, ROČEK, VON UNGE, ZABZINE '05]

• N = (2,2) superspace action determined by Kähler potential

$$S_{(2,2)} = \int d^2 \sigma \, D_+ D_- \hat{D}_+ \hat{D}_- \, V(X, \bar{X})$$

BUT one needs constrained superfields!

- Most general N = (2,2) superspace description in terms of chiral, twisted chiral and semi-chiral fields [LINDSTRÖM, ROČEK, VON UNGE, ZABZINE '05]
- We will focus on chiral and twisted chiral superfields

ullet N=(2,2) superspace action determined by Kähler potential

$$S_{(2,2)} = \int d^2 \sigma \, D_+ D_- \hat{D}_+ \hat{D}_- \, V(X, \bar{X})$$

BUT one needs constrained superfields!

- Most general N = (2,2) superspace description in terms of chiral, twisted chiral and semi-chiral fields [LINDSTRÖM, ROČEK, VON UNGE, ZABZINE '05]
- We will focus on chiral and twisted chiral superfields
- ullet o target space is Kähler manifold with metric $g_{lphaareta}=\pm V_{lphaareta}$

Boundaries?

First motivation

What happens when we include boundaries? [Ooguri, Oz, Yin; Albertsson, Lindström, Zabzine, ...] Completely local N=2 superspace formulation still incomplete

Boundaries?

First motivation

What happens when we include boundaries? [Ooguri, Oz, Yin; Albertsson, Lindström, Zabzine, ...] Completely local N=2 superspace formulation still incomplete

World-sheet description of A and B branes on Kähler manifolds

Boundaries?

First motivation

What happens when we include boundaries? [Ooguri, Oz, Yin; Albertsson, Lindström, Zabzine, ...] Completely local N=2 superspace formulation still incomplete

World-sheet description of A and B branes on Kähler manifolds

B branes: - holomorphic cycles

- holomorphic line bundle connection

A branes: - lagrangian cycles with flat connection

- coisotropic cycles with non-vanishing flux

D-brane effective actions

• Effective action for flat Dp-brane for slowly varying fields 10d Born-Infeld action reduced to p + 1 dimensions

$$\mathcal{S}_{BI} = - au_9 \int d^{10}x \sqrt{-\det h^\pm_{ab}}, \quad h^\pm_{ab} = \eta_{ab} \pm F_{ab}$$

deformation of Maxwell theory $\mathcal{S}_M = -\frac{1}{4} \int F^2$

D-brane effective actions

• Effective action for flat Dp-brane for slowly varying fields 10d Born-Infeld action reduced to p+1 dimensions

$$\mathcal{S}_{BI} = - au_9 \int d^{10}x \sqrt{-\det h^\pm_{ab}}, \quad h^\pm_{ab} = \eta_{ab} \pm F_{ab}$$

deformation of Maxwell theory $S_M = -\frac{1}{4} \int F^2$

ullet For holomorphic line bundle connection: $F_{lphaeta}=F_{ar{lpha}ar{eta}}=0$

$$g^{lphaar{eta}}(\operatorname{arcth} F)_{lphaar{eta}}=0$$

solves the BI equations of motion \rightarrow Deformation of DUY stability condition

$$g^{\alpha\bar{\beta}}F_{\alpha\bar{\beta}}=0$$

Effective actions: abelian vs non-abelian

ullet Multiple coinciding D-branes o non-abelian gauge theory

Effective actions: abelian vs non-abelian

- Multiple coinciding D-branes → non-abelian gauge theory
- No slowly varying field limit for NBI

$$\boxed{[D,D]F=[F,F]}$$

Effective actions: abelian vs non-abelian

- Multiple coinciding D-branes → non-abelian gauge theory
- No slowly varying field limit for NBI

$$D, D F = [F, F]$$

	$\alpha' = 0$	$\alpha' \neq 0$	$\alpha' \neq 0$	
	$\partial F = 0$	$\partial F = 0$	$\partial F \neq 0$	
[,] = 0	Maxwell	Born-Infeld	!	
$[,] \neq 0$	Yang-Mills	up to 4th or	rder in α'	

→ look at derivative corrections to BI

BI action + derivatives?

Second motivation

How to compute derivative corrections efficiently?

BI action + derivatives?

Second motivation

How to compute derivative corrections efficiently?

Simple N = 2 superspace description of space-filling B brane in flat space with holomorphic line bundle connection

BI action + derivatives?

Second motivation

How to compute derivative corrections efficiently?

Simple N = 2 superspace description of space-filling B brane in flat space with holomorphic line bundle connection

1

Derivative corrections from β -function calculation in N=2 superspace using supergraph techniques

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2
- Type A branes
 - Formalism
 - Coisotropic branes
- Type B branes
 - Formalism
 - Derivative corrections
- 5 Duality transformations
- 6 Remarks

N=1 superspace

• Introduce a boundary \rightarrow from N = (1,1) to N = 1 [KOERBER, NEVENS, SEVRIN '03]

$$D = D_+ + D_-$$
 unbroken $D' = D_+ - D_-$ broken

$$D^2 = D'^2 = -\frac{i}{2}\partial_{\tau}, \quad \{D, D'\} = -i\partial_{\sigma}$$

N=1 superspace

• Introduce a boundary \rightarrow from N = (1,1) to N = 1 [KOERBER, NEVENS, SEVRIN '03]

$$D=D_++D_-$$
 unbroken $D'=D_+-D_-$ broken

$$D^2 = D'^2 = -\frac{i}{2}\partial_{\tau}, \quad \{D, D'\} = -i\partial_{\sigma}$$

N = 1 action

$$\mathcal{S}_{N=1} = -\int d^2\sigma \, D \left[D' \left(D_+ X^a D_- X^b (g_{ab} + b_{ab})
ight)
ight]$$

Equivalent to bulk action up to boundary term:

$$D_{+}D_{-} = -1/2 DD' - i/2 \partial_{\sigma}$$

N=1 superspace: boundary conditions

Boundary conditions

• Dirichlet: $\delta X^a = 0$

• Neumann: $D'X^a = b^a_{\ b}DX^b$

N=1 superspace: boundary conditions

- Boundary conditions
 - Dirichlet: $\delta X^a = 0$
 - Neumann: $D'X^a = b^a_{\ b}DX^b$
- Mixed conditions: introduce projection operators

$${\cal P}_{\pm} = rac{1}{2}(1\pm {\cal R})\,, \quad {\cal R}^2 = 1$$

 \mathcal{P}_+ : Neumann, \mathcal{P}_- : Dirichlet

$$\mathcal{P}_{-}\partial_{\tau}X = \mathcal{P}_{-}DX = 0 \rightarrow \mathcal{P}_{+b}^{d}\mathcal{P}_{+c}^{e}\mathcal{R}_{[d,e]}^{a} = 0$$

- $ightarrow \mathcal{P}_+$ is integrable
- → Brane wraps integrable submanifold

N=2 superspace

• From N = (2,2) to N = 2: two choices B-type:

$$D = D_{+} + D_{-},$$
 $\hat{D} = \hat{D}_{+} + \hat{D}_{-},$ $D' = D_{+} - D_{-},$ $\hat{D}' = \hat{D}_{+} - \hat{D}_{-}.$

A-type:

$$D = D_{+} + D_{-}, \qquad \hat{D} = \hat{D}_{+} - \hat{D}_{-},$$

$$D' = D_{+} - D_{-}, \qquad \hat{D}' = \hat{D}_{+} + \hat{D}_{-}.$$

N=2 superspace

• From N = (2, 2) to N = 2: two choices B-type:

$$D = D_{+} + D_{-},$$
 $\hat{D} = \hat{D}_{+} + \hat{D}_{-},$ $D' = D_{+} - D_{-},$ $\hat{D}' = \hat{D}_{+} - \hat{D}_{-}.$

A-type:

$$D = D_{+} + D_{-},$$
 $\hat{D} = \hat{D}_{+} - \hat{D}_{-},$ $\hat{D}' = D_{+} - D_{-},$ $\hat{D}' = \hat{D}_{+} + \hat{D}_{-}.$

• But chiral with A-type = twisted chiral with B-type

N=2 superspace: Action

N=2 action

$$\mathcal{S}_{N=2} = \int d^2\sigma \, D\hat{D} \left[D'\hat{D}' \, V(X,\bar{X}) \right] + i \int d au \, D\hat{D} W(X,\bar{X})$$

with

$$D^{2} = \hat{D}^{2} = D'^{2} = \hat{D}'^{2} = -\frac{i}{2}\partial_{\tau},$$

$$\{D, D'\} = \{\hat{D}, \hat{D}'\} = -i\partial_{\sigma},$$

N=2 superspace: Action

N=2 action

$$\mathcal{S}_{N=2} = \int d^2\sigma \, D\hat{D} \left[D'\hat{D}' \, V(X,\bar{X}) \right] + i \int d au \, D\hat{D} W(X,\bar{X})$$

with

$$D^{2} = \hat{D}^{2} = D'^{2} = \hat{D}'^{2} = -\frac{i}{2}\partial_{\tau},$$

$$\{D, D'\} = \{\hat{D}, \hat{D}'\} = -i\partial_{\sigma},$$

Chiral with B-type = type B branes \uparrow mirror symmetry \uparrow Twisted chiral with B-type = type A branes

Outline

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2
- Type A branes
 - Formalism
 - Coisotropic branes
- 4 Type B branes
 - Formalism
 - Derivative corrections
- 5 Duality transformations
- 6 Remarks

• Twisted chiral fields with B-type boundary

$$\begin{array}{c|c} \hat{D}X^{\mu} = iD'X^{\mu} & \hat{D}X^{\bar{\mu}} = -iD'X^{\bar{\mu}} \\ \hat{D}'X^{\mu} = iDX^{\mu} & \hat{D}'X^{\bar{\mu}} = -iDX^{\bar{\mu}}, \end{array}$$

Twisted chiral fields with B-type boundary

$$\hat{D}X^{\mu} = iD'X^{\mu} \mid \hat{D}X^{\bar{\mu}} = -iD'X^{\bar{\mu}}$$

$$\hat{D}'X^{\mu} = iDX^{\mu} \mid \hat{D}'X^{\bar{\mu}} = -iDX^{\bar{\mu}},$$

Impose Dirichlet conditions

$$(\mathcal{P}_{-}\delta X)^{\mu}=0 \rightarrow \delta X^{\mu}=\mathcal{R}^{\mu}{}_{\bar{\nu}}\,\delta X^{\bar{\nu}}+\mathcal{R}^{\mu}{}_{\nu}\,\delta X^{\nu}$$

Twisted chiral fields with B-type boundary

$$\hat{D}X^{\mu} = iD'X^{\mu} \mid \hat{D}X^{\bar{\mu}} = -iD'X^{\bar{\mu}}$$

$$\hat{D}'X^{\mu} = iDX^{\mu} \mid \hat{D}'X^{\bar{\mu}} = -iDX^{\bar{\mu}},$$

Impose Dirichlet conditions

$$(\mathcal{P}_{-}\delta X)^{\mu}=0 \rightarrow \delta X^{\mu}=\mathcal{R}^{\mu}{}_{\bar{\nu}}\,\delta X^{\bar{\nu}}+\mathcal{R}^{\mu}{}_{\nu}\,\delta X^{\nu}$$

ullet We find additional projection operators $\pi_\pm: T_\mathcal{M}^{(1,0)} o T_\mathcal{M}^{(1,0)}$

Twisted chiral fields with B-type boundary

$$\hat{D}X^{\mu} = iD'X^{\mu} \mid \hat{D}X^{\bar{\mu}} = -iD'X^{\bar{\mu}}$$

$$\hat{D}'X^{\mu} = iDX^{\mu} \mid \hat{D}'X^{\bar{\mu}} = -iDX^{\bar{\mu}},$$

Impose Dirichlet conditions

$$(\mathcal{P}_{-}\delta X)^{\mu} = 0 \rightarrow \delta X^{\mu} = \mathcal{R}^{\mu}{}_{\bar{\nu}} \,\delta X^{\bar{\nu}} + \mathcal{R}^{\mu}{}_{\nu} \,\delta X^{\nu}$$

- ullet We find additional projection operators $\pi_\pm: T_\mathcal{M}^{(1,0)} o T_\mathcal{M}^{(1,0)}$
- Neumann conditions

$$(\pi_+ \mathcal{P}_+ D'X)^{\mu} = \mathcal{R}^{\mu}{}_{\nu} D'X^{\nu}$$

$$(\pi_- \mathcal{P}_+ D'X)^{\mu} = 0$$

ightarrow non-degenerate F along π_+ and F=0 along π_-

• An equal amount of Neumann and Dirichlet conditions in ${\rm Im}\pi_-$ (plus c.c.)

- An equal amount of Neumann and Dirichlet conditions in ${\rm Im}\pi_-$ (plus c.c.)
- Brane is space-filling in ${\rm Im}\pi_+$ (+ c.c.)

- An equal amount of Neumann and Dirichlet conditions in ${\rm Im}\pi_-$ (plus c.c.)
- Brane is space-filling in $Im \pi_+$ (+ c.c.)
- Extra complex structure $K = \omega^{-1}F$ in π_+ directions

- An equal amount of Neumann and Dirichlet conditions in ${\rm Im}\pi_-$ (plus c.c.)
- Brane is space-filling in $Im \pi_+$ (+ c.c.)
- Extra complex structure $K = \omega^{-1}F$ in π_+ directions
- F is expressed as function of derivatives on V and W

- An equal amount of Neumann and Dirichlet conditions in ${\rm Im}\pi_-$ (plus c.c.)
- Brane is space-filling in $\text{Im}\pi_+$ (+ c.c.)
- Extra complex structure $K = \omega^{-1}F$ in π_+ directions
- F is expressed as function of derivatives on V and W
- F and ω are both (2,0)+(0,2) forms with respect to K \rightarrow Im π_+ is 4m-dimensional, $m \in \mathbb{N}$

- An equal amount of Neumann and Dirichlet conditions in ${\rm Im}\pi_-$ (plus c.c.)
- Brane is space-filling in $Im \pi_+$ (+ c.c.)
- Extra complex structure $K = \omega^{-1}F$ in π_+ directions
- F is expressed as function of derivatives on V and W
- F and ω are both (2,0)+(0,2) forms with respect to K \rightarrow Im π_+ is 4m-dimensional, $m \in \mathbb{N}$
- In general this thus describes an (n+2m)-brane where d=2n

Geometric interpretation

• If σ^a are coordinates along the brane ${\cal N}$ in π_- directions

$$T_{\mathcal{N}}^{\perp} = \{\partial/\partial\sigma^{a}\} \subset T_{\mathcal{N}} = \{\partial/\partial\sigma^{a}\} \oplus \mathrm{Im}\pi_{+}$$

1

Brane wraps coisotropic submanifold

[Kapustin, Orlov '01] [Lindström, Zabzine '02]

Geometric interpretation

ullet If σ^a are coordinates along the brane ${\cal N}$ in π_- directions

$$T_{\mathcal{N}}^{\perp} = \{\partial/\partial\sigma^{a}\} \subset T_{\mathcal{N}} = \{\partial/\partial\sigma^{a}\} \oplus \operatorname{Im}\pi_{+}$$

Brane wraps coisotropic submanifold

• Pullback of ω , F and $K = \omega^{-1}F$ only non-vanishing and non-degenerate on $T_{\mathcal{N}}/T_{\mathcal{N}}^{\perp} = \mathrm{Im}\pi_{+}$

[Kapustin, Orlov '01] [Lindström, Zabzine '02]

Geometric interpretation

• If σ^a are coordinates along the brane ${\cal N}$ in π_- directions

$$T_{\mathcal{N}}^{\perp} = \{\partial/\partial\sigma^{a}\} \subset T_{\mathcal{N}} = \{\partial/\partial\sigma^{a}\} \oplus \operatorname{Im}\pi_{+}$$

Brane wraps coisotropic submanifold

- Pullback of ω , F and $K = \omega^{-1}F$ only non-vanishing and non-degenerate on $T_N/T_N^{\perp} = \text{Im}\pi_+$
- When $\pi_-=1$, we find $T_{\mathcal{N}}^{\perp}=T_{\mathcal{N}}\to$ brane wraps lagrangian submanifold with flat connection

[Kapustin, Orlov '01] [Lindström, Zabzine '02]

Examples:

- Lagrangian brane of any shape on T^2
 - ightarrow W determines the shape of the brane

Examples:

- Lagrangian brane of any shape on T²
 → W determines the shape of the brane
- Maximally coisotropic brane on T^4 and 4d hyperkähler manifold ${\cal K}$ with $V\equiv V(z-\bar z,w+\bar w)$

In both cases:

$$F_{zw} = i$$

$$W = \frac{i}{2} (zV_z + wV_w - \bar{z}V_{\bar{z}} - \bar{w}V_{\bar{w}})$$

In general: possible corrections from higher derivatives on V

Examples:

- Lagrangian brane of any shape on T²
 → W determines the shape of the brane
- Maximally coisotropic brane on T^4 and 4d hyperkähler manifold $\mathcal K$ with $V\equiv V(z-\bar z,w+\bar w)$

In both cases:

$$F_{zw} = i$$

$$W = \frac{i}{2} (zV_z + wV_w - \bar{z}V_{\bar{z}} - \bar{w}V_{\bar{w}})$$

In general: possible corrections from higher derivatives on V

• 5-brane on T^6 or $T^2 \times \mathcal{K}$

Outline

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2
- Type A branes
 - Formalism
 - Coisotropic branes
- Type B branes
 - Formalism
 - Derivative corrections
- 5 Duality transformations
- 6 Remarks

• Chiral fields with B-type boundary

$$\begin{array}{c|c} \hat{D}X^{\alpha} = iDX^{\alpha} & \hat{D}X^{\bar{\alpha}} = -iDX^{\bar{\alpha}} \\ \hat{D}'X^{\alpha} = iD'X^{\alpha} & \hat{D}'X^{\bar{\alpha}} = -iD'X^{\bar{\alpha}}, \end{array}$$

Chiral fields with B-type boundary

$$\hat{D}X^{\alpha} = iDX^{\alpha} \mid \hat{D}X^{\bar{\alpha}} = -iDX^{\bar{\alpha}}
\hat{D}'X^{\alpha} = iD'X^{\alpha} \mid \hat{D}'X^{\bar{\alpha}} = -iD'X^{\bar{\alpha}},$$

- In general:
 - B brane wraps holomorphic cycle on Kähler manifold
 - Carries holomorphic flux: $F_{\alpha\bar{\beta}} = -iW_{\alpha\bar{\beta}}$, $F_{\alpha\beta} = F_{\bar{\alpha}\bar{\beta}} = 0$

• Chiral fields with B-type boundary

$$\hat{D}X^{\alpha} = iDX^{\alpha} \mid \hat{D}X^{\bar{\alpha}} = -iDX^{\bar{\alpha}}
\hat{D}'X^{\alpha} = iD'X^{\alpha} \mid \hat{D}'X^{\bar{\alpha}} = -iD'X^{\bar{\alpha}}$$

- In general:
 - B brane wraps holomorphic cycle on Kähler manifold
 - Carries holomorphic flux: $F_{\alpha\bar{\beta}} = -iW_{\alpha\bar{\beta}}$, $F_{\alpha\beta} = F_{\bar{\alpha}\bar{\beta}} = 0$
- Application: space filling brane in flat space

$$D'X^{\alpha} = F^{\alpha}_{\beta}DX^{\beta}$$

 \rightarrow study stability by computing β -function

Conformal invariance

• Conformal invariance \rightarrow vanishing β -function \rightarrow stability condition

Conformal invariance

- Conformal invariance \rightarrow vanishing β -function \rightarrow stability condition
- Example: closed strings (no b-field)

```
N=(2,2) supersymmetry 	o Kähler manifold One-loop conformal invariance 	o Ricci flat Four-loop conformal invariance 	o R^4 term
```

Conformal invariance

- Conformal invariance \rightarrow vanishing β -function \rightarrow stability condition
- Example: closed strings (no b-field)

```
N=(2,2) supersymmetry \rightarrow Kähler manifold One-loop conformal invariance \rightarrow Ricci flat
```

Four-loop conformal invariance \rightarrow R^4 term

• Four-loop calculation is greatly simplified by using N = (2,2) superspace techniques [Grisaru, van de Ven, Zanon '86]

 \bullet Open strings on flat space-filling B brane coupled to boundary potential W

- \bullet Open strings on flat space-filling B brane coupled to boundary potential W
- At one loop: $\beta(W) \propto g^{\alpha\bar{\beta}}(\operatorname{arcth} F)_{\alpha\bar{\beta}} \to \mathsf{BI}$ action

- ullet Open strings on flat space-filling B brane coupled to boundary potential W
- At one loop: $\beta(W) \propto g^{\alpha\bar{\beta}}(\operatorname{arcth} F)_{\alpha\bar{\beta}} \to \mathsf{BI}$ action
- Two loops: no contribution to the β -function \rightarrow no two-derivative corrections

- ullet Open strings on flat space-filling B brane coupled to boundary potential W
- ullet At one loop: $eta(W) \propto g^{lphaar{eta}}(\operatorname{arcth} F)_{lphaar{eta}} o \mathsf{BI}$ action
- Two loops: no contribution to the β -function \rightarrow no two-derivative corrections
- Three loops: four-derivative correction to the BI action

- \bullet Open strings on flat space-filling B brane coupled to boundary potential W
- At one loop: $\beta(W) \propto g^{\alpha\bar{\beta}}(\operatorname{arcth} F)_{\alpha\bar{\beta}} \to \mathsf{BI}$ action
- Two loops: no contribution to the β -function \rightarrow no two-derivative corrections
- Three loops: four-derivative correction to the BI action
- All results in complete agreement with renormalization group equations

Result: BI + derivative corrections

Abelian effective action up to 4 derivatives [WYLLARD '01]

$$S = -\tau_9 \int d^{10}x \sqrt{-h_+} \left[1 + \frac{1}{96} \left(\frac{1}{2} h_+^{\mu\nu} h_+^{\rho\sigma} S_{\nu\rho} S_{\sigma\mu} \right) - h_+^{\rho_2\mu_1} h_+^{\mu_2\rho_1} h_+^{\sigma_2\nu_1} h_+^{\nu_2\sigma_1} S_{\mu_1\mu_2\nu_1\nu_2} S_{\rho_1\rho_2\sigma_1\sigma_2} \right) \right]$$

With stability condition [Koerber '04]

$$g^{lphaar{eta}}\left(ext{arcth }F
ight)_{lphaar{eta}}+rac{1}{96}S_{ablphaar{eta}}S_{cd\gammaar{\delta}}\;h_{+}^{bc}h_{+}^{da}\left(h_{+}^{lphaar{\delta}}h_{+}^{\gammaar{eta}}-h_{-}^{lphaar{\delta}}h_{-}^{\gammaar{eta}}
ight)=0$$

where
$$S_{abcd} = \partial_a \partial_b F_{cd} + 2h_+^{ef} \partial_a F_{[c|e} \partial_b F_{[d]f}, \quad h_{\alpha\bar{\beta}}^{\pm} = \eta_{\alpha\bar{\beta}} \pm F_{\alpha\bar{\beta}}$$

Outline

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2
- Type A branes
 - Formalism
 - Coisotropic branes
- Type B branes
 - Formalism
 - Derivative corrections
- **5** Duality transformations
- 6 Remarks

Duality transformations

- Closed strings
 - In the presence of an isometry: chiral field dualized to twisted chiral field
 - Explicit transformation by gauging the isometry and passing through a first order action

Duality transformations

Closed strings

- In the presence of an isometry: chiral field dualized to twisted chiral field
- Explicit transformation by gauging the isometry and passing through a first order action

Open strings

- Analogous to closed string case, but boundary conditions of first order action should be treated with care
- Example 1: space filling B brane on d = 2n-dimensional Kähler manifold parameterized by n chiral fields is dual to n-dimensional Lagrangian A brane on dual Kähler manifold parameterized by n twisted chiral fields
- Example 2: One of the two isometries of maximal coisotropic brane on hyperkähler manifold can be dualized → 3-brane on generalized Kähler manifold

Outline

- Motivation
 - Nonlinear σ -models in superspace
 - D-brane effective actions
- 2 Boundary superspace
 - N = 1
 - N = 2
- Type A branes
 - Formalism
 - Coisotropic branes
- Type B branes
 - Formalism
 - Derivative corrections
- 5 Duality transformations
- 6 Remarks

Conclusion and outlook

Conclusions

- N = 2 superspace description of A and B branes on Kähler manifolds
- Explicit examples of coisotropic branes
- Duality transformations
- Application: D-brane effective action

Conclusion and outlook

Conclusions

- N = 2 superspace description of A and B branes on Kähler manifolds
- Explicit examples of coisotropic branes
- Duality transformations
- Application: D-brane effective action

Outlook

- Geometries parameterized by chiral + twisted chiral (+ semi-chiral) → branes on generalized complex geometries
- Conformal invariance → stability conditions
 [MARINO, MINASIAN, MOORE, STROMINGER '00; KAPUSTIN,
 LI '03; KOERBER '05]