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Nonlinear σ-models

RNS superstring: gauge N = (1, 1) supersymmetry on the
world-sheet

Supersymmetry in target space → extended supersymmetry
on the world-sheet

N = (2, 2) supersymmetry for general metric g and
Kalb-Ramond field b (take φ constant) → target space
geometry is bihermitian/generalized Kähler

Geometry of target space clarified by using N = (2, 2)
superspace
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Closed string superspace: N = (2, 2)

N = (2, 2) superspace action determined by Kähler potential

S(2,2) =

∫
d2σD+D−D̂+D̂− V (X , X̄ )

BUT one needs constrained superfields!

Most general N = (2, 2) superspace description in terms of
chiral, twisted chiral and semi-chiral fields [Lindström,

Roček, von Unge, Zabzine ’05]

We will focus on chiral and twisted chiral superfields

→ target space is Kähler manifold with metric gαβ̄ = ±Vαβ̄
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Boundaries?

First motivation

What happens when we include boundaries?
[Ooguri, Oz, Yin; Albertsson, Lindström, Zabzine, ...]

Completely local N = 2 superspace formulation still incomplete

↓

World-sheet description of A and B branes on Kähler manifolds

B branes: - holomorphic cycles
- holomorphic line bundle connection

A branes: - lagrangian cycles with flat connection
- coisotropic cycles with non-vanishing flux
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D-brane effective actions

Effective action for flat Dp-brane for slowly varying fields
10d Born-Infeld action reduced to p + 1 dimensions

SBI = −τ9

∫
d10x

√
− det h±ab, h±ab = ηab ± Fab

deformation of Maxwell theory SM = −1
4

∫
F 2

For holomorphic line bundle connection: Fαβ = Fᾱβ̄ = 0

gαβ̄(arcth F )αβ̄ = 0

solves the BI equations of motion → Deformation of DUY
stability condition

gαβ̄Fαβ̄ = 0
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Effective actions: abelian vs non-abelian

Multiple coinciding D-branes → non-abelian gauge theory

No slowly varying field limit for NBI

[D,D]F = [F ,F ]

α′ = 0 α′ 6= 0 α′ 6= 0
∂F = 0 ∂F = 0 ∂F 6= 0

[, ] = 0 Maxwell Born-Infeld !
[, ] 6= 0 Yang-Mills up to 4th order in α′

→ look at derivative corrections to BI
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BI action + derivatives?

Second motivation

How to compute derivative corrections efficiently?

Simple N = 2 superspace description of space-filling B brane in flat
space with holomorphic line bundle connection

↓

Derivative corrections from β-function calculation in N = 2
superspace using supergraph techniques
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N=1 superspace

Introduce a boundary → from N = (1, 1) to N = 1
[Koerber, Nevens, Sevrin ’03]

D = D+ + D− unbroken
D ′ = D+ − D− broken

D2 = D ′2 = − i

2
∂τ , {D,D ′} = −i∂σ

N = 1 action

SN=1 = −
∫

d2σD
[
D ′ (D+X aD−X b(gab + bab))

]
Equivalent to bulk action up to boundary term:
D+D− = −1/2 DD ′ − i/2 ∂σ
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N=1 superspace: boundary conditions

Boundary conditions

Dirichlet: δX a = 0
Neumann: D ′X a = ba

bDX b

Mixed conditions: introduce projection operators

P± =
1

2
(1±R) , R2 = 1

P+: Neumann, P−: Dirichlet

P−∂τX = P−DX = 0→ Pd
+bPe

+cRa
[d ,e] = 0

→ P+ is integrable
→ Brane wraps integrable submanifold
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N=2 superspace

From N = (2, 2) to N = 2: two choices
B-type:

D = D+ + D−, D̂ = D̂+ + D̂−,

D ′ = D+ − D−, D̂ ′ = D̂+ − D̂−.

A-type:

D = D+ + D−, D̂ = D̂+ − D̂−,

D ′ = D+ − D−, D̂ ′ = D̂+ + D̂−.

But chiral with A-type = twisted chiral with B-type
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N=2 superspace: Action

N = 2 action

SN=2 =

∫
d2σDD̂

[
D ′D̂ ′ V (X , X̄ )

]
+ i

∫
dτ DD̂W (X , X̄ )

with

D2 = D̂2 = D ′2 = D̂ ′2 = − i

2
∂τ ,

{D,D ′} = {D̂, D̂ ′} = −i∂σ,

Chiral with B-type = type B branes

l mirror symmetry l
Twisted chiral with B-type = type A branes
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Formalism

Twisted chiral fields with B-type boundary

D̂Xµ = iD ′Xµ D̂X µ̄ = −iD ′X µ̄

D̂ ′Xµ = iDXµ D̂ ′X µ̄ = −iDX µ̄,

Impose Dirichlet conditions

(P−δX )µ = 0→ δXµ = Rµν̄ δX ν̄ +Rµν δX ν

We find additional projection operators π± : T
(1,0)
M → T

(1,0)
M

Neumann conditions

(π+P+D ′X )µ = RµνD ′X ν

(π−P+D ′X )µ = 0

→ non-degenerate F along π+ and F = 0 along π−
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Coisotropic branes

An equal amount of Neumann and Dirichlet conditions in
Imπ− (plus c.c.)

Brane is space-filling in Imπ+ (+ c.c.)

Extra complex structure K = ω−1F in π+ directions

F is expressed as function of derivatives on V and W

F and ω are both (2,0)+(0,2) forms with respect to K
→ Imπ+ is 4m-dimensional, m ∈ N
In general this thus describes an (n + 2m)-brane where d = 2n
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Geometric interpretation

If σa are coordinates along the brane N in π− directions

T⊥N = {∂/∂σa} ⊂ TN = {∂/∂σa} ⊕ Imπ+

↓
Brane wraps coisotropic submanifold

Pullback of ω, F and K = ω−1F only non-vanishing and
non-degenerate on TN /T

⊥
N = Imπ+

When π− = 1, we find T⊥N = TN → brane wraps lagrangian
submanifold with flat connection

[Kapustin, Orlov ’01]

[Lindström, Zabzine ’02]
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Examples:

Lagrangian brane of any shape on T 2

→ W determines the shape of the brane

Maximally coisotropic brane on T 4 and 4d hyperkähler
manifold K with V ≡ V (z − z̄ ,w + w̄)

In both cases:
Fzw = i

W =
i

2
(zVz + wVw − z̄Vz̄ − w̄Vw̄ )

In general: possible corrections from higher derivatives on V

5-brane on T 6 or T 2 ×K
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Formalism

Chiral fields with B-type boundary

D̂Xα = iDXα D̂X ᾱ = −iDX ᾱ

D̂ ′Xα = iD ′Xα D̂ ′X ᾱ = −iD ′X ᾱ,

In general:

B brane wraps holomorphic cycle on Kähler manifold
Carries holomorphic flux: Fαβ̄ = −iWαβ̄ , Fαβ = Fᾱβ̄ = 0

Application: space filling brane in flat space

D ′Xα = FαβDX β

→ study stability by computing β-function
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D̂ ′Xα = iD ′Xα D̂ ′X ᾱ = −iD ′X ᾱ,
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Conformal invariance

Conformal invariance → vanishing β-function → stability
condition

Example: closed strings (no b-field)

N=(2,2) supersymmetry → Kähler manifold
One-loop conformal invariance → Ricci flat
Four-loop conformal invariance → R4 term

Four-loop calculation is greatly simplified by using N = (2, 2)
superspace techniques [Grisaru, van de Ven, Zanon ’86]
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Deformed stability condition from β-function

Open strings on flat space-filling B brane coupled to boundary
potential W

At one loop: β(W ) ∝ gαβ̄(arcth F )αβ̄ → BI action

Two loops: no contribution to the β-function → no
two-derivative corrections

Three loops: four-derivative correction to the BI action

All results in complete agreement with renormalization group
equations

[Nevens, Sevrin, Troost, AW ’06]
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Result: BI + derivative corrections

Abelian effective action up to 4 derivatives [Wyllard ’01]

S = −τ9

∫
d10x

√
−h+

[
1 +

1

96

(1

2
hµν+ hρσ+ SνρSσµ

−hρ2µ1
+ hµ2ρ1

+ hσ2ν1
+ hν2σ1

+ Sµ1µ2ν1ν2Sρ1ρ2σ1σ2

)]
With stability condition [Koerber ’04]

gαβ̄ (arcth F )αβ̄ + 1
96Sabαβ̄Scdγδ̄ hbc

+ hda
+

(
hαδ̄+ hγβ̄+ − hαδ̄− hγβ̄−

)
= 0

where Sabcd = ∂a∂bFcd + 2hef
+ ∂aF[c|e ∂bF|d ]f , h±

αβ̄
= ηαβ̄ ± Fαβ̄
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Duality transformations

Closed strings

In the presence of an isometry: chiral field dualized to twisted
chiral field
Explicit transformation by gauging the isometry and passing
through a first order action

Open strings

Analogous to closed string case, but boundary conditions of
first order action should be treated with care
Example 1: space filling B brane on d = 2n-dimensional Kähler
manifold parameterized by n chiral fields is dual to
n-dimensional Lagrangian A brane on dual Kähler manifold
parameterized by n twisted chiral fields
Example 2: One of the two isometries of maximal coisotropic
brane on hyperkähler manifold can be dualized → 3-brane on
generalized Kähler manifold
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Conclusion and outlook

Conclusions

N = 2 superspace description of A and B branes on Kähler
manifolds

Explicit examples of coisotropic branes

Duality transformations

Application: D-brane effective action

Outlook

Geometries parameterized by chiral + twisted chiral (+
semi-chiral) → branes on generalized complex geometries

Conformal invariance → stability conditions
[Marino, Minasian, Moore, Strominger ’00; Kapustin,

Li ’03; Koerber ’05]
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