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Nonlinear o-models

@ RNS superstring: gauge N = (1,1) supersymmetry on the
world-sheet

@ Supersymmetry in target space — extended supersymmetry
on the world-sheet

e N =(2,2) supersymmetry for general metric g and
Kalb-Ramond field b (take ¢ constant) — target space
geometry is bihermitian/generalized Kahler

@ Geometry of target space clarified by using N = (2, 2)
superspace
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Closed string superspace: N = (2,2)

e N =(2,2) superspace action determined by Kahler potential
Spo) = / d’c D,D_DyD_ V(X,X)

BUT one needs constrained superfields!

@ Most general N = (2,2) superspace description in terms of
chiral, twisted chiral and semi-chiral fields

@ We will focus on chiral and twisted chiral superfields

® — target space is Kahler manifold with metric g,5 = £V, 3
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Boundaries?

First motivation'

What happens when we include boundaries?

Completely local N = 2 superspace formulation still incomplete

!

World-sheet description of A and B branes on Kahler manifolds

B branes: - holomorphic cycles
- holomorphic line bundle connection
A branes: - lagrangian cycles with flat connection

- coisotropic cycles with non-vanishing flux
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D-brane effective actions

o Effective action for flat Dp-brane for slowly varying fields
10d Born-Infeld action reduced to p + 1 dimensions

S = —79 / leX\/ — det h;tb, h;tb = Nap = Fap

deformation of Maxwell theory Sy = —1 [ F?
@ For holomorphic line bundle connection: Fop = F;5 =10

g*P(arcth F),5=0

solves the Bl equations of motion — Deformation of DUY
stability condition
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Effective actions: abelian vs non-abelian

@ Multiple coinciding D-branes — non-abelian gauge theory

@ No slowly varying field limit for NBI

|[D, DJF = [F,F]|
o' =0 o #0 o #0
OF =0 OF =0 |O0F #0
[]=0] Maxwell [ Born-Infeld | !
[,] #0 | Yang-Mills | up to 4th order in o

— look at derivative corrections to Bl
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Bl action + derivatives?

Second motivation I

How to compute derivative corrections efficiently?

Simple N = 2 superspace description of space-filling B brane in flat
space with holomorphic line bundle connection

!

Derivative corrections from G-function calculation in N =2
superspace using supergraph techniques
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N=1 superspace

@ Introduce a boundary — from N = (1,1)to N =1

D =D, + D_  unbroken
D'=D; —D_  broken

D? = D2 — —éaﬂ (D,D'} = —id,
@ N =1 action

Sno1 = —/d2a D [D’ (D4 X?D_X"(gap + bab))]

Equivalent to bulk action up to boundary term:
D,D_=-1/2DD"—i/20,
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oe

N=1 superspace: boundary conditions

@ Boundary conditions
o Dirichlet: X2 =0
e Neumann: D'X? = babDXb

@ Mixed conditions: introduce projection operators

1
Pizg(liR), R?=1

P+: Neumann, P_: Dirichlet
P9, X =P-DX =0— P{,PS Ry =0

— Py is integrable
— Brane wraps integrable submanifold
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@ From N = (2,2) to N = 2: two choices

B-type:
D=Dy+D_, D=D, +D.,
D'=D,—D_, D'=D,—D_.
A-type:
D=D,+D_, D=D,-D_,

D'=Dy—D_, D'=b,+D_.
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N=2 superspace

@ From N = (2,2) to N = 2: two choices

B-type:
D=D,+ D_,
D'=D,—-D_,
A-type:
D=D,+ D_,
D'=D,—-D_,

DD, +D
D' —b, b

DD, b
D = b+ D

@ But chiral with A-type = twisted chiral with B-type
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oe

N=2 superspace: Action

N = 2 action
Shs = /d% DD [D’D’ V(X,X)] +i/d7 DDW(X, X)
with

D2 — D2 — D/2 — D/2 — _éa‘r’
{D, D/} = {b7bl} = _iaaa

Chiral with B-type = type B branes

] mirror symmetry |

Twisted chiral with B-type = type A branes
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Formalism

@ Twisted chiral fields with B-type boundary

DX* = iD' X"

XP = _iD' XF
D' X# = iDXH i

b
D'XFE = —iDXF,

@ Impose Dirichlet conditions
(P_oX)H =0 — 6X* = RF;6X" +RM, 56XV
@ We find additional projection operators 74 : Tj(él’o) — T/(\}t’o)

@ Neumann conditions

(7'['.|_,P.|_D/)<)‘u == R#VD/XV
(r_P.D'X)* = 0

— non-degenerate F along 74 and F =0 along 7_
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Coisotropic branes

An equal amount of Neumann and Dirichlet conditions in
Imm_ (plus c.c.)

Brane is space-filling in Imm,. (+ c.c.)
Extra complex structure K = w™'F in 7, directions
F is expressed as function of derivatives on V and W

F and w are both (2,0)+(0,2) forms with respect to K
— Imm4 is 4m-dimensional, m € N

In general this thus describes an (n+ 2m)-brane where d = 2n



Type A branes
oceo

Geometric interpretation

e If 02 are coordinates along the brane A/ in 7_ directions
T =1{0/90%} C Ty = {0/00%} ® Im7.

!

Brane wraps coisotropic submanifold



Type A branes
oceo

Geometric interpretation

e If 02 are coordinates along the brane A/ in 7_ directions
T =1{0/90%} C Ty = {0/00%} ® Im7.

!

Brane wraps coisotropic submanifold

@ Pullback of w, F and K = w™F only non-vanishing and
non-degenerate on T/ Tx: = Immy



Type A branes
oceo

Geometric interpretation

e If 02 are coordinates along the brane A/ in 7_ directions
T =1{0/90%} C Ty = {0/00%} ® Im7.

!

Brane wraps coisotropic submanifold
@ Pullback of w, F and K = w™F only non-vanishing and
non-degenerate on T/\//TN Im7,

@ When 7_ =1, we find TN Txnr — brane wraps lagrangian
submanifold with flat connection
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ooe

Examples:

o Lagrangian brane of any shape on T?2
— W determines the shape of the brane

@ Maximally coisotropic brane on T# and 4d hyperkahler
manifold K with V = V(z —z,w + w)

In both cases:
Fo =i

W = é(sz FwV, —2Vs — wVy)

In general: possible corrections from higher derivatives on V
@ 5-braneon T®or T2 x K
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Formalism

@ Chiral fields with B-type boundary
DXe =iDX* | DX® = —iDX®
D'Xe =iD'X>| D'X% = —iD' X4,
@ In general:

e B brane wraps holomorphic cycle on Kahler manifold
o Carries holomorphic flux: Faﬁ = —iWaﬁ-, Fop = F&B =0

@ Application: space filling brane in flat space
D'X“ = F%DX"”

— study stability by computing G-function
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Conformal invariance

@ Conformal invariance — vanishing (-function — stability
condition

e Example: closed strings (no b-field)
N=(2,2) supersymmetry —  Kahler manifold

One-loop conformal invariance —  Ricci flat
Four-loop conformal invariance — R* term

e Four-loop calculation is greatly simplified by using N = (2,2)
superspace techniques



Type B branes
oeo

Deformed stability condition from [3-function

@ Open strings on flat space-filling B brane coupled to boundary
potential W



Type B branes
oeo

Deformed stability condition from [3-function

@ Open strings on flat space-filling B brane coupled to boundary
potential W

@ At one loop: B(W) x gaﬁ(arcth F)a3 — Bl action



Type B branes
oeo

Deformed stability condition from [3-function

@ Open strings on flat space-filling B brane coupled to boundary
potential W

@ At one loop: B(W) x gaﬁ(arcth F)a3 — Bl action

@ Two loops: no contribution to the S-function — no
two-derivative corrections



Type B branes
oeo

Deformed stability condition from [3-function

@ Open strings on flat space-filling B brane coupled to boundary
potential W

@ At one loop: B(W) x gaﬁ(arcth F)a3 — Bl action

@ Two loops: no contribution to the S-function — no
two-derivative corrections

@ Three loops: four-derivative correction to the Bl action



Type B branes
oeo

Deformed stability condition from [3-function

@ Open strings on flat space-filling B brane coupled to boundary
potential W

@ At one loop: B(W) x gaﬁ(arcth F)a3 — Bl action

@ Two loops: no contribution to the S-function — no
two-derivative corrections

@ Three loops: four-derivative correction to the Bl action

@ All results in complete agreement with renormalization group
equations
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Result: Bl + derivative corrections

Abelian effective action up to 4 derivatives

1 1 vV | po
S = wm [ R |14 g (GHHTS,S

P21 201 |02V | 1201
_h+ h+ h+ h+ 5M1M2V1V25/71020102>]

With stability condition

gaﬁ (arCth F)a[? + %Sabaﬁscdfys hichia (highlg - hgshzﬁ_) =0

where S,peg = 020pFca + 2hif83F[C|e (9/_,F|d]f, hiﬁ_ = Nuoj + Faﬁ
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Duality transformations

@ Closed strings

@ In the presence of an isometry: chiral field dualized to twisted
chiral field

e Explicit transformation by gauging the isometry and passing
through a first order action

@ Open strings

e Analogous to closed string case, but boundary conditions of
first order action should be treated with care

e Example 1: space filling B brane on d = 2n-dimensional Kahler
manifold parameterized by n chiral fields is dual to
n-dimensional Lagrangian A brane on dual Kahler manifold
parameterized by n twisted chiral fields

e Example 2: One of the two isometries of maximal coisotropic
brane on hyperkahler manifold can be dualized — 3-brane on
generalized Kahler manifold
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Conclusion and outlook

Conclusions

@ N = 2 superspace description of A and B branes on Kahler
manifolds

@ Explicit examples of coisotropic branes
@ Duality transformations

@ Application: D-brane effective action

Outlook

o Geometries parameterized by chiral + twisted chiral (4
semi-chiral) — branes on generalized complex geometries

@ Conformal invariance — stability conditions
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