World-sheet description of A and B branes revisited

Alexander Wijns (University of Iceland)

in collaboration with A. Sevrin and W. Staessens (V.U. Brussels)
[arXiv: 0709.3733]

Valencia, October 5, 2007

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$
(3) Type A branes
- Formalism
- Coisotropic branes

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$
(3) Type A branes
- Formalism
- Coisotropic branes
(4) Type B branes
- Formalism
- Derivative corrections

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$
(3) Type A branes
- Formalism
- Coisotropic branes

4 Type B branes

- Formalism
- Derivative corrections
(5) Duality transformations

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$
(3) Type A branes
- Formalism
- Coisotropic branes
(4) Type B branes
- Formalism
- Derivative corrections
(5) Duality transformations
(6) Remarks

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$
(3) Type A branes
- Formalism
- Coisotropic branes
(4) Type B branes
- Formalism
- Derivative corrections
(5) Duality transformations
(6) Remarks

Nonlinear σ-models

- RNS superstring: gauge $N=(1,1)$ supersymmetry on the world-sheet

Nonlinear σ-models

- RNS superstring: gauge $N=(1,1)$ supersymmetry on the world-sheet
- Supersymmetry in target space \rightarrow extended supersymmetry on the world-sheet

Nonlinear σ-models

- RNS superstring: gauge $N=(1,1)$ supersymmetry on the world-sheet
- Supersymmetry in target space \rightarrow extended supersymmetry on the world-sheet
- $N=(2,2)$ supersymmetry for general metric g and Kalb-Ramond field b (take ϕ constant) \rightarrow target space geometry is bihermitian/generalized Kähler

Nonlinear σ-models

- RNS superstring: gauge $N=(1,1)$ supersymmetry on the world-sheet
- Supersymmetry in target space \rightarrow extended supersymmetry on the world-sheet
- $N=(2,2)$ supersymmetry for general metric g and Kalb-Ramond field b (take ϕ constant) \rightarrow target space geometry is bihermitian/generalized Kähler
- Geometry of target space clarified by using $N=(2,2)$ superspace

Closed string superspace: $N=(2,2)$

- $N=(2,2)$ superspace action determined by Kähler potential

$$
\mathcal{S}_{(2,2)}=\int d^{2} \sigma D_{+} D_{-} \hat{D}_{+} \hat{D}_{-} V(X, \bar{X})
$$

BUT one needs constrained superfields!

Closed string superspace: $N=(2,2)$

- $N=(2,2)$ superspace action determined by Kähler potential

$$
\mathcal{S}_{(2,2)}=\int d^{2} \sigma D_{+} D_{-} \hat{D}_{+} \hat{D}_{-} V(X, \bar{X})
$$

BUT one needs constrained superfields!

- Most general $N=(2,2)$ superspace description in terms of chiral, twisted chiral and semi-chiral fields [LindSTRÖm, Roček, von Unge, Zabzine '05]

Closed string superspace: $N=(2,2)$

- $N=(2,2)$ superspace action determined by Kähler potential

$$
\mathcal{S}_{(2,2)}=\int d^{2} \sigma D_{+} D_{-} \hat{D}_{+} \hat{D}_{-} V(X, \bar{X})
$$

BUT one needs constrained superfields!

- Most general $N=(2,2)$ superspace description in terms of chiral, twisted chiral and semi-chiral fields [LindSTRÖM, Roček, von Unge, Zabzine '05]
- We will focus on chiral and twisted chiral superfields

Closed string superspace: $N=(2,2)$

- $N=(2,2)$ superspace action determined by Kähler potential

$$
\mathcal{S}_{(2,2)}=\int d^{2} \sigma D_{+} D_{-} \hat{D}_{+} \hat{D}_{-} V(X, \bar{X})
$$

BUT one needs constrained superfields!

- Most general $N=(2,2)$ superspace description in terms of chiral, twisted chiral and semi-chiral fields [LindSTRÖm, Roček, von Unge, Zabzine '05]
- We will focus on chiral and twisted chiral superfields
$\bullet \rightarrow$ target space is Kähler manifold with metric $g_{\alpha \bar{\beta}}= \pm V_{\alpha \bar{\beta}}$

Boundaries?

First motivation

What happens when we include boundaries?
[Ooguri, Oz, Yin; Albertsson, Lindström, Zabzine, ...]
Completely local $N=2$ superspace formulation still incomplete

Boundaries?

First motivation

What happens when we include boundaries?
[Ooguri, Oz, Yin; Albertsson, Lindström, Zabzine, ...]
Completely local $N=2$ superspace formulation still incomplete

World-sheet description of A and B branes on Kähler manifolds

Boundaries?

First motivation

What happens when we include boundaries?
[Ooguri, Oz, Yin; Albertsson, Lindström, Zabzine, ...]
Completely local $N=2$ superspace formulation still incomplete
\downarrow
World-sheet description of A and B branes on Kähler manifolds
B branes: - holomorphic cycles

- holomorphic line bundle connection

A branes: - lagrangian cycles with flat connection

- coisotropic cycles with non-vanishing flux

D-brane effective actions

- Effective action for flat Dp-brane for slowly varying fields 10d Born-Infeld action reduced to $p+1$ dimensions

$$
\mathcal{S}_{B I}=-\tau_{9} \int d^{10} x \sqrt{-\operatorname{det} h_{a b}^{ \pm}}, \quad h_{a b}^{ \pm}=\eta_{a b} \pm F_{a b}
$$

deformation of Maxwell theory $\mathcal{S}_{M}=-\frac{1}{4} \int F^{2}$

D-brane effective actions

- Effective action for flat $\mathrm{D} p$-brane for slowly varying fields 10d Born-Infeld action reduced to $p+1$ dimensions

$$
\mathcal{S}_{B I}=-\tau_{9} \int d^{10} x \sqrt{-\operatorname{det} h_{a b}^{ \pm}}, \quad h_{a b}^{ \pm}=\eta_{a b} \pm F_{a b}
$$

deformation of Maxwell theory $\mathcal{S}_{M}=-\frac{1}{4} \int F^{2}$

- For holomorphic line bundle connection: $F_{\alpha \beta}=F_{\bar{\alpha} \bar{\beta}}=0$

$$
g^{\alpha \bar{\beta}}(\operatorname{arcth} F)_{\alpha \bar{\beta}}=0
$$

solves the BI equations of motion \rightarrow Deformation of DUY stability condition

$$
g^{\alpha \bar{\beta}} F_{\alpha \bar{\beta}}=0
$$

Effective actions: abelian vs non-abelian

- Multiple coinciding D-branes \rightarrow non-abelian gauge theory

Effective actions: abelian vs non-abelian

- Multiple coinciding D-branes \rightarrow non-abelian gauge theory
- No slowly varying field limit for NBI

$$
[D, D] F=[F, F]
$$

Effective actions: abelian vs non-abelian

- Multiple coinciding D-branes \rightarrow non-abelian gauge theory
- No slowly varying field limit for NBI

$$
[D, D] F=[F, F]
$$

	$\alpha^{\prime}=0$	$\alpha^{\prime} \neq 0$	$\alpha^{\prime} \neq 0$
	$\partial F=0$	$\partial F=0$	$\partial F \neq 0$
$[]=0$,	Maxwell	Born-Infeld	$!$
$[] \neq 0$,	Yang-Mills	up to 4th order in α^{\prime}	

\rightarrow look at derivative corrections to BI

Bl action + derivatives?

Second motivation

How to compute derivative corrections efficiently?

Bl action + derivatives?

Second motivation

How to compute derivative corrections efficiently?

Simple $N=2$ superspace description of space-filling B brane in flat space with holomorphic line bundle connection

Bl action + derivatives?

Second motivation

How to compute derivative corrections efficiently?

Simple $N=2$ superspace description of space-filling B brane in flat space with holomorphic line bundle connection
\square
Derivative corrections from β-function calculation in $N=2$ superspace using supergraph techniques

Outline

(1) Motivation

- Nonlinear o-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$
(3) Type A branes
- Formalism
- Coisotropic branes
(4) Type B branes
- Formalism
- Derivative corrections
(5) Duality transformations
(6) Remarks

$\mathrm{N}=1$ superspace

- Introduce a boundary \rightarrow from $N=(1,1)$ to $N=1$ [Koerber, Nevens, Sevrin '03]

$$
\begin{aligned}
D & =D_{+}+D_{-} \\
D^{\prime} & =D_{+}-D_{-} \\
D^{2}=D^{\prime 2} & =-\frac{i}{2} \partial_{\tau}, \quad\left\{D, D^{\prime}\right\}=-i \partial_{\sigma}
\end{aligned}
$$

$\mathrm{N}=1$ superspace

- Introduce a boundary \rightarrow from $N=(1,1)$ to $N=1$
[Koerber, Nevens, Sevrin '03]

$$
\left.\begin{array}{rl}
\begin{array}{c}
D
\end{array}=D_{+}+D_{-} & \text {unbroken } \\
D^{\prime} & =D_{+}-D_{-} \\
\text {broken }
\end{array}\right] \begin{array}{cc}
D^{2}=D^{\prime 2}=-\frac{i}{2} \partial_{\tau}, \quad\left\{D, D^{\prime}\right\}=-i \partial_{\sigma}
\end{array}
$$

- $N=1$ action

$$
\mathcal{S}_{N=1}=-\int d^{2} \sigma D\left[D^{\prime}\left(D_{+} X^{a} D_{-} X^{b}\left(g_{a b}+b_{a b}\right)\right)\right]
$$

Equivalent to bulk action up to boundary term:
$D_{+} D_{-}=-1 / 2 D D^{\prime}-i / 2 \partial_{\sigma}$

$\mathrm{N}=1$ superspace: boundary conditions

- Boundary conditions
- Dirichlet: $\delta X^{a}=0$
- Neumann: $D^{\prime} X^{a}=b^{a}{ }_{b} D X^{b}$

$\mathrm{N}=1$ superspace: boundary conditions

- Boundary conditions
- Dirichlet: $\delta X^{a}=0$
- Neumann: $D^{\prime} X^{a}=b^{a}{ }_{b} D X^{b}$
- Mixed conditions: introduce projection operators

$$
\mathcal{P}_{ \pm}=\frac{1}{2}(1 \pm \mathcal{R}), \quad \mathcal{R}^{2}=1
$$

\mathcal{P}_{+}: Neumann, \mathcal{P}_{-}: Dirichlet

$$
\mathcal{P}_{-} \partial_{\tau} X=\mathcal{P}_{-} D X=0 \rightarrow \mathcal{P}_{+b}^{d} \mathcal{P}_{+c}^{e} \mathcal{R}_{[d, e]}^{a}=0
$$

$\rightarrow \mathcal{P}_{+}$is integrable
\rightarrow Brane wraps integrable submanifold

$\mathrm{N}=2$ superspace

- From $N=(2,2)$ to $N=2$: two choices B-type:

$$
\begin{aligned}
D & =D_{+}+D_{-}, & & \hat{D}=\hat{D}_{+}+\hat{D}_{-}, \\
D^{\prime} & =D_{+}-D_{-}, & & \hat{D}^{\prime}=\hat{D}_{+}-\hat{D}_{-}
\end{aligned}
$$

A-type:

$$
\begin{aligned}
D & =D_{+}+D_{-}, & & \hat{D}=\hat{D}_{+}-\hat{D}_{-} \\
D^{\prime} & =D_{+}-D_{-}, & & \hat{D}^{\prime}=\hat{D}_{+}+\hat{D}_{-}
\end{aligned}
$$

$\mathrm{N}=2$ superspace

- From $N=(2,2)$ to $N=2$: two choices

B-type:

$$
\begin{aligned}
D & =D_{+}+D_{-}, & & \hat{D}=\hat{D}_{+}+\hat{D}_{-} \\
D^{\prime} & =D_{+}-D_{-}, & & \hat{D}^{\prime}=\hat{D}_{+}-\hat{D}_{-}
\end{aligned}
$$

A-type:

$$
\begin{aligned}
D & =D_{+}+D_{-}, & & \hat{D}=\hat{D}_{+}-\hat{D}_{-} \\
D^{\prime} & =D_{+}-D_{-}, & & \hat{D}^{\prime}=\hat{D}_{+}+\hat{D}_{-}
\end{aligned}
$$

- But chiral with A-type $=$ twisted chiral with B-type

$\mathrm{N}=2$ superspace: Action

$N=2$ action

$$
\mathcal{S}_{N=2}=\int d^{2} \sigma D \hat{D}\left[D^{\prime} \hat{D}^{\prime} V(X, \bar{X})\right]+i \int d \tau D \hat{D} W(X, \bar{X})
$$

with

$$
\begin{gathered}
D^{2}=\hat{D}^{2}=D^{\prime 2}=\hat{D}^{\prime 2}=-\frac{i}{2} \partial_{\tau}, \\
\left\{D, D^{\prime}\right\}=\left\{\hat{D}, \hat{D}^{\prime}\right\}=-i \partial_{\sigma},
\end{gathered}
$$

$\mathrm{N}=2$ superspace: Action

$N=2$ action

$$
\mathcal{S}_{N=2}=\int d^{2} \sigma D \hat{D}\left[D^{\prime} \hat{D}^{\prime} V(X, \bar{X})\right]+i \int d \tau D \hat{D} W(X, \bar{X})
$$

with

$$
\begin{gathered}
D^{2}=\hat{D}^{2}=D^{\prime 2}=\hat{D}^{\prime 2}=-\frac{i}{2} \partial_{\tau}, \\
\left\{D, D^{\prime}\right\}=\left\{\hat{D}, \hat{D}^{\prime}\right\}=-i \partial_{\sigma},
\end{gathered}
$$

Chiral with B-type	$=$	type B branes
\uparrow	mirror symmetry	\downarrow
chiral with B-type	$=$	type A branes

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$
(3) Type A branes
- Formalism
- Coisotropic branes
(4) Type B branes
- Formalism
- Derivative corrections
(5) Duality transformations
(6) Remarks

Formalism

- Twisted chiral fields with B-type boundary

$$
\begin{array}{c|c}
\hat{D} X^{\mu}=i D^{\prime} X^{\mu} & \begin{aligned}
& \hat{D} X^{\bar{\mu}}=-i D^{\prime} X^{\bar{\mu}} \\
& \hat{D}^{\prime} X^{\mu}=i D X^{\mu}
\end{aligned} \\
\hat{D}^{\prime} X^{\bar{\mu}}=-i D X^{\bar{\mu}}
\end{array}
$$

Formalism

- Twisted chiral fields with B-type boundary

$$
\begin{array}{c|c}
\hat{D} X^{\mu}=i D^{\prime} X^{\mu} & \hat{D} X^{\bar{\mu}}=-i D^{\prime} X^{\bar{\mu}} \\
\hat{D}^{\prime} X^{\mu}=i D X^{\mu} & \hat{D}^{\prime} X^{\bar{\mu}}=-i D X^{\bar{\mu}},
\end{array}
$$

- Impose Dirichlet conditions

$$
\left(\mathcal{P}_{-} \delta X\right)^{\mu}=0 \rightarrow \delta X^{\mu}=\mathcal{R}_{\bar{\nu}}^{\mu} \delta X^{\bar{\nu}}+\mathcal{R}^{\mu}{ }_{\nu} \delta X^{\nu}
$$

Formalism

- Twisted chiral fields with B-type boundary

$$
\begin{array}{c|c}
\hat{D} X^{\mu}=i D^{\prime} X^{\mu} & \hat{D} X^{\bar{\mu}}=-i D^{\prime} X^{\bar{\mu}} \\
\hat{D}^{\prime} X^{\mu}=i D X^{\mu} & \hat{D}^{\prime} X^{\bar{\mu}}=-i D X^{\bar{\mu}},
\end{array}
$$

- Impose Dirichlet conditions

$$
\left(\mathcal{P}_{-} \delta X\right)^{\mu}=0 \rightarrow \delta X^{\mu}=\mathcal{R}^{\mu}{ }_{\nu} \delta X^{\bar{\nu}}+\mathcal{R}^{\mu}{ }_{\nu} \delta X^{\nu}
$$

- We find additional projection operators $\pi_{ \pm}: T_{\mathcal{M}}^{(1,0)} \rightarrow T_{\mathcal{M}}^{(1,0)}$

Formalism

- Twisted chiral fields with B-type boundary

$$
\begin{array}{c|c}
\hat{D} X^{\mu}=i D^{\prime} X^{\mu} & \hat{D} X^{\bar{\mu}}=-i D^{\prime} X^{\bar{\mu}} \\
\hat{D}^{\prime} X^{\mu}=i D X^{\mu} & \hat{D}^{\prime} X^{\bar{\mu}}=-i D X^{\bar{\mu}},
\end{array}
$$

- Impose Dirichlet conditions

$$
\left(\mathcal{P}_{-} \delta X\right)^{\mu}=0 \rightarrow \delta X^{\mu}=\mathcal{R}_{\bar{\nu}}^{\mu} \delta X^{\bar{\nu}}+\mathcal{R}^{\mu}{ }_{\nu} \delta X^{\nu}
$$

- We find additional projection operators $\pi_{ \pm}: T_{\mathcal{M}}^{(1,0)} \rightarrow T_{\mathcal{M}}^{(1,0)}$
- Neumann conditions

$$
\begin{aligned}
& \left(\pi_{+} \mathcal{P}_{+} D^{\prime} X\right)^{\mu}=\mathcal{R}^{\mu}{ }_{\nu} D^{\prime} X^{\nu} \\
& \left(\pi_{-} \mathcal{P}_{+} D^{\prime} X\right)^{\mu}=0
\end{aligned}
$$

\rightarrow non-degenerate F along π_{+}and $F=0$ along π_{-}

Coisotropic branes

- An equal amount of Neumann and Dirichlet conditions in $\operatorname{Im} \pi_{-}$(plus c.c.)

Coisotropic branes

- An equal amount of Neumann and Dirichlet conditions in $\operatorname{lm} \pi_{-}$(plus c.c.)
- Brane is space-filling in $\operatorname{Im} \pi_{+}$(+ c.c.)

Coisotropic branes

- An equal amount of Neumann and Dirichlet conditions in $\operatorname{lm} \pi_{-}$(plus c.c.)
- Brane is space-filling in $\operatorname{Im} \pi_{+}(+$c.c. $)$
- Extra complex structure $K=\omega^{-1} F$ in π_{+}directions

Coisotropic branes

- An equal amount of Neumann and Dirichlet conditions in $\operatorname{lm} \pi_{-}$(plus c.c.)
- Brane is space-filling in $\operatorname{Im} \pi_{+}$(+ c.c.)
- Extra complex structure $K=\omega^{-1} F$ in π_{+}directions
- F is expressed as function of derivatives on V and W

Coisotropic branes

- An equal amount of Neumann and Dirichlet conditions in $\operatorname{Im} \pi_{-}$(plus c.c.)
- Brane is space-filling in $\operatorname{Im} \pi_{+}$(+ c.c.)
- Extra complex structure $K=\omega^{-1} F$ in π_{+}directions
- F is expressed as function of derivatives on V and W
- F and ω are both $(2,0)+(0,2)$ forms with respect to K
$\rightarrow \operatorname{Im} \pi_{+}$is $4 m$-dimensional, $m \in \mathbb{N}$

Coisotropic branes

- An equal amount of Neumann and Dirichlet conditions in $\operatorname{Im} \pi_{-}$(plus c.c.)
- Brane is space-filling in $\operatorname{Im} \pi_{+}(+$c.c. $)$
- Extra complex structure $K=\omega^{-1} F$ in π_{+}directions
- F is expressed as function of derivatives on V and W
- F and ω are both $(2,0)+(0,2)$ forms with respect to K
$\rightarrow \operatorname{Im} \pi_{+}$is $4 m$-dimensional, $m \in \mathbb{N}$
- In general this thus describes an $(n+2 m)$-brane where $d=2 n$

Geometric interpretation

- If σ^{a} are coordinates along the brane \mathcal{N} in π_{-}directions

$$
T_{\mathcal{N}}^{\perp}=\left\{\partial / \partial \sigma^{a}\right\} \subset T_{\mathcal{N}}=\left\{\partial / \partial \sigma^{a}\right\} \oplus \operatorname{Im} \pi_{+}
$$

Brane wraps coisotropic submanifold

Geometric interpretation

- If σ^{a} are coordinates along the brane \mathcal{N} in π_{-}directions

$$
T_{\mathcal{N}}^{\perp}=\left\{\partial / \partial \sigma^{a}\right\} \subset T_{\mathcal{N}}=\left\{\partial / \partial \sigma^{a}\right\} \oplus \operatorname{Im} \pi_{+}
$$

Brane wraps coisotropic submanifold

- Pullback of ω, F and $K=\omega^{-1} F$ only non-vanishing and non-degenerate on $T_{\mathcal{N}} / T_{\mathcal{N}}^{\perp}=\operatorname{Im} \pi_{+}$
[Kapustin, Orlov '01]
[Lindström, Zabzine '02]

Geometric interpretation

- If σ^{a} are coordinates along the brane \mathcal{N} in π_{-}directions

$$
T_{\mathcal{N}}^{\perp}=\left\{\partial / \partial \sigma^{a}\right\} \subset T_{\mathcal{N}}=\left\{\partial / \partial \sigma^{a}\right\} \oplus \operatorname{Im} \pi_{+}
$$

\downarrow
Brane wraps coisotropic submanifold

- Pullback of ω, F and $K=\omega^{-1} F$ only non-vanishing and non-degenerate on $T_{\mathcal{N}} / T_{\mathcal{N}}^{\perp}=\operatorname{Im} \pi_{+}$
- When $\pi_{-}=1$, we find $T_{\mathcal{N}}^{\perp}=T_{\mathcal{N}} \rightarrow$ brane wraps lagrangian submanifold with flat connection
[Kapustin, Orlov '01]
[Lindström, Zabzine '02]

Examples:

- Lagrangian brane of any shape on T^{2}
$\rightarrow W$ determines the shape of the brane

Examples:

- Lagrangian brane of any shape on T^{2}
$\rightarrow W$ determines the shape of the brane
- Maximally coisotropic brane on T^{4} and 4d hyperkähler manifold \mathcal{K} with $V \equiv V(z-\bar{z}, w+\bar{w})$

In both cases:

$$
\begin{gathered}
F_{z w}=i \\
W=\frac{i}{2}\left(z V_{z}+w V_{w}-\bar{z} V_{\bar{z}}-\bar{w} V_{\bar{w}}\right)
\end{gathered}
$$

In general: possible corrections from higher derivatives on V

Examples:

- Lagrangian brane of any shape on T^{2}
$\rightarrow W$ determines the shape of the brane
- Maximally coisotropic brane on T^{4} and 4d hyperkähler manifold \mathcal{K} with $V \equiv V(z-\bar{z}, w+\bar{w})$

In both cases:

$$
\begin{gathered}
F_{z w}=i \\
W=\frac{i}{2}\left(z V_{z}+w V_{w}-\bar{z} V_{\bar{z}}-\bar{w} V_{\bar{w}}\right)
\end{gathered}
$$

In general: possible corrections from higher derivatives on V

- 5-brane on T^{6} or $T^{2} \times \mathcal{K}$

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$
(3) Type A branes
- Formalism
- Coisotropic branes

4 Type B branes

- Formalism
- Derivative corrections
(5) Duality transformations
(6) Remarks

Formalism

- Chiral fields with B-type boundary

$$
\begin{array}{c|c}
\hat{D} X^{\alpha}=i D X^{\alpha} & \hat{D} X^{\bar{\alpha}}=-i D X^{\bar{\alpha}} \\
\hat{D}^{\prime} X^{\alpha}=i D^{\prime} X^{\alpha} & \hat{D}^{\prime} X^{\bar{\alpha}}=-i D^{\prime} X^{\bar{\alpha}}
\end{array}
$$

Formalism

- Chiral fields with B-type boundary

$$
\begin{array}{c|c}
\hat{D} X^{\alpha}=i D X^{\alpha} & \hat{D} X^{\bar{\alpha}}=-i D X^{\bar{\alpha}} \\
\hat{D}^{\prime} X^{\alpha}=i D^{\prime} X^{\alpha} & \hat{D}^{\prime} X^{\bar{\alpha}}=-i D^{\prime} X^{\bar{\alpha}},
\end{array}
$$

- In general:
- B brane wraps holomorphic cycle on Kähler manifold
- Carries holomorphic flux: $F_{\alpha \bar{\beta}}=-i W_{\alpha \bar{\beta}}, \quad F_{\alpha \beta}=F_{\bar{\alpha} \bar{\beta}}=0$

Formalism

- Chiral fields with B-type boundary

$$
\begin{array}{c|c}
\hat{D} X^{\alpha}=i D X^{\alpha} & \hat{D} X^{\bar{\alpha}}=-i D X^{\bar{\alpha}} \\
\hat{D}^{\prime} X^{\alpha}=i D^{\prime} X^{\alpha} & \hat{D}^{\prime} X^{\bar{\alpha}}=-i D^{\prime} X^{\bar{\alpha}},
\end{array}
$$

- In general:
- B brane wraps holomorphic cycle on Kähler manifold
- Carries holomorphic flux: $F_{\alpha \bar{\beta}}=-i W_{\alpha \bar{\beta}}, \quad F_{\alpha \beta}=F_{\bar{\alpha} \bar{\beta}}=0$
- Application: space filling brane in flat space

$$
D^{\prime} X^{\alpha}=F_{\beta}^{\alpha} D X^{\beta}
$$

\rightarrow study stability by computing β-function

Conformal invariance

- Conformal invariance \rightarrow vanishing β-function \rightarrow stability condition

Conformal invariance

- Conformal invariance \rightarrow vanishing β-function \rightarrow stability condition
- Example: closed strings (no b-field)
$N=(2,2)$ supersymmetry $\quad \rightarrow$ Kähler manifold
One-loop conformal invariance \rightarrow Ricci flat
Four-loop conformal invariance $\rightarrow R^{4}$ term

Conformal invariance

- Conformal invariance \rightarrow vanishing β-function \rightarrow stability condition
- Example: closed strings (no b-field)
$\mathrm{N}=(2,2)$ supersymmetry
\rightarrow Kähler manifold
One-loop conformal invariance \rightarrow Ricci flat
Four-loop conformal invariance $\rightarrow R^{4}$ term
- Four-loop calculation is greatly simplified by using $N=(2,2)$ superspace techniques [Grisaru, van de Ven, Zanon '86]

Deformed stability condition from β-function

- Open strings on flat space-filling B brane coupled to boundary potential W
[Nevens, Sevrin, Troost, AW '06]

Deformed stability condition from β-function

- Open strings on flat space-filling B brane coupled to boundary potential W
- At one loop: $\beta(W) \propto g^{\alpha \bar{\beta}}(\operatorname{arcth} F)_{\alpha \bar{\beta}} \rightarrow \mathrm{BI}$ action

Deformed stability condition from β-function

- Open strings on flat space-filling B brane coupled to boundary potential W
- At one loop: $\beta(W) \propto g^{\alpha \bar{\beta}}(\operatorname{arcth} F)_{\alpha \bar{\beta}} \rightarrow \mathrm{BI}$ action
- Two loops: no contribution to the β-function \rightarrow no two-derivative corrections

[Nevens, Sevrin, Troost, AW '06]

Deformed stability condition from β-function

- Open strings on flat space-filling B brane coupled to boundary potential W
- At one loop: $\beta(W) \propto g^{\alpha \bar{\beta}}(\operatorname{arcth} F)_{\alpha \bar{\beta}} \rightarrow \mathrm{BI}$ action
- Two loops: no contribution to the β-function \rightarrow no two-derivative corrections
- Three loops: four-derivative correction to the BI action

[Nevens, Sevrin, Troost, AW '06]

Deformed stability condition from β-function

- Open strings on flat space-filling B brane coupled to boundary potential W
- At one loop: $\beta(W) \propto g^{\alpha \bar{\beta}}(\operatorname{arcth} F)_{\alpha \bar{\beta}} \rightarrow \mathrm{BI}$ action
- Two loops: no contribution to the β-function \rightarrow no two-derivative corrections
- Three loops: four-derivative correction to the BI action
- All results in complete agreement with renormalization group equations

[Nevens, Sevrin, Troost, AW '06]

Result: $\mathrm{BI}+$ derivative corrections

Abelian effective action up to 4 derivatives [WylLard '01]

$$
\begin{aligned}
\mathcal{S}= & -\tau_{9} \int d^{10} \times \sqrt{-h_{+}}\left[1+\frac{1}{96}\left(\frac{1}{2} h_{+}^{\mu \nu} h_{+}^{\rho \sigma} S_{\nu \rho} S_{\sigma \mu}\right.\right. \\
& \left.\left.-h_{+}^{\rho_{2} \mu_{1}} h_{+}^{\mu_{2} \rho_{1}} h_{+}^{\sigma_{2} \nu_{1}} h_{+}^{\nu_{2} \sigma_{1}} S_{\mu_{1} \mu_{2} \nu_{1} \nu_{2}} S_{\rho_{1} \rho_{2} \sigma_{1} \sigma_{2}}\right)\right]
\end{aligned}
$$

With stability condition [Koerber '04]
$g^{\alpha \bar{\beta}}(\operatorname{arcth} F)_{\alpha \bar{\beta}}+\frac{1}{96} S_{a b \alpha \bar{\beta}} S_{c d \gamma \bar{\delta}} h_{+}^{b c} h_{+}^{d a}\left(h_{+}^{\alpha \bar{\delta}} h_{+}^{\gamma \bar{\beta}}-h_{-}^{\alpha \bar{\delta}} h_{-}^{\gamma \bar{\beta}}\right)=0$
where $S_{a b c d}=\partial_{a} \partial_{b} F_{c d}+2 h_{+}^{e f} \partial_{a} F_{[c \mid e} \partial_{b} F_{\mid d] f}, \quad h_{\alpha \bar{\beta}}^{ \pm}=\eta_{\alpha \bar{\beta}} \pm F_{\alpha \bar{\beta}}$

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$
(3) Type A branes
- Formalism
- Coisotropic branes
(4) Type B branes
- Formalism
- Derivative corrections
(5) Duality transformations
(6) Remarks

Duality transformations

- Closed strings
- In the presence of an isometry: chiral field dualized to twisted chiral field
- Explicit transformation by gauging the isometry and passing through a first order action

Duality transformations

- Closed strings
- In the presence of an isometry: chiral field dualized to twisted chiral field
- Explicit transformation by gauging the isometry and passing through a first order action
- Open strings
- Analogous to closed string case, but boundary conditions of first order action should be treated with care
- Example 1: space filling B brane on $d=2 n$-dimensional Kähler manifold parameterized by n chiral fields is dual to n-dimensional Lagrangian A brane on dual Kähler manifold parameterized by n twisted chiral fields
- Example 2: One of the two isometries of maximal coisotropic brane on hyperkähler manifold can be dualized $\rightarrow 3$-brane on generalized Kähler manifold

Outline

(1) Motivation

- Nonlinear σ-models in superspace
- D-brane effective actions
(2) Boundary superspace
- $N=1$
- $N=2$
(3) Type A branes
- Formalism
- Coisotropic branes
(4) Type B branes
- Formalism
- Derivative corrections

5 Duality transformations
(6) Remarks

Conclusion and outlook

Conclusions

- $N=2$ superspace description of A and B branes on Kähler manifolds
- Explicit examples of coisotropic branes
- Duality transformations
- Application: D-brane effective action

Conclusion and outlook

Conclusions

- $N=2$ superspace description of A and B branes on Kähler manifolds
- Explicit examples of coisotropic branes
- Duality transformations
- Application: D-brane effective action

Outlook

- Geometries parameterized by chiral + twisted chiral (+ semi-chiral) \rightarrow branes on generalized complex geometries
- Conformal invariance \rightarrow stability conditions [Marino, Minasian, Moore, Strominger '00; Kapustin, Li '03; Koerber '05]

