Hhigher Spins: a Rey Comer Off THielal anda Stining IIfeory

Augusto SAGVOITII

Scuola Normale Superiore, Pisa

```
Some related reviews:
    -\mathcal{N}. Bouatta, G. Compere, A.S., hep-th/0609068
    - (D. Francia and A.S., hep-th/0601199
    -A.S., Sezgin, Sundell, hep-th/0501156
    - X. Bekaert, S. Cnockaert, C. Iazeolla, M.A. Vasiliev, hep-th/0503128
    - D. Sorokin, hep-th/0405069
    - A.S., P. Sundell, D. Sorokin, M.A. Vasiliev, Phys. Reports, 2008 (?)
```


Some Motivations for 9 its

- Key (old) problem in (classical) Fiveld Theory:
- Only $s=0,1 / 2,1,3 / 2,2$
- Key role in Stering Theory:
- (Non) Planar duality of tree amplitudes
- Modular invoariance and soft U.V.
- Open-closed duadity
-

IFor instance ...

$$
\sum_{n} \frac{R_{n}(t)}{\alpha(s)-n} \frac{\left.\sum_{n} \frac{R_{n}(s)}{a(t)-n}\right)}{a}
$$

- (9onn) plander duality rests on infuntitely manny poles
- [Actual t (or s) dependence implies a growing sequence of spins]
- Similarty for modular intranticnce:

What do we 层How?

- ritat-Spoce formutation (with a mumber of recent surprises which I will try to iffustrate)
- Extension to (-1) dS backgrounds
- Inconsistency of more general backgrounds for inaduidual HiS fields
- Truo wetl-alefined framervorks with infwitety manty interacting mis fielals:

1. SIRIVVG IjHEORN: broken HIS symmetries, same scale in masses and interactions
2. (1) HSILIEETV IEOU FIIONS' unbroken HIS symmetries, same scale in $s=2$ C.C. and interactions [BACKGROUSV IGVDEPEEVMEEVI, non Lagrangian]

What is "Spint" here?

$\mathcal{D}=4$:

- Up to duafities, alf cases exfruusted by fulfy symmetric (spinor) tensors:
$\lrcorner \mathbb{D}>4:$
- Arbiturary Young tableaux: "spin" somefiow number of columns, Less developed, many general ressons can be dractin from previous special set of fields. Key contributions in the 80 's by J. SM. Fi. Labastida,

See: - X. Bekgert and NV. Boulanger, זpp-th/0606198

- A. Campo [eoni, D. Francia, J. Mouraal and AS, to appear

Summany, II

- Fiterz-Pauli conditions: $s=2$ in detail
- Bose fields: Singh-Hagen and Fronsalal formulations
- Remoral of trace constraints via norn-Eocal terms
- Non-Local bosonuc formulation and HHgher-Spin Geometry
[VO FFERQUI FFIELDS FOR BREVITIT]

ITHerz-Paulfic condtitions: Bose

(Fierz, Pauli, 1939)

- Spin-s boson of mass m:
$\left(\square-M^{2}\right) \Phi_{\mu_{1} \ldots \mu_{s}}=0$

$$
\begin{aligned}
\partial^{\mu_{1}} \Phi_{\mu_{1} \ldots \mu_{s}} & =0 \\
\Phi^{\mu_{1}} \mu_{1} \ldots \mu_{s} & =0
\end{aligned}
$$

- Conrect degrees of freedom ($\mathrm{M}^{2}>0$):

Combine quith trace: Onfy traceless spatial components

Massive case: Low spins

- Spin 1:

$$
\mathcal{L}=-\frac{1}{2}\left(\partial_{\mu} \Phi_{\nu}\right)^{2}-\frac{1}{2}(\partial \cdot \Phi)^{2}-\frac{M^{2}}{2}\left(\Phi_{\mu}\right)^{2}
$$

- Gives Broca equations

$$
\square \Phi_{\mu}-\partial_{\mu}(\partial \cdot \Phi)-M^{2} \Phi_{\mu}=0
$$

- For s=2 try (ID traceless):

$$
\mathcal{L}=-\frac{1}{2}\left(\partial_{\mu} \Phi_{\nu \rho}\right)^{2}+\frac{\alpha}{2}\left(\partial \cdot \Phi_{\nu}\right)^{2}-\frac{M^{2}}{2}\left(\Phi_{\mu \nu}\right)^{2}
$$

\perp Does rot give the correct Fiterz-Pouli conditions

Massive case: spin 2

$$
\square \Phi_{\mu \nu}-\frac{\alpha}{2}\left(\partial_{\mu} \partial \cdot \Phi_{\nu}+\partial_{\nu} \partial \cdot \Phi_{\mu}-\frac{2}{D} \eta_{\mu \nu} \partial \cdot \partial \cdot \Phi\right)-M^{2} \Phi_{\mu \nu}=0
$$

- Can stifl talke the divergence:

$$
\left(1-\frac{\alpha}{2}\right) \square \partial \cdot \Phi_{\nu}+\alpha\left(-\frac{1}{2}+\frac{1}{D}\right) \partial_{\nu} \partial \cdot \partial \cdot \Phi-M^{2} \partial \cdot \Phi_{\nu}=0
$$

- Take $\alpha=2$ (efiminate \square
- If we coulde also impose:

$$
\partial \cdot \partial \cdot \phi=0
$$

$\partial \cdot \Phi_{\nu}=0$

- Add a Lagrange multiplier (witf its Ejinetic and mass terms):

$$
\Delta \mathcal{L}=\varphi \partial \cdot \partial \cdot \Phi+c_{1}\left(\partial_{\mu} \varphi\right)^{2}+c_{2} \varphi^{2}
$$

Massive case spin 2

$$
\Delta \mathcal{L}=\varphi \partial \cdot \partial \cdot \Phi+c_{1}\left(\partial_{\mu} \varphi\right)^{2}+c_{2} \varphi^{2}
$$

- $2 x 2$ fiomogeneous systems

$$
\left[\begin{array}{l}
\left.(2-D)-D M^{2}\right] \partial \cdot \partial \cdot \Phi+(D-1) \square^{2} \varphi=0 \\
\partial \cdot \partial \cdot \Phi+2\left(c_{2}-c_{1} \square\right) \varphi=0
\end{array}\right.
$$

Determinant is algebraic if:

$$
\begin{aligned}
& c_{1}=\frac{(D-1)}{2(D-2)} \\
& c_{2}=\frac{M^{2} D(D-1)}{2(D-2)^{2}}
\end{aligned}
$$

$$
\begin{array}{cl}
\varphi=0, & \partial \cdot \partial \cdot \Phi=0 \\
\partial \cdot \Phi_{\nu}=0, & \square \Phi_{\mu \nu}-M^{2} \Phi_{\mu \nu}=0
\end{array}
$$

Massless case: spin 2

- Not surprisinglyy gauge symmetry as $M \rightarrow 0$

$$
\mathcal{L}=-\frac{1}{2}\left(\partial_{\mu} \Phi_{\nu \rho}\right)^{2}+\left(\partial \cdot \Phi_{\nu}\right)^{2}+\varphi \partial \cdot \partial \cdot \Phi+\frac{D-1}{2(D-2)}\left(\partial_{\mu} \varphi\right)^{2}
$$

- The equations become:

$$
\begin{aligned}
& \square \Phi_{\mu \nu}-\partial_{\mu} \partial \cdot \Phi_{\nu}-\partial_{\nu} \partial \cdot \Phi_{\mu}+\frac{2}{D} \eta_{\mu \nu} \partial \cdot \partial \cdot \Phi+\partial_{\mu} \partial_{\nu} \varphi=0 \\
& \frac{D-1}{D-2} \square \varphi-\partial \cdot \partial \cdot \Phi=0
\end{aligned}
$$

- Gauge incoariant under:

$$
\begin{aligned}
& \delta \Phi_{\mu \nu}=\partial_{\mu} \wedge_{\nu}+\partial_{\nu} \wedge_{\mu}-\frac{2}{D} \eta_{\mu \nu} \partial \cdot \Lambda \\
& \delta \varphi=2 \frac{D-2}{D} \partial \cdot \Lambda
\end{aligned}
$$

Massless case spin 2

- In terms of a traceful spin 2:

$$
\varphi_{\mu \nu}=\Phi_{\mu \nu}+\frac{1}{D-2} \eta_{\mu \nu} \varphi
$$

- "Fronsalal" eq:

$$
\begin{aligned}
& \mathcal{F}_{\mu \nu} \equiv \square \varphi_{\mu \nu}-\left(\partial_{\mu} \partial \cdot \varphi_{\nu}+\partial_{\nu} \partial \cdot \varphi_{\mu}\right)+\partial_{\mu} \partial_{\nu} \varphi^{\prime}=0 \\
& \delta \varphi_{\mu \nu}=\partial_{\mu} \Lambda_{\nu}+\partial_{\nu} \Lambda_{\mu}
\end{aligned}
$$

- "Fronsalar" action:

$$
\mathcal{L}=-\frac{1}{2}\left(\partial_{\mu} \varphi_{\nu \rho}\right)^{2}+\left(\partial \cdot \varphi_{\mu}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \varphi^{\prime}\right)^{2}+\varphi^{\prime} \partial \cdot \partial \cdot \varphi
$$

- This gives:

$$
\mathcal{F}_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} \mathcal{F}^{\prime}=0
$$

$$
\mathcal{F}_{\mu \nu}=0
$$

ITronsalal equation, spin s

(Fronsdal, 1978)
Gauge invariance for massless symmetric tensors:

$$
\begin{aligned}
& \delta \varphi_{\mu_{1} \ldots \mu_{s}}=\partial_{\mu_{1}} \Lambda_{\mu_{2} \ldots \mu_{s}}+\ldots+\partial_{\mu_{s}} \Lambda_{\mu_{1} \ldots \mu_{s-1}} \\
& F_{\mu_{1} \ldots \mu_{s}} \equiv \square \varphi_{\mu_{1} \ldots \mu_{s}}-\left(\partial_{\mu_{1}} \partial . \varphi_{\mu_{2} \ldots \mu_{s}}+\ldots\right)+\left(\partial_{\mu_{1}} \partial_{\mu_{2}} \varphi_{\mu_{3} \ldots \mu_{s}}^{\prime}+\ldots\right)=0
\end{aligned}
$$

(Originally from massive Singhertagen equations)

(Singh and Hagen, 1974)
Unusual constrations:

$$
\Lambda^{\prime}=0, \quad \varphi^{\prime \prime}=0
$$

Katuza-Rrein masses

- Cam extend the K-K construction to spin-s case (Stueckerberg gauge symmetries)

$$
\begin{aligned}
& \varphi_{D+1}^{(s)} \longrightarrow \varphi_{D}^{(s)}, \varphi_{D}^{(s-1)}, \varphi_{D}^{(s-2)}, \varphi_{D}^{(s-3)} \\
& \Lambda_{D+1}^{(s-1)} \longrightarrow \Lambda_{D}^{(s-1)}, \Lambda_{D}^{(s-2)}
\end{aligned}
$$

- [$(s-3)$ - parameter missing due to trace condition]
- [(s-4)-field missing due to doub[e trace condition]
- Gauge fixing the Stueckelferg symmetries one is left with:
$\varphi_{D+1}^{(s)} \longrightarrow \varphi_{D}^{(s)}, \varphi_{D}^{(s-3)}$

In terms of traceless temsors \rightarrow Singh-flagen fields

Bitanctritidentuty

Why the urusual constraints?

1. Gauge variation of IF:

$$
\delta F_{\mu_{1} \ldots \mu_{s}}=3\left(\partial_{\mu_{1}} \partial_{\mu_{2}} \partial_{\mu_{3}} \Lambda_{\mu_{4} \ldots \mu_{s}}^{\prime}+\ldots\right)
$$

2. Ggauge inveaniance of the Eagrangiant:

- As in the spin-2 casse, IF not integrable
- Bianchiu identity:

$$
\partial \cdot F_{\mu_{2} \ldots \mu_{s}}-\frac{1}{2}\left(\partial_{\mu_{2}} F_{\mu_{3} \ldots \mu_{s}}^{\prime}+\ldots\right)=-\frac{3}{2}\left(\partial_{\mu_{2}} \partial_{\mu_{3}} \partial_{\mu_{4}} \varphi_{\mu_{5} \ldots \mu_{s}}^{\prime \prime}+\ldots\right)
$$

Constrainear gauge inwantiance

$$
\delta L=\delta{\varphi_{\mu_{1}, \mu_{s}}}\left[F_{\mu_{1}, \mu_{4}}-\frac{1}{2}\left(\eta_{\mu \mu_{2}} F_{\mu_{2}, \ldots \mu_{4}}+\ldots\right)\right]
$$

If in the variation of \mathcal{L} one inserts

$$
\delta \varphi_{\mu_{1} \ldots \mu_{s}}=\partial_{\mu_{1}} \Lambda_{\mu_{2} \ldots \mu_{s}}+\ldots
$$

$$
\delta L=-s \Lambda_{\mu_{2} \ldots \mu_{s}}[\underbrace{\partial \cdot F_{\mu_{2} \ldots \mu_{s}}-\frac{1}{2}\left(\partial_{\mu_{2}} F_{\mu_{3} \ldots \mu_{s}}^{\prime}+\ldots\right)}_{\text {Bianchi identity }: \varphi^{\prime \prime}}-\underbrace{\frac{1}{2}\left(\eta_{\mu_{2} \mu_{3}} \partial \cdot F^{\prime}{ }_{\mu_{4} \ldots \mu_{s}}+. .\right)}_{\Lambda^{\prime}}]
$$

Are the constraints really necessary?

Thic spint-3 case

$$
\delta F_{\mu \nu \rho}=3 \partial_{\mu} \partial_{\nu} \partial_{\rho} \Lambda^{\prime} \rightarrow \delta\left(\frac{\partial_{\mu} \partial_{\nu} \partial_{\rho}}{\square^{2}} \partial \cdot F^{\prime}\right)=3 \partial_{\mu} \partial_{\nu} \partial_{\rho} \Lambda^{\prime}
$$

A furly gauge invariant (non-local) equation:

$$
F_{\mu v \rho}=0 \quad F_{\mu v \rho}-\frac{\partial_{\mu} \partial_{\nu} \partial_{\rho}}{\square^{2}} \partial \cdot F^{\prime}=0
$$

Reduces to Local Fronsalal form upon partial gauge fixing

Spin 3: other non-Local eqs

Other equivalent forms:

$$
F_{\mu \nu \rho}-\frac{1}{3 \square}\left(\partial_{\mu} \partial_{\nu} F_{\rho}^{\prime}+\partial_{\nu} \partial_{\rho} F_{\mu}^{\prime}+\partial_{\rho} \partial_{\mu} F_{\nu}^{\prime}\right)=0
$$

$$
F_{\mu \nu \rho}-\frac{1}{3 \square}\left(\partial_{\mu} \partial \cdot F_{\nu \rho}+\partial_{\nu} \partial \cdot F_{\rho \mu}+\partial_{\rho} \partial \cdot F_{\mu \nu}\right)=0
$$

Lesson full gauge invariance with non-Local terms

Spin 3: non-Local action

One can simply arrive at a non-Local action (from a proper "EEinstein" tensor)

$$
\begin{aligned}
L & =-\frac{1}{2}\left(\partial_{\mu} \varphi_{\alpha \beta \gamma}\right)^{2}+\frac{3}{2}\left(\partial \cdot \varphi_{\beta \gamma}\right)^{2}-\frac{1}{2}\left(\partial \cdot \varphi^{\prime}\right)^{2}+\frac{3}{2}\left(\partial_{\mu} \varphi_{\alpha}^{\prime}\right)^{2} \\
& +3 \varphi_{\alpha}^{\prime} \partial \cdot \partial \cdot \varphi_{\alpha}+3 \partial \cdot \partial \cdot \partial \cdot \varphi \frac{1}{\square} \partial \cdot \varphi^{\prime}-\partial \cdot \partial \cdot \partial \cdot \varphi \frac{1}{\square^{2}} \partial \cdot \partial \cdot \partial \cdot \varphi
\end{aligned}
$$

fulty incrowriant under

$$
\delta \varphi_{\alpha \beta \gamma}=\partial_{\alpha} \Lambda_{\beta \gamma}+\partial_{\beta} \Lambda_{\gamma \alpha}+\partial_{\gamma} \Lambda_{\alpha \beta}
$$

Impplicit Notatation 2

- For afl spins, one can efiminate all indices
(Francia, AS, 2002)
- Need onty some unfamifiar combinatoric rules

$$
\begin{aligned}
& \left(\partial^{p} \varphi\right)^{\prime}=\square \partial^{p-2} \varphi+2 \partial^{p-1} \partial \cdot \varphi+\partial^{p} \varphi^{\prime} \\
& \partial^{p} \partial^{q}=\binom{p+q}{p} \partial^{p+q} \\
& \partial \cdot\left(\partial^{p} \varphi\right)=\square \partial^{p-1} \varphi+\partial^{p} \partial \cdot \varphi \\
& \partial \cdot \eta^{k}=\partial \eta^{k-1}, \quad \eta \eta^{k-1}=k \eta^{k} \\
& \left(\eta^{k} T_{(s)}\right)^{\prime}=k[\mathcal{D}+2(s+k-1)] \eta^{k-1} T_{(s)}+\eta^{k} T_{(s)}^{\prime}
\end{aligned}
$$

Ifronsulal equations: spin s

- Fronselal construction:

$$
\begin{aligned}
& \mathcal{F} \equiv \square \varphi-\partial \partial \cdot \varphi+\partial^{2} \varphi^{\prime}=0 \\
& \delta \varphi=\partial \wedge
\end{aligned}
$$

Constraintes:

$$
\text { 1. } \Lambda^{\prime}=0
$$

- Lagrangianas"

$$
\mathcal{L}=-\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}+\frac{s}{2}(\partial \cdot \varphi)^{2}+\frac{s(s-1)}{2} \varphi^{\prime} \partial \cdot \partial \cdot \varphi+\frac{s(s-1)(s-2)}{8}\left(\partial \cdot \varphi^{\prime}\right)^{2}
$$

2Kinetic operators for innteger spin

Index-free notation:

Now define:

$$
\begin{aligned}
& F^{(1)} \equiv \square \varphi-\partial \partial \cdot \varphi+\partial^{2} \varphi^{\prime}=0 \\
& \left(\text { e.g. } \quad \partial^{p} \partial^{q} \equiv \frac{(p+q)!}{p!q!} \partial^{p+q}\right)
\end{aligned}
$$

$$
F^{(n+1)}=F^{(n)}+\frac{1}{(n+1)(2 n+1)} \frac{\partial^{2}}{\square} F^{(n)}{ }^{\prime}-\frac{1}{n+1} \frac{\partial}{\square} \partial \cdot F^{(n)}
$$

Thens:

$$
\delta F^{(n)}=(2 n+1) \frac{\partial^{2 n+1}}{\square^{n-1}} \Lambda^{[n]}
$$

2Kinetic operators for integer spin

Definuing:

$$
\begin{aligned}
& \Phi(x, \xi)=\frac{1}{s!} \xi^{\mu_{1}} \ldots \xi^{\mu_{s}} \varphi_{\mu_{1} \ldots \mu_{s}} \\
& \partial_{\xi}=\frac{\partial}{\partial \xi}
\end{aligned}
$$

$$
\prod_{k}\left[1+\frac{1}{(k+1)(2 k+1)} \frac{\partial^{2}}{\square} \partial_{\xi} \cdot \partial_{\xi}-\frac{1}{k+1} \frac{\partial}{\square} \partial_{\xi} \cdot \partial\right] F^{(1)}(\Phi)=0
$$

- is the genevic हinctic operator for fighter spins
- when combined witf traces can be reduced to

$$
F=\partial^{3} H \quad\left(\delta H=3 \Lambda^{\prime}\right)
$$

2Kinetic operatons for inuteger spin

The FFr(n):

- Are gauge invariant for $n>[(s-1) / 2]$
- Satisfy the Bianchii identities

$$
\partial \cdot F^{(n)}-\frac{1}{2 n} \partial F^{(n)} \prime^{\prime}=-\left(1+\frac{1}{2 n}\right) \frac{\partial^{2 n+1}}{\square^{n-1}} \varphi^{[n+1]}
$$

- For $n>[(s-1) / 2]$ alfow Stinstein-lite operators

$$
G^{(n)}=\sum_{p=0}^{n-1} \frac{(-1)^{p}(n-p)!}{2} n!\quad \eta^{p} F^{(n)[p]}
$$

Connections

CFristoffer comnection:

$$
\delta h_{\mu \nu}=\partial_{\mu} \varepsilon_{\nu}+\partial_{\nu} \varepsilon_{\mu}
$$

$$
\delta \Gamma_{\nu \rho}^{\mu}=\partial_{\nu} \partial_{\rho} \varepsilon^{\mu}
$$

Generalizes to $A L L$ symmetric tensors
(De Wit and Freedman, 1980)

$$
\begin{aligned}
\Gamma_{\mu ; v_{1} v_{2}} & \Rightarrow \Gamma_{\mu_{1} \ldots \mu_{s-1} ; v_{1} \ldots v_{s}} \\
R_{\mu_{1} \mu_{2} ; v_{1} v_{2}} & \Rightarrow R_{\mu_{1} \ldots \mu_{s} ; v_{1} \ldots v_{s}}
\end{aligned}
$$

Connections

$$
\underbrace{\delta\left(\partial^{s-1} \varphi_{s}\right)}_{\binom{2 s-1}{s-1}}=\underbrace{\partial^{s} \Lambda_{s-1}}_{\binom{2 s-1}{s}}
$$

In general:

$$
\Gamma^{(m)}=\frac{1}{m+1} \sum_{k=0}^{m} \frac{(-1)^{k}}{\binom{m}{k}} \partial^{m-k} \nabla^{k} \varphi
$$

$\partial, \nabla: \quad$ Derivatives w.r.t. two sets of sym indices

Connections

- In 芭instein grarvity: metric (vief6ein) postulate

$$
\nabla_{\rho} g_{\mu \nu} \equiv \partial_{\rho} g_{\mu \nu}-\Gamma_{\rho \mu}^{\alpha} g_{\alpha \nu}-\Gamma_{\rho \nu}^{\alpha} g_{\mu \alpha}=0
$$

- Linearizing:

$$
g_{\mu \nu} \rightarrow \eta_{\mu \nu}+h_{\mu \nu}
$$

$$
\partial_{\rho} h_{\mu v}=\Gamma_{v ; \rho \mu}+\Gamma_{\mu ; \rho v}
$$

- For spin 3 (Einearized):

$$
\partial_{\sigma} \partial_{\tau} \phi_{\mu \nu \rho}=\Gamma_{v \rho ; \sigma \tau \mu}+\Gamma_{\rho \mu ; \sigma \tau v}+\Gamma_{\mu v ; \sigma \tau \rho}
$$

Glimpses offit Geometiny

1. Oded spins $(s=2 n+1)$:
$\partial_{\mu} F^{\mu \nu}=0$

$$
\frac{1}{\square^{n}} \partial_{\mu} R^{[n] \mu ; v_{1} \ldots v_{s}}=0
$$

2. Teven spins $(s=2 n)$:

$$
R^{\mu \nu}=0
$$

Summany, III

- Relation with String Theory
- Removal of trace constraints via Cocal terms
- Compensator equations for ffigher Spins of (A) als extensions
- External curcents
-The Vasifier construction (and the compensatior)

[NOO FEERQI TFIELDS FOR BREEVITY]

Bosonic string: ©RST

The starting point is the Virasoro algebra;

$$
\begin{aligned}
& L_{k}=\frac{1}{2} \sum_{l=-\infty}^{+\infty} \alpha_{k-l}^{\mu} \alpha_{\mu l} \\
& {\left[L_{k}, L_{l}\right]=(k-l) L_{k+l}+\frac{\mathcal{D}}{12} m\left(m^{2}-1\right)}
\end{aligned}
$$

- In the Cow-tension Limit, one is Left with:

$$
\begin{aligned}
& \ell_{0}=p^{2} \\
& \ell_{k}=p \cdot \alpha_{k}
\end{aligned}
$$

- Virasoro contracts (no c. charge):

$$
\left[\ell_{k}, \ell_{l}\right]=k \delta_{k+l, 0} \ell_{0}
$$

Low-tension fanit

- Similar simplifications for BRST charge:

$$
\mathcal{Q}=\sum_{-\infty}^{+\infty}\left[C_{-k} L_{k}-\frac{1}{2}(k-l): C_{-k} C_{-l} B_{k+l}:\right]-C_{0}
$$

$$
Q=\sum_{-\infty}^{+\infty}\left[c_{-k} \ell_{k}-\frac{k}{2} b_{0} c_{-k} c_{k}\right]\left(Q^{2}=0 \quad \forall \mathcal{D}\right)
$$

- Making zero-modes maniffest:

$$
\begin{aligned}
& \widetilde{Q}=\sum_{k \neq 0} c_{-k} \ell_{k} \\
& M=\frac{1}{2} \sum_{-\infty}^{+\infty} k c_{-k} c_{k}
\end{aligned}
$$

$$
\begin{aligned}
& Q=c_{0} \ell_{0}-b_{0} M+\widetilde{Q} \\
& |\Phi\rangle=\left|\varphi_{1}\right\rangle+c_{0}\left|\varphi_{2}\right\rangle \\
& |\Lambda\rangle=\left|\Lambda_{1}\right\rangle+c_{0}\left|\Lambda_{2}\right\rangle
\end{aligned}
$$

Symametric trinpletes

$$
\text { Emerge from } \quad \alpha_{-1}, b_{-1}, c_{-1}
$$

$\mathcal{Q}|\Psi\rangle=0$
 $$
\delta|\Psi\rangle=\mathcal{Q}|\Lambda\rangle
$$

(Kato and Ogawa, 1982; Witten; Neveu, West et al, 1985)

$$
\begin{aligned}
\left|\varphi_{1}\right\rangle & =\frac{1}{s!} \varphi_{\mu_{1} \ldots \mu_{s}}(x) \alpha_{-1}^{\mu_{1}} \ldots \alpha_{-1}^{\mu_{s}}|0\rangle \\
& +\frac{1}{(s-2)!} D_{\mu_{1} \ldots \mu_{s-2}}(x) \alpha_{-1}^{\mu_{1}} \ldots \alpha_{-1}^{\mu_{s-2} c_{-1} b_{-1}|0\rangle} \\
\left|\varphi_{2}\right\rangle & =\frac{-i}{(s-1)!} C_{\mu_{1} \ldots \mu_{s-1}}(x) \alpha_{-1}^{\mu_{1}} \ldots \alpha_{-1}^{\mu_{s-1}} b_{-1}|0\rangle \\
|\Lambda\rangle & =\frac{i}{(s-1)!} \wedge_{\mu_{1} \mu_{2} \ldots \mu_{s-1}}(x) \alpha_{-1}^{\mu_{1}} \ldots \alpha_{-1}^{\mu_{s-1} b_{-1}}|0\rangle
\end{aligned}
$$

The triplets are:

$$
\begin{aligned}
& \varphi=\partial C, \\
& \partial \cdot \varphi-\partial D=C \\
& D=\partial \cdot C
\end{aligned}
$$

$$
\begin{aligned}
& \delta \varphi=\partial \wedge, \\
& \delta C=\square \wedge \\
& \delta D=\partial \cdot \Lambda
\end{aligned}
$$

Symanetric trinpletes

- Can also efiminate C:

$$
\begin{aligned}
& \mathcal{F}=\partial^{2}\left(\varphi^{\prime}-2 D\right) \\
& \square D=\frac{1}{2} \partial \cdot \partial \cdot \varphi-\frac{1}{2} \partial \partial \cdot D
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}+s \partial \cdot \varphi C+s(s-1) \partial \cdot C D \\
& +\frac{s(s-1)}{2}\left(\partial_{\mu} D\right)^{2}-\frac{s}{2} C^{2}, \\
\mathcal{L} & =-\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}+\frac{s}{2}(\partial \cdot \varphi)^{2}+s(s-1) \partial \cdot \partial \cdot \varphi D \\
& +s(s-1)\left(\partial_{\mu} D\right)^{2}+\frac{s(s-1)(s-2)}{2}(\partial \cdot D)^{2}
\end{aligned}
$$

- Gauge theories of $\quad \ell_{0}, \ell_{ \pm 1}$

Compensator sequations

- Triplet eqs (eliminating C):

$$
\begin{aligned}
& \mathcal{F}=\partial^{2}\left(\varphi^{\prime}-2 D\right) \\
& \square D=\frac{1}{2} \partial \cdot \partial \cdot \varphi-\frac{1}{2} \partial \partial \cdot D
\end{aligned}
$$

$\varphi^{\prime}-2 D=\partial \alpha$

- Describe a spin-s gange fiela withi.
- NO trace constraints on the gauge parameter or gauge fielal
- First can be reduced to minimal non-local form
- simple (A)dS extension

- NOT Lagrangian equations

Whinumar Local Lagrangian

(Francia, $\mathcal{A} S, 2005$; Francia, Mourad and $\mathcal{A} S, 2007$)

- "Minimal" Local Lagrangian with unconstrained gauge symmetry:

$$
\begin{aligned}
& {\left[\mathcal{F}=\square \varphi-\partial \partial \cdot \varphi+\partial^{2} \varphi^{\prime}\right]} \\
& \mathcal{A}=\mathcal{F}-3 \partial^{3} \alpha \\
& \partial \cdot \mathcal{A}-\frac{1}{2} \partial \mathcal{A}^{\prime}=-\frac{3}{2} \partial^{3}\left(\varphi^{\prime \prime}-4 \partial \cdot \alpha-\partial \alpha^{\prime}\right) \\
& \hline
\end{aligned}
$$

- The Lagrangian are:

$$
\mathcal{L}=\frac{1}{2} \varphi\left(\mathcal{A}-\frac{1}{2} \eta \mathcal{A}^{\prime}\right)-\frac{3}{4}\binom{s}{3} \alpha \partial \cdot \mathcal{A}^{\prime}+\binom{s}{4} \beta\left[\varphi^{\prime \prime}-4 \partial \cdot \alpha-\partial \alpha^{\prime}\right.
$$

Can be nicely extended to (\ddagger) aS backgrounds

BRSI and Compensator Equations

- It is also possible to obtain a Lagrangian form of the compensator equations, using BRSI techniques
(Pasfiner, Tsulaia, 1998)
- Formulation incoorves mumber of fields ~s
- Interesting BRST subtLeties
- Can be reduced to "minimal" compensator equations
(AS and Tsulaia, 2003)
Δ e.g. $s=3$ IFields:

$$
\begin{aligned}
& \varphi, C, D, \alpha,\left[\varphi^{(1)}, C^{(1)}, E, F\right] \\
& \Lambda,\left[\Lambda^{(1)}, \mu\right]
\end{aligned}
$$

Off Shell truncation of triplets

Off-shell reduction of triplets:

(Buchbinater, Kry気tin, Reshetnyak 2007)

$$
\begin{aligned}
& \square \varphi=\partial C, \\
& \partial \cdot \varphi-\partial D=C \\
& \square D=\partial \cdot C
\end{aligned}
$$

$$
\begin{array}{ll}
\lambda: & \varphi^{\prime}-2 D-\partial \alpha=0 \\
\mu: & D^{\prime}-\partial \cdot \alpha=0
\end{array}
$$

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}+s \partial \cdot \varphi C+s(s-1) \partial \cdot C D \\
& +\frac{s(s-1)}{2}\left(\partial_{\mu} D\right)^{2}-\frac{s}{2} C^{2} \\
& +\lambda\left(\varphi^{\prime}-2 D-\partial \alpha\right)+\mu\left(D^{\prime}-\partial \cdot \alpha\right)
\end{aligned}
$$

λ and u : set to zero by the field equations

2extemuar cuncents

- Residues of current exchanges reflect the degrees of freedom
- For $s=1$:

$$
\begin{aligned}
& p^{2} A_{\mu}-p_{\mu} p \cdot A=J_{\mu} \\
& p^{2} J^{\mu} A_{\mu}=J^{\mu} J_{\mu} \square J_{i} J_{i}
\end{aligned}
$$

- For all s:

$$
\begin{aligned}
& \mathcal{A}-\frac{1}{2} \eta \mathcal{A}^{\prime}+\eta^{2} \mathcal{B}=J \\
& \partial \cdot \mathcal{A}^{\prime}-(2 \partial+\eta \partial \cdot) \mathcal{B}=0 \\
& \varphi^{\prime \prime}-4 \partial \cdot \alpha-\partial \alpha^{\prime}=0
\end{aligned}
$$

2extermal cunicents: Local case

```
\varphi
```

- K "doubly traceless" using alouble trace constraint
- B: determines multinplier β for double trace constraint

$$
\begin{aligned}
& \mathcal{A}-\frac{1}{2} \eta \mathcal{A}^{\prime}=J-\eta^{2} \mathcal{B} \equiv \mathcal{K} \\
& \varphi^{\prime \prime}-4 \partial \cdot \alpha-\partial \alpha^{\prime}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Traceless Proj : } \sum_{0}^{N} \rho_{n}(D, s) \eta^{n} V^{[n]} \\
& \rho_{n+1}(D, s)=-\frac{\rho_{n}(D, s)}{D+2(s-n-2)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{K}=J+\sum_{n=2}^{N} \sigma_{n} \eta^{n} J^{[n]} \\
& \sigma_{n}+[D+2(s-n-3)]\left\{2 \sigma_{n+1}+[D+2(s-n-4)] \sigma_{n+2}\right\}=0 \\
& \sigma_{n}=(-n+1) \rho_{n}(D-2, s)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}=\mathcal{K}+\rho_{1}(D-2, s) \eta \mathcal{K}^{\prime}=\sum_{n} \rho_{n}(D-2, s) \eta^{n} J^{[n]} \\
& \sum_{n=0}^{N} \rho_{n}(D-2, s) \frac{s!}{n!(s-2 n)!2^{n}} J^{[n]} \cdot J^{[n]}
\end{aligned}
$$

The exchange invorves, correctly, a traceless conserved current

2Extemal cuncents: non-Local case

Hor about the non-Local version of the theory?
Apparentily: different choices for the fiela equation, EOUIV) ALTENT without cumrents

$$
\begin{gathered}
S=3: \begin{array}{l}
\mathcal{F}_{\mu \nu \rho}-\frac{1}{3} \frac{1}{\square}\left(\partial_{\mu} \partial_{\nu} \mathcal{F}_{\rho}^{\prime}+\ldots\right)=0 \\
\mathcal{F}_{\mu \nu \rho}-\frac{\partial_{\mu} \partial_{\nu} \partial_{\rho}}{\square^{2}} \partial \cdot \mathcal{F}^{\prime}=0
\end{array} \\
\mathcal{F}=3 \partial^{3} \alpha \quad \square \frac{1}{\square} \eta_{\alpha \beta} \partial_{\mu} \mathcal{R}^{\mu \alpha \beta} ; \nu_{1} \nu_{2} \nu_{3}=0 \\
\left.\mathcal{F}^{(n)}=(2 n+1) \frac{\partial^{2 n+1}}{\square^{n-1} \alpha^{[n-1]}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{F}^{(n+1)}=\mathcal{F}^{(n)}+\frac{1}{(n+1)(2 n+1)} \frac{\partial^{2}}{\square} \mathcal{F}^{(n) \prime}-\frac{1}{n+1} \frac{\partial}{\square} \partial \cdot \mathcal{F}^{(n)} \\
& \delta \mathcal{F}^{(n)}=(2 n+1) \frac{\partial^{2 n+1}}{\square^{n-1}} \Lambda^{[n]} \\
& \partial \cdot \mathcal{F}^{(n)}-\frac{1}{2 n} \partial \mathcal{F}^{(n) \prime}=-\left(1+\frac{1}{2 n}\right) \frac{\partial^{2 n+1}}{\square^{n-1}} \varphi^{(n+1)}
\end{aligned}
$$

Bianchit identity: changes after ervery iteration

2Extemal cuncents: non-Local case

Nairvely:

$$
\mathcal{G}^{(n)} \equiv \sum_{p=0}^{n}(-1)^{p} \frac{(\eta-p)^{\prime}}{2 p+1,} \eta^{p} \mathcal{F}^{(n)[p]}=\mathcal{J}
$$

Sorwtion modify the non-local Lagrangian equation

$$
\begin{aligned}
& \mathcal{A}_{n l}=\mathcal{F}-3 \partial^{3} \alpha_{n l} ; \mathcal{C}_{n l} \equiv \varphi^{\prime \prime}-4 \partial \cdot \alpha_{n l}-\partial \alpha_{n l}^{\prime}=0 \\
& \partial \cdot \mathcal{A}_{n l}-\frac{1}{2} \partial \mathcal{A}_{n l}^{\prime}=0\left(\operatorname{Mod} \mathcal{C}_{n!}\right) ; \partial \cdot \mathcal{A}_{n l}=2 \partial \mathcal{D}_{n l} \\
& \mathcal{G}_{n l}=\mathcal{A}_{n l}-\frac{1}{2} \eta \mathcal{A}_{n l}^{\prime}+\eta^{2} \mathcal{D}_{n l}+\ldots+\eta^{n+2} \frac{\mathcal{D}_{n l}^{[n]}}{2^{n} n!} \quad(s=2 n+4 \text { or } s=2 n+5)
\end{aligned}
$$

```
\(\mathcal{A}_{n l}=\sum_{k=0}^{n+1} a_{k} \frac{\partial^{2 k}}{\square^{k}} \mathcal{F}^{(n+1)[k]} ; \quad a_{k}=(-1)^{k+1}(2 k-1) \frac{n+2}{n-1} \prod_{j=-1}^{k-1} \frac{n+j}{n-j+1}\)
\(\mathcal{D}_{n l}=\frac{1}{2} \sum_{k=2}^{n+1} a_{k}\left\{\frac{1}{2 k-3} \frac{\partial^{2(k-2)}}{\square^{k-2}} \mathcal{F}^{(n+1)[k]}+\frac{2 n+4 k+1}{2(2 k-1)(n-k+1)} \frac{\partial^{2(k-1)}}{\square^{k-1}} \mathcal{F}^{(n+1)[k+1]}\right.\)
\(\left.+\frac{n+k+1}{2(n-k)(n-k+1)} \frac{\partial^{2 k}}{\square^{k}} \mathcal{F}^{(n+1)[k+2]}\right\}\)
```

For instance :

$\mathcal{A}_{3}=\frac{1}{\square} \partial \cdot \mathcal{R}=\frac{\partial^{2}}{2 \square^{2}} \partial \cdot \mathcal{R}^{\prime \prime}$
$\mathcal{A}_{4}=\frac{1}{\square} \mathcal{R}^{\prime \prime}+\frac{\partial^{2}}{2} \frac{\mathcal{R}^{\prime \prime \prime}-3 \frac{\partial^{4}}{\square^{3}} \mathcal{R}^{[4]}}{\mathcal{A}^{2}}$
$\mathcal{A}_{5}=\frac{1}{\square^{2}} \partial \cdot \mathcal{R}$
$\underline{\square}+\frac{2}{3} \frac{\partial^{2}}{\square^{3}} \partial \cdot \mathcal{R}^{\prime \prime \prime}-3 \frac{\partial^{4}}{\square^{4}} \partial \cdot \mathcal{R}^{[4]}$

$$
\begin{array}{|l|}
\mathcal{D}_{4}=-\frac{3}{8} \frac{1}{\square} \mathcal{R}^{[4]} \\
\mathcal{D}_{5}=-\frac{5}{8 \square^{2}} \partial \cdot \mathcal{R}^{[4]}
\end{array}
$$

(DD)-TV-Z Discontunuity for 9HS

- V(D)Z discontinutity follows in general comparing (D) and (D +1) massless exchanges
- FFirst present for $s=2$
- For all s: can describe inreducibly a massive fiela a' La Scherk-Schrwarz from (D+1) dimensions:

(A) d'S extension, first discussed, for $s=2$, by Higuchic and Pomati

Discontinuity \rightarrow smootr interpolation in $(m L)^{2}$
(IFrancia, Mowrad, AS, to appears)

Fis Interactions: problems

Probferms with interacting fugher spins:

- Inconsistent equations (derivatives imply further conditions)
- Coup Fing with grravity Ceardes "naked" Weyr tensors (Aragone, Deser, 1979)
- Coleman - Mandura

TWary out:

- Infinitely many interacting fields (Fradkin and Vasiliev, 1980's)
- Non-wanisfing "cosmological constant" Λ
- Vasifier equations: paradigmatic example

His Interactions: TVasifiero's setting

Vasifiev's setuting:

1. TEecend the frame formulation of gradity:
$\omega_{\mu}^{A ; B}: \frac{\mathrm{A}}{\mathrm{B}}$
$\varphi_{\mu_{1} \ldots \mu_{s}} \rightarrow \omega_{\mu}^{A_{1} \ldots A_{s-1} ; B_{1} \ldots B_{s-1}}$

- For spiri-s:

$$
\omega_{\mu} A_{1} \ldots A_{s-1} ; B_{1} \ldots B_{s-1}
$$

A_{1}	\cdots	A_{s-1}
B_{1}	\cdots	B_{s-1}

2. ∞ - dim, HS-algebra via oscillators (coordinates awe numernea):

$$
\begin{aligned}
& M_{A ; B} \rightarrow M_{A_{1} \ldots A_{s} ; B_{1} \ldots B_{s}} \\
& M_{A ; B}=x_{A} p_{B}-x_{B} p_{A} \\
& M_{A_{1} \ldots A_{s} ; B_{1} \ldots B_{s}}=x_{A_{1}} \ldots x_{A_{s}} p_{B_{1}} \ldots p_{B_{s}} \pm \ldots
\end{aligned}
$$

THS Interactions: (twenisted) adfoint

3. [Wey[ordered [symmetric) polynomiads in (x, p) or $*$-products]
4. A one-form A in adfoint of \mathcal{H} IS algebra: (all ©'s: HIS wiefbeins and connections)
```
A( (x}\mp@subsup{}{}{\mu}|\mp@subsup{x}{A}{},\mp@subsup{p}{A}{}
F=dA+A\wedge\starA
```

5. A1 zero-form (1) in the "twisted adfoint":

- Write spin-2 equation in the forme

Remann = Weyl"

- trace gives the familiat "Ricci=0"
- "Weyl" (+ cerivetutives):

Scalar: φ

Mis Interactions: oscillators

- THWO forms of Nasilerd's oscillators:

1. 4-dim spinors:

$$
\left[\xi_{\alpha}, \xi_{\beta}\right]=i \epsilon_{\alpha \beta} ; \quad\left[\bar{\xi}_{\dot{\alpha}}, \bar{\xi}_{\dot{\beta}}\right]=i \epsilon_{\dot{\alpha} \dot{\beta}}
$$

2. D-atim vectors :

$$
\begin{gathered}
{\left[Y_{i A}, Y_{j B}\right]=2 i \epsilon_{i j} \eta_{A B}} \\
\widehat{f}(Z ; Y) \star \widehat{g}(Z ; Y)=\int \frac{d^{2(D+1)} S d^{2(D+1)} T}{(2 \pi)^{2(D+1)}} \widehat{f}(Z+S ; Y+S) \widehat{g}(Z-T ; Y+T) e^{i T^{i A} S_{i A}}
\end{gathered}
$$

$$
Z^{i A} \equiv\left(Z^{i a}, Z^{i}\right)
$$

His Interactions: Thasifier equations

$\widehat{F}=\frac{i}{2} d Z^{i} \wedge d Z_{i} \widehat{\Phi} \star k$

$\widehat{D} \widehat{\Phi}=0$

- BacFground independent (non-Lagrangian)!
- A: one fielal for every (erven) ranks ("aufjoint" of gis' algebra) (Generalized vielbeins and connections)
- [Charn-Pation extension to all (erven and odad) ramks]
- © : ∞ fielals for every rank s ("twisted adjoint" of FHS' argebra)
(Generalized Weyl and their covariant derivatives)
- Ф吘: converts "trwisted adfoint" (D) to adfoint
- Consistent (almost by inspection) : Bianchi for FF implies second eq!

HiS Interactions: inntemual expansion

$$
\begin{aligned}
& \widehat{F}=\frac{i}{2} d Z^{i} \wedge d Z_{i} \widehat{\Phi} \star k \\
& \widehat{D} \widehat{\Phi}=0
\end{aligned}
$$

- Gauge fielal 1 inn ($x, z)$ space: $\widehat{A}\left(x^{\mu} \mid Y^{i A}, Z^{i A}\right)=\widehat{A}_{\mu} d x^{\mu}+\widehat{A}_{i a} d Z^{i a}+\widehat{A}_{i} d Z^{i}$

$$
\left.\begin{array}{l}
\widehat{A}_{i a}=0, \partial_{i a} \widehat{\Phi}=0 \\
\partial_{i a} \widehat{A}_{i}=0, \partial_{i a} \widehat{A}_{\mu}=0
\end{array}\right\rangle \begin{aligned}
& \widehat{F}_{i j}=-i \epsilon_{i j} \widehat{\Phi} \star k \\
& \widehat{F}_{\mu \nu}=0, \quad \widehat{F}_{\mu i}=0 \\
& D_{\mu} \widehat{\Phi}=0, D_{i} \widehat{\Phi}=0
\end{aligned}
$$

Internal equations: porver series in © by successive iterations

His Intercactions: unfolating

Linearized Φ - equation:

$$
D_{\mu} \Phi+\frac{1}{2 i}\left\{P_{a}, \Phi\right\}=0
$$

-Unfolating: $\begin{aligned} & \varphi_{\mu}=\partial_{\mu} \varphi \\ & \varphi_{\mu \nu}=\partial_{\mu} \varphi_{\nu} \\ & \cdots \\ & \varphi_{\mu(n+1)}=\partial_{\mu} \varphi_{\mu(n)}\end{aligned}$

Uniform aescription of HIS interactions

HiS Interactions: Cantan IIS:

$$
\begin{aligned}
& \widehat{F}=\frac{i}{2} d Z^{i} \wedge d Z_{i} \widehat{\Phi} \star k \\
& D \widehat{\Phi}=0
\end{aligned}
$$

Cartan Integrable System:
(Sullivan, 1977; D'Auria, Fre', 1982)

- e.g. Chern-Simons theory
-manifestly consistent eqs
- gauge corvariance
- manifest difff corvariance
- non-Lagrangian

$$
\begin{aligned}
& R^{i} \equiv d W^{i}+f^{i}(W)=0 \text { with } f^{i}(W) \frac{\partial f^{i}(W)}{\partial W^{j}}=0 \\
& \delta W^{i}=d \wedge^{i}-\wedge^{j} \frac{\partial f^{i}(W)}{\partial W^{j}} \\
& \delta R^{i}=(-)^{j} \wedge^{j} R^{k} \frac{\partial^{2} f^{i}(W)}{\partial W^{k} \partial W^{j}}
\end{aligned}
$$

- SNETW IGVGXED IIENV: 0-form (D

HiS Interactions: projections

$$
\begin{aligned}
& \widehat{F}=\frac{i}{2} d Z^{i} \wedge d Z_{i} \widehat{\Phi} \star k \\
& D \widehat{\Phi}=0
\end{aligned}
$$

$$
\left[Y^{i A}, Y^{j B}\right]=i \epsilon^{i j} \eta^{A B}
$$

Some missing ingredients:

- $\mathcal{I}^{\text {iN }}, Z^{\text {iN }}$ to buila HiS afgebra extending $S O(2, \mathcal{D})$
- must select Sp(2,R) singlets
$-\mathbb{K}_{i j}: \operatorname{Sp}(2, \mathbb{R})$ generators (Gifinears in Υ, Z)

$$
\begin{aligned}
& \widehat{D} \widehat{K}_{i j}=0 \\
& {\left[\widehat{K}_{i j}, \widehat{\Phi}\right]_{\star}=0}
\end{aligned}
$$

- REEMORYE TR ACIES to obtown atymanical equations

TWeak projection: remorve traces symmetrically from A and Φ

- Strong : Cearve traces in A
(AS,Sezgin,Sundelelf, 2004)

$$
\widehat{K}_{i j} \star \widehat{\Phi}=0
$$

HiS Interactions: Equearization

sree flat Thut (w. Sterong projection):

$$
\partial_{[\mu} \omega_{\nu], a(s-1), b(k)}^{(s-1, k)}+\omega_{[\mu|, a(s-1),| \nu] b(k)}^{(s-1, k+1)}=\delta_{k, s-1} \Phi_{[\mu|a(s-1),| \nu] b(s-1)}
$$

$I_{s}=2$:

$$
\begin{aligned}
& \partial_{[\mu} e_{\nu]}^{a}-\omega_{[\mu \nu]}^{a}=0 \rightarrow \omega(e) \\
& R_{\mu \nu}^{a b}=\partial_{[\mu} \omega_{\nu]}^{a b}=\Phi_{\mu a, \nu b} \rightarrow R_{\nu b}=0
\end{aligned}
$$

I $s=3$:

- a first equation, analogous of the vielbein postulate giving $\omega(e)$
a a seconde equation, defining a second-order Etunetic operator

$$
\omega_{\mu, a b, c}^{(2,2)^{c}}=\square \varphi_{\mu a b}-\partial_{a} \partial \cdot \varphi_{\mu b}-\partial_{b} \partial \cdot \varphi_{\mu a}+\partial_{a} \partial_{b} \varphi_{\mu}^{\prime}
$$

- a trindel equation giving the constraint

$$
\partial_{[\mu} \omega_{\nu, a b, c}^{(2,2) c}=0 \rightarrow \omega_{\mu, a b, c}^{(2,2) c}=\partial_{\mu} \beta_{a b}
$$

HiS Intercactions: the compensator

$$
\square \varphi_{\mu a b}-\partial_{a} \partial \cdot \varphi_{\mu b}-\partial_{b} \partial \cdot \varphi_{\mu a}+\partial_{a} \partial_{b} \varphi_{\mu}^{\prime}=\partial_{\mu} \beta_{a b}
$$

$$
\partial_{[\mu}\left(\partial \cdot \varphi_{a] b}-\partial_{a]} \varphi_{b}^{\prime}\right)=\partial_{[\mu} \beta_{b] a}
$$

$$
\beta_{a b}=\left(\partial \cdot \varphi_{a b}-\partial_{a} \varphi_{b}^{\prime}-\partial_{b} \varphi_{a}^{\prime}\right)+3 \partial_{a} \partial_{b} \alpha
$$

(Du6ois-Violette, Henneaux, 1999)

$$
\mathcal{F}=3 \partial^{3} \alpha
$$

Conctusions

IWhy Highter Spins?

- Friela Theory
- String Theory (an instance with "Spontancous breaking")
- Here:
- Unconstratined HiSS fiefas [Bose for brevity]

- Vasifier)' construction and the compensator
- (flat-space) current exchanges (wDVZ ol non-Cocal actions)

His Interactions

"Iruternar" equations: power series in ©

$$
\begin{aligned}
& \partial_{i} \widehat{A}_{j}-\partial_{j} \widehat{A}_{i}+\left[\widehat{A}_{i}, \widehat{A}_{j}\right]=-i \epsilon_{i j} \widehat{\Phi} \star k \\
& \partial_{i} \widehat{\Phi}+\widehat{A}_{i} \star \widehat{\Phi}-\widehat{\Phi} \star \pi\left(\widehat{A}_{i}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \pi\left(Y^{i a}\right)=Y^{i a}, \pi\left(Y^{i}\right)=-Y^{i} \\
& \pi\left(Z^{i a}\right)=Z^{i a}, \pi\left(Z^{i}\right)=-Z^{i}
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{A}_{i}=\partial_{i} \zeta+Z_{i} \int_{0}^{1} t d t\left[-i \widehat{\Phi} \star k+\widehat{A}^{i} \wedge \widehat{A}_{i}\right]_{Z \rightarrow t Z} \\
& \widehat{\Phi}=-Z^{i} \int_{0}^{1} d t\left[\widehat{A}_{i} \star \widehat{\Phi}+\widehat{\Phi} \star \pi\left(\widehat{A}_{i}\right)\right]_{Z \rightarrow t Z}
\end{aligned}
$$

Lowest order in $\Phi \rightarrow$ "Riemann $=$ Weyl" $+\ldots$

$$
\begin{aligned}
& D_{\mu} A_{\nu}-D_{\nu} A_{\mu}=-2 i e_{\mu}^{a} e_{\nu}^{b} \frac{\partial^{2} \Phi}{\partial Y^{i a} \partial Y^{j b}} \\
& D_{\mu} \Phi+\frac{1}{2 i}\left\{P_{a}, \Phi\right\}=0
\end{aligned}
$$

