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Abstract

Hierarchical models are increasingly used in many applications. Along with this increase
use comes a desire to investigate whether the model is compatible with the observed data.
Bayesian methods are well suited to eliminate the many (nuisance) parameters in these
complicated models; in this paper we investigate Bayesian methods for model checking. Since
we contemplate model checking as a preliminary, exploratory analysis, we concentrate in
objective Bayesian methods in which careful specification of an informative prior distribution
is avoided. Numerous examples are given and different proposals are investigated.

Key words and phrases: model checking; model criticism; objective Bayesian methods;
p-values.

1 Introduction

With the availability of powerful numerical computations, use of hierarchical (or multilevel, or
random effects) models have become very common in applications; They nicely generalize and
extend classical one-level models to complicated situations, where the classical models would not
apply. With their widespread use, comes along an increased need to check the adequacy of such
models to the observed data. Recent Bayesian methods (Bayarri and Berger, 1999, 2000) have
shown considerable promise in checking one-level models, specially in non-standard situations in
which parameter-free testing statistics are not known. In this paper we show how these methods
can be extended to checking hierarchical models; we also review other Bayesian proposals and
critically compare them.

We approach model checking as a preliminary analysis in that if the data is compatible
with the assumed model, then the full (and difficult) Bayesian process of model elaboration
and model selection (or averaging) can be avoided. The role of Bayesian model checking versus
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model selection has been discussed for example in Bayarri and Berger (1999, 2000) and O’Hagan
(2003) and we will not repeat it here.

In general, in a model checking scenario, we relate observables X with parameters θ through
a parametric model X |θ ∼ f(x |θ). We then observe data xobs and wish to assess whether
xobs is compatible with the assumed (null) model f(x |θ). Most of the existing methods for
model checking (both Bayesian and frequentist) can be seen to correspond to particular choices
of:

1. A diagnostic statistic T , to quantify incompatibility of the model with the observed data
through tobs = T (xobs).

2. A completely specified distribution for the statistic, h(t), under the null model, in which
to locate the observed tobs.

3. A way to measure conflict between the observed statistic, and the null distribution, h(t),
for T . The most popular measures are tail areas (p-values) and relative height of the
density h(t) at tobs.

In this paper, we concentrate on the optimal choice in 2, which basically reduces to choice
of methods to eliminate the nuisance parameters θ from the null model. Our recommendations
then apply to any choices in 1 and 3. (We abuse notation and use the same h(·) to indicate
both, the completely specified distribution for X, after elimination of θ, and the corresponding
distribution for T . ) Of course, choice of 1 is very important; as a matter of fact, in some
scenarios an optimal T can make choice of 2 nearly irrelevant. So our work will be most useful in
complicated scenarios when such optimal T ’s are not known, or extremely difficult to implement
(for an example of these, see Robins, Van der Vaart and Ventura, 2000). In these situations, T

is often chosen casually, based on intuitive considerations, and hence we concentrate on these
choices (with no implications whatsoever that these are our recommended choices for T ; we
simply do not address choice of T in this paper). As measures of conflict in 3, we explore the
two best known measures of surprise, namely the p-value and the relative predictive surprise,
RPS (see Berger, 1980/1985) used (with variants) by many authors. These two measures are
defined as:

p = Prh(·)(t(X) ≥ t(xobs)), (1.1)

RPS =
h(t(xobs))
sup

t
h(t)

. (1.2)

Note that small values of (1.1) and (1.2) denote incompatibility.
Frequentist and Bayesian choices for h(·) are discussed at length in Bayarri and Berger (2000),

and we limit ourselves here to an extremely brief (and incomplete) mention of some of them.
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The natural Bayesian choice for h(·) is the prior predictive distribution, in which the parameters
get naturally integrated out with respect to the prior distribution (Box, 1980 pioneered use of
p-values computed in the prior predictive for Bayesian model criticism ). However, this requires
a fairly informative prior distribution which might not be desirable for model checking for two
reasons: i) it might not be desired to carefully quantify a prior in these earlier stages of the
analysis, since the model might well not be appropriate and hence the effort is wasted; ii) most
importantly, model checking with informative priors can not separate inadequacy of the prior
from inadequacy of the model. In the sequel we will concentrate on objective Bayesian methods
for model checking in which the priors are default, objective priors, usually improper. Note that
this impropriety makes the prior predictive distribution undefined and hence not available for
(objective) model checking.

Guttman (1967) and Rubin (1984) choice for h(·) is the posterior predictive distribution,
resulting from integrating θ out with respect to the posterior distribution instead of the prior.
This allows use of improper priors, and hence of objective model checking. This proposal is
very easy to implement by MCMC methods, and hence has become fairly popular in Bayesian
model checking. However, its double use of the data can result in an extreme conservatism of the
resulting p-values, unless the checking statistic is fairly ancillary (in which case the way to deal
with the parameters is basically irrelevant). This conservatism is shown to hold asymptotically
in Robins et al. (2000), and for finite n and several scenarios in, for example, Bayarri and
Berger(1999, 2000), Bayarri and Castellanos (2001) and Bayarri and Morales (2003).

Alternative choices of h(·) for objective model checking are proposed in Bayarri and Berger
(1997, 1999, 2000); Their asymptotic optimality is shown in Robins et all. (2000). In this paper
we implement these choices in hierarchical model checking; we also compare the results with
those obtained with posterior predictive distributions and several ‘plug-in’ choices for h(·).

In this paper we restrict attention to checking of a fairly simple normal-normal hierarchical
model so as to best illustrate the different proposals and critically judge their behavior. However,
the main ideas also apply to the checking of many other hierarchical models. In Section 2 we
briefly review the different measures of surprise that we will derive and compare. In Section 3
we derive these measures for the hierarchical normal-normal model; we also study the sampling
distribution of the different p-values, both when the null model is true, and when the data
comes from alternative models.. In Section 4 we apply these measures to a particular simple
test which allows easy and intuitive comparisons of the different proposals. In Section 5 we briefly
summarize other methods for Bayesian checking of hierarchical models, namely those proposed
by Dey et. al. (1998), O’Hagan (2003) and Marshall and Spiegelhalter (2001), comparing them
with the previous proposals in an example.
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2 Measures of surprise in the checking of hierarchical models

In this paper we will be dealing with the measures of surprise defined in equations (1.1) and
(1.2). Their relative merits and drawbacks are discussed at length in Bayarri and Berger (1997,
1999) and will not be repeated here. In this section we derive these measures in the context of
hierarchical models, and for some specific choices of the completely specified distribution h(·).
We consider the general two-level model:

Xij | θi
ind.∼ f(xij | θi) i = 1, . . . , I; j = 1, . . . , ni,

θ |η ind.∼ π(θ |η) =
∏I

i=1 π(θi |η),

η ∼ π(η) ,

where θ = (θ1, . . . , θI) and η = (η1, . . . , ηp) .
To get a completely specified distribution h(·) for X, we need to integrate θ out from f(x | θ)

with respect to some completely specified distribution for θ. We next consider three possibilities
that have been proposed in the literature for such a distribution: empirical Bayes types (plug-
in), posterior distribution, and partial posterior distribution, as they apply in the hierarchical
scenario. Notice that, since we will be dealing with improper priors for η, the natural (marginal)
prior π(θ) is also improper and can not be used for this purpose (it would produce an improper
h(·)).

2.1 Empirical Bayes (plug-in) measures

This is the simplest proposal, very intuitive and frequently used in empirical Bayes analysis (see
for example Carlin and Louis, 2000). It simply consists in replacing the unknown η in π(θ | η)
by an estimate (we use the MLE, but moment estimates are often used as well). In this proposal,
θ is integrated out with respect to

πEB(θ) = π(θ | η̂) = π(θ |η = η̂), (2.1)

where η̂ maximizes the integrated likelihood:

f(x |η) =
∫

f(x |θ)π(θ |η)dθ.

The corresponding proposal for a completely specified h(·) in which to define the measures of
surprise is

mEB
prior(t) =

∫
f(t |θ)πEB(θ)dθ. (2.2)

The measures of surprise pEB
prior, and RPSEB

prior are now given by equations (1.1) and (1.2),
respectively, in which h(·) = mEB

prior(·) .
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Strictly for comparison purposes, we will be using later another empirical Bayes type of dis-
tribution in which the empirical Bayes prior (2.1) gets needlessly (and inappropriately) updated
using again the same data. In this (wrong) proposal, θ gets integrated out with respect to

πEB(θ |xobs) ∝ f(xobs |θ)πEB(θ), (2.3)

resulting in

mEB
post(t) =

∫
f(t |θ)πEB(θ |xobs)dθ . (2.4)

The corresponding measures of surprise pEB
post and RPSEB

post are again computed using (1.1) and
(1.2), respectively, with h(·) = mEB

post(t).

2.2 Posterior predictive measures

This proposal is also intuitive and seems to have a more Bayesian ‘flavour’ than the plug-in
solution presented in the previous section. This along with its ease of implementation has made
the method a popular one for objective Bayesian model checking. The idea is simple: since the
prior π(θ) is improper (for improper π(η)), use the posterior instead to integrate θ out. Thus,
the proposal for h(·) is the posterior predictive distribution

mpost(t |xobs) =
∫

f(t |θ)π(θ |xobs)dθ , (2.5)

where π(θ |xobs) is the marginal from the joint posterior

π(θ, η |xobs) ∝ f(xobs |θ)π(θ, η)

= f(xobs |θ)
I∏

i=1

π(θi |η)π(η).

The posterior p-value and the posterior RPS are denoted by ppost and RPSpost, and computed
from (1.1) and (1.2), respectively, with h(·) = mpost(·).

It is important to remark that, under regularity conditions, the empirical Bayes posterior
πEB(θ |xobs) given in (2.3) approximates the true posterior π(θ |xobs); Both are, in fact, asymp-
totically equivalent. Hence whatever inadequacy of mEB

post(t) in (2.4) for model checking is likely
to apply as well to the posterior predictive mpost(t |xobs) in (2.5). We will see demonstration of
the similar behavior of both predictive distributions in all the examples in this paper.

2.3 Partial Posterior predictive measures

Both, the empirical Bayes and posterior proposals presented in Sections 2.1 and 2.2 use the
same data to i) ‘train’ the improper π(θ) into a proper distribution to compute a predictive
distribution and ii) compute the observed tobs to be located in this same predictive through the
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measures of surprise. This can result in a severe conservatism incapable of detecting clearly
inappropriate models. A natural way to avoid this double use of the data is to use part of
the data for ‘training’ and the rest to compute the measures of surprise, as in cross-validation
methods. The proposal in Bayarri and Berger (1999, 2000) is similar in spirit: since tobs is
used to compute the surprise measures, use the information in the data not in tobs to ‘train’ the
improper prior into a proper one, called a partial posterior distribution:

πppp(θ |xobs \ tobs) ∝ f(xobs | tobs,θ)π(θ) ∝ f(xobs |θ)π(θ)
f(tobs |θ)

.

The corresponding proposal for the completely specified h(·) is then the partial posterior predic-
tive distribution computed as:

mppp(t |xobs \ tobs) =
∫

f(t |θ)π(θ |xobs \ tobs)dθ .

The partial posterior predictive measures of surprise will be denoted by pppp and RPSppp and,
as before, computed using (1.1) and (1.2), respectively, with h(·) = mppp(·).

Extensive discussions of the advantages and disadvantages of this proposal as compared with
the previous ones can be found in Bayarri and Berger (2000) and Robins, van der Vaart and
Ventura (2000). In this paper we demonstrate their performance in hierarchical models.

2.4 Computation of ph(·) and SPRh(·)

Often, for a proposed h(·), the measures ph(·) and SPRh(·) can not be computed in close form;
even more, the same h(·) is often not of close-form itself. In these cases we use Monte Carlo
(MC), or Markov Chain Monte Carlo (MCMC) methods, to (approximately) compute them. If
x1, . . . ,xM is a sample of size M generated from h(x), then ti = t(xi) is a sample from h(t),
and we approximate the measures of surprise as:

1. p-value

Prh(·)(T ≥ tobs) =
# of ti ≥ tobs

M

2. Relative Predictive Surprise

SPRh(·) =
ĥ(tobs)

sup
t

ĥ(t)
,

where ĥ(t) is an estimate (for instance, a kernel estimate) of the density h at t.

3 Checking hierarchical normal models

Consider the usual normal-normal two-level hierarchical (or random effects) model with I groups
and ni observations per group. The I means are assumed to be exchangeable. For simplicity,
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we begin by assuming the variances σ2
i at the observation level to be known. The model is:

Xij | θi
i∼ N(θi, σ

2
i ) i = 1, . . . , I, j = 1, . . . , ni,

π(θ |µ, τ) =
∏I

i=1 N(θi |µ, τ2) ,

π(µ, τ2) = π(µ) π(τ2) ∝ 1
τ .

(3.1)

In this paper we concentrate in checking the adequacy of the second level assumptions on
the means θi. Of course, checking the normality of the observations is also important, but it
will not be considered here; the techniques considered in this paper as applied to the checking
of simple models have been explored in Bayarri and Castellanos (2001), Castellanos (1999) and
Bayarri and Morales (2003).

Assume that choice of the departure statistic T is done in a rather casual manner, and
that we are specially concerned about the upper tail of the distribution of the means. In this
situation, a natural choice for T is

T = max {X1·, . . . ,XI·}, (3.2)

where Xi· denotes the usual sample mean for group i. This T is rather natural, but the analysis
would be virtually identical with any other choice. Recall that if the statistic is fairly ancillary,
then the answers from all methods are going to be rather similar, no matter how we integrate θ

out.
The distribution of the statistic (3.2) under the (null) model specified in (3.1) can be com-

puted to be:

fT (t |θ) =
I∑

k=1

N

(
t | θk,

σ2
k

nk

) I∏

l=1
l 6=k

F

(
t | θl,

σ2
l

nl

)
, (3.3)

where N(t | a, b) and F (t | a, b) denote the density and distribution function, respectively, of a
normal distribution with mean a and variance b evaluated at t.

We next integrate the unknown θ from (3.3) using the techniques outlined in Section 2.

3.1 Empirical Bayes distributions

It is easy to see that the likelihood for µ and τ2 is simply

f(x | µ, τ2) =
I∏

i=1

N

(
x̄i | µ,

σ2
i

ni
+ τ2

)
, (3.4)

from which µ̂ and τ̂2 can be computed. Then (2.1) is given by

πEB(θ) = π(θ | µ̂, τ̂2) =
I∏

i=1

N(θi | µ̂, τ̂2),
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which we use to integrated θ out from (3.3). The resulting mEB
prior(x) does not have a close-form

expression, but simulations can be obtained by simple MC methods: For l = 1, . . . , M simulate

θ(l) = (θ1(l), . . . , θI(l)) ∼ πEB(θ) =
I∏

i=1

π(θi | µ̂, τ̂2) ,

and for each θ(l), l = 1, . . . , M , simulate

x̄(l) = (x1·(l), . . . , xI·(l)) ∼ f(x̄ |θ(l)) =
I∏

i=1

f(xi· | θi(l)) .

For comparison purposes, we will also consider integrating θ w.r.t. the (inappropriate)
empirical-Bayes posterior distribution. The resulting mEB

post(x) is also trivial to simulate from
using a similar MC scheme, except that θ is now simulated from :

θ(l) = (θ1(l), . . . , θI(l)) ∼ πEB(θ |xobs) =
I∏

i=1

N(Êi, V̂i)

where

Êi =
nixi·/σ2

i + µ̂/τ̂2

ni/σ2
i + 1/τ̂2

and V̂i =
1

ni/σ2
i + 1/τ̂2

.

3.2 Posterior Predictive distribution

This proposal integrates θ out from (3.3) w.r.t. its posterior distribution. For the non-
informative prior π(µ, τ2) ∝ 1/τ , the joint posterior is

πpost(θ, µ, τ2|xobs) ∝ f(x |θ, µ, τ2)π(θ |µ, τ2)π(µ, τ2)

=
I∏

i=1

N

(
xi· | θi,

σ2
i

ni

) I∏

i=1

N(θi |µ, τ2)
1
τ

. (3.5)

To simulate from the resulting posterior predictive distribution mpost(x |xobs), we first simu-
late from πpost(θ, µ, τ2|xobs) and for each simulated θ, we simulate x from f(x | θ). To simulate
from the joint posterior (3.5) we use an easy Gibbs sampler defined by the full conditionals:

µ |θ, τ2,xobs ∼ N(Eµ, Vµ) with Eµ =
∑I

i=1 θi

I
and Vµ =

τ2

I
, (3.6)

τ2 |θ, µ,xobs ∼ χ−2(I − 1, τ̃2) where τ̃2 =
∑I

i=1(θi − µ)2

I − 1
, (3.7)

θi |µ, τ2,xobs ∼ N(Ei, Vi), where (3.8)

Ei =
nixi·/σ2

i + µ/τ2

ni/σ2
i + 1/τ2

and Vi =
1

ni/σ2
i + 1/τ2

All the full conditionals are standard distributions, trivial to simulate from; χ−2(ν, a) refers to
an scaled inverse Chi-square distribution: it is the distribution of (ν a)/Y where Y ∼ χ2(ν).
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3.3 Partial Posterior distribution

To simulate from the partial posterior predictive distribution, mppp, we proceed similarly to
Section 3.2, except that simulations for the parameters are generated from the partial posterior
distribution:

πppp(θ, µ, τ2 |xobs \ tobs) ∝ πpost(θ, µ, τ2 |xobs)
f(tobs |θ)

,

where πpost(θ, µ, τ2 |xobs) is given in (3.5). The full conditionals for the Gibbs sampler are:

µ |θ, τ2,xobs \ tobs ∝ π(µ |θ, τ2,xobs)
f(tobs |θ)

∝ π(µ |θ, τ2,xobs) (3.9)

τ2 |θ, µ,xobs \ tobs ∝ π(τ2 |θ, µ,xobs)
f(tobs |θ)

∝ π(τ2 |θ, µ,xobs) (3.10)

θ |µ, τ2,xobs \ tobs ∝ π(θ |µ, τ2,xobs)
f(tobs |θ)

. (3.11)

The full conditionals (3.9) and (3.10) are identical to (3.6) and (3.7), respectively, and hence
they are easy to simulate from. On the other hand, (3.11) is not of close form, and we use
Metropolis-Hastings within Gibbs for the full conditional of each θi

πppp(θi |µ, τ, θ−i,xobs \ tobs) ∝ πpost(θi |µ, τ2,xobs)
f(tobs |θ)

∝ N(θi |Ei, Vi)
f(tobs |θ)

, (3.12)

where Ei, Vi are given in (3.8). Next we need to find a good proposal to simulate from (3.12).
An obvious proposal would simply be the posterior πpost(θi |µ, τ2,xobs), but this can be a very
bad proposal when the data is indeed ‘surprising’ for the entertained model. In particular, the
posterior distribution centers around the MLE θ̂ while the partial posterior centers around the
conditional MLE, θ̂cMLE , that is,

θ̂cMLE = arg max f(xobs | tobs, θ) = arg max
f(xobs |θ)
f(tobs |θ)

.

It is intuitively obvious that, when the data is not ‘surprising’, that is, when tobs comes from the
‘null’ model, then f(xobs | tobs, θ) would be similar to f(xobs |θ) and the partial and posterior
distributions would also be similar. However, when data is ‘surprising’ and tobs is not a ‘typical’
value, then the ‘null” model and the conditional model can be considerably different, as well as
the corresponding MLE’s. For Metropolis proposals, Bayarri and Berger (2000) then suggest
generating from the posterior distribution but then ‘moving’ the generated values closer to the
mode of the target distribution (the partial posterior) by adding

θ̂cMLE,i − θ̂MLE,i,

possibly multiplied by a Uniform(0,1) random generation.
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To avoid computation of θ̂cMLE , which can be rather time consuming, we use instead an
estimate θ̃c which we expect to be close enough (for our purposes) to θ̂cMLE for this model and
this T (see Bayarri and Morales, 2003). In particular, we take all components to be equal and
given by

θ̃c =

∑I−1
l=1 X(l·)
I − 1

,

where (X(1·), . . . , X(I·)) denote the group means sorted in ascendent order. That is, we simple
remove the largest sample mean and then average (we could have also used a weighted average
if the sample sizes were very different).

Then, the resulting algorithm to simulate from (3.12) at stage k, given the (simulated) values
(θk
−i, θ

k
i , µk, τ2(k)), is:

1. Simulate θ∗i ∼ N(θi |Ei, Vi).

2. Move the simulation θ∗i to
θ̃∗i = θ∗i + U · (θ̃c − θ̃MLE,i)

where U is random number in (0,1).

3. Accept candidate θ̃∗i with probability:

α = min

{
1,

N(θ̃∗i |Ei, Vi)N(θk
i |Ei, Vi)f(tobs |θk

−i, θ̃
k
i )

N(θ̃k
i |Ei, Vi)N(θ∗i |Ei, Vi)f(tobs |θk

−i, θ̃
∗
i )

}

3.4 Examples

For illustration, we now compute the measures of surprise, that is, the p-values and the Relative
Predictive Surprise indexes for the different proposals. We use a couple of data sets with 5
groups and 8 observations in each group. In both of them the null model is not the model
generating the data; in Example 1 one of the means comes from a different normal with a larger
mean, whereas in Example 2 the means come from a Gamma distribution. Recall that the null
model (3.1) had the group means i.i.d normal.

Example 1. The group means are 1.560, 0.641, 1.982, 0.014, 6.964, simulated from:

Xij ∼ N(θi, 4) i = 1, . . . , 5, j = 1, . . . , 8

θi ∼ N(1, 1) j = 1, . . . , 4

θ5 ∼ N(5, 1)
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Example 2. The group means are: 0.749, 0.769, 5.770, 1.856, 0.753, simulated from:

Xij ∼ N(θi, 4) i = 1, . . . , 5, j = 1, . . . , 8

θi ∼ Ga(0.6, 0.2) i = 1, . . . , 5

pEB
prior SPREB

prior pEB
post SPREB

post ppost SPRpost pppp SPRppp

Example 1 0.130 0.456 0.347 0.941 0.409 0.951 0.010 0.025

Example 2 0.121 0.426 0.301 0.886 0.381 0.954 0.011 0.036

Table 1: p-values and SPR for Examples 1 and 2.

In Table 1 we show all measures of surprise for the two examples. The partial posterior
measures clearly detect the inadequate models, with very small p-values and RPS. On the other
hand, none of the other predictive distributions work well for this purpose, no matter how we
choose to locate the observed tobs in them (with p-values or RPS). The prior empirical Bayes are
conservative, with p and RPS an order of magnitude larger than the ones produced by the partial
posterior predictive distribution. Both, the posterior empirical Bayes and predictive posterior
measures are extremely conservative, indicating almost perfect agreement of the observed data
with the quite obviously wrong null models. Besides, it can be seen that EB posterior and
posterior predictive measures are very similar to each other. This is not a specific feature of
these examples, but occurs very often. We further explore it in a rather simple null model in
Section 4.

We next study the behavior of the different p-values, when considered as a function of X,
under the null and under some alternatives.

3.5 Null sampling distribution of the p-values

A crucial characteristic of p values is that, when considered as random variables, p(X) have
U(0, 1) distributions under the null models (at least asymptotically). This endorses p-values with
a very desirable property, namely having the same interpretation across models. The uniformity
of p-values has often taken as their defining characteristic (more discussion and references can
be found in Bayarri and Berger, 2000).

In this section we simulate the null sampling distribution of pEB
prior(X), ppost(X) y pppp(X),

when X comes from a hierarchical normal-normal model as defined in (3.1). (We do not show
the behavior of pEB

post(X) because it is bassically identical to that of ppost(X).)
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In particular, we have simulated 1000 samples from the following model:

Xij ∼ N(θi, 4) i = 1, . . . , I, j = 1, . . . , 8 ,

θi ∼ N(0, 1) i = 1, . . . , I .

We have considered three different ‘group sizes’: I = 5, 15 and 25. (Since here we are checking
the distribution of the means, the adequate “asymptotics” is in the number of groups.)

We compute the different p-values for 1000 simulated samples. Figure 1 shows the resulting
histograms. As we can see, pppp(X) has already a (nearly) uniform distribution even for I

(number of groups) as small as 5. On the other hand, the distributions of both pEB
prior(X) and

ppost(X) are quite far from uniformity, the distribution of ppost(X) being the farthest. Moreover,
the deviation from the U(0, 1) is in the direction of more conservatism (given little probability
to small p values, and concentrating around 0.5), as it is the case in simpler models. Notice
that conservatism usually results in lack of power (and thus in not being able to detect data
coming from wrong models). Particularly worrisome is the behavior of ppost(X) for small number
of groups. We have also performed similar simulations for larger I’s (number of groups) to
investigate whether the distribution of these p-values approaches uniformity as I grows. In
Figure 2 we show the histograms for I = 100 and I = 200 of p-values ppost(X) and pEB

prior(X)
(we do not show pppp(X) as it is virtually uniform). The distributions of these p-values do not
seem to change much as I is doubled from I = 100 to I = 200, and they are still quite far from
uniformity, still showing a tendency to concentrate around middle values for p. We do not know
whether these p-values are asymptotically U(0, 1).

3.6 Distribution of p-values under some alternatives

In this section we study the behavior of pEB
prior(X), ppost(X) y pppp(X), when the ‘null’ normal-

normal model is wrong. In particular, we focus on violations of normality at the second level.
Specifically, we simulate data sets from three different models. In all the three, we take the

distribution at the first level to be the same and in agreement with the first level in the null
model (3.1):

Xij ∼ N(θi, σ
2 = 4) i = 1, . . . , I, j = 1, . . . , 8

We use three different distributions for the group means (remember, under the null model, the
θi’s were normal):

1. Exponential distribution: θi ∼ Exp(1), i = 1, . . . , I.

2. Gumbel distribution: θi ∼ Gumbel(0, 2), i = 1, . . . , I, where the Gumbel(α, β) density
is

f(x |α, β) =
1
β

exp

(
−x− α

β

)
exp

(
−exp

(
−x− α

β

))
for −∞ < x < ∞

12



pprior
EB (X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

I=5

ppost(X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

pppp(X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

pprior
EB (X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

I=15

ppost(X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

pppp(X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

pprior
EB (X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

I=25

ppost(X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

pppp(X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

Figure 1: Null distribution of pEB
prior(X) (first column), ppost(X) (second column) and pppp(X) (third column)

for I = 5 (first row), 10 (second row) and 15 (third row).

3. Log-Normal distribution: θi ∼ LogNormal(0, 1) i = 1, . . . , I.

We have considered I = 5 and I = 10, simulated 1000 samples from each model and computed
the different p-values for each sample. In Table 2 we show Pr(p ≤ α) for the three p−values and
some values of α. pppp seems to show adequate power (lower for the exponential alternative, and
largest for the log-normal); both pEB

prior and ppost show considerable lack of power in comparison.
In particular, notice the extreme low power of ppost in all instances, producing basically no
p-values smaller than 0.2.

13



I=100

pprior
EB (X)

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

I=100

ppost(X)

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

I=200

pprior
EB (X)

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

I=200

ppost(X)

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5
1.0

1.5

Figure 2: Null distribution of pEB
prior(X) and ppost(X) when I = 100 (first row) and I = 200 (second row).

4 Testing µ = µ0

As we have seen in Section 3, the specified predictive distributions for T (empirical Bayes,
posterior and partial posterior) used to located the observed tobs had to be dealt with by MC
and MCMC methods. To gain understanding in the behavior of the different proposals to ‘get
rid’ of the unknown parameters, we address here a simpler “null model” which results in simpler
expressions and allows for easier comparisons.

Suppose that we have the normal-normal hierarchical model (3.1) (with σ2
i known) but that

we are interested in testing:
H0 : µ = µ0.

A natural T to consider to investigate this H0 is the grand mean:

T =
∑I

i=1 niXi·∑I
i=1 ni

,

where Xi·, i = 1, . . . , I are the sample means for the I groups. The (null) sampling distribution
of T is:

T | θ ∼ N(µT , VT ), with µT =
∑I

i=1 niθi/σ2
i∑I

i=1 ni/σ2
i

, VT =
1∑I

i=1 ni/σ2
i

(4.1)
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α 0.02 0.05 0.1 0.2 0.02 0.05 0.1 0.2

Normal-Exponencial

I=5 I=10

pppp 0.040 0.083 0.148 0.243 0.124 0.196 0.288 0.419
ppost 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.046
pEB

prior 0.000 0.000 0.000 0.235 0.002 0.063 0.176 0.369

Normal-Gumbel

I=5 I=10

pppp 0.124 0.219 0.322 0.462 0.208 0.314 0.425 0.550
ppost 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003
pEB

prior 0.000 0.000 0.000 0.268 0.001 0.067 0.187 0.383

Normal-Lognormal

I=5 I=10

pppp 0.160 0.220 0.310 0.415 0.319 0.416 0.500 0.611
ppost 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020
pEB

prior 0.000 0.001 0.00 2 0.235 0.013 0.064 0.126 0.235

Table 2: Pr(p ≤ α) for pppp, ppost, y pEB
prior, for different values of I and the three alternative models.

Again we will integrate θ out from (4.1) with the previous proposals and compare the re-
sulting predictive distributions for T , h(t), and the corresponding measures of surprise (which
we take relative to µ0):

p = Prh(·)(|t(X)− µ0| ≥ |t(xobs)− µ0|), (4.2)

RPS =
h(t(xobs))/h(µ0)
sup

t
h(t)/h(µ0)

. (4.3)

4.1 Empirical Bayes Distributions

In this case the integrated likelihood for τ2 is simply given by (3.4) with µ replaced by µ0,
from which τ̂2 the m.l.e. of τ2 can be computed. For this null model, it is possible to derive
close-form expressions for the prior and posterior empirical Bayes distributions given in (2.2)
and (2.4) respectively.

Indeed, the joint Empirical Bayes prior predictive for X̄ = (X̄1·, . . . , X̄I·) is

mEB
prior(x̄) =

I∏

i=1

N

(
x̄i· |µ0,

σ2
i

ni
+ τ̂2

)
,
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so that the corresponding distribution for T , mEB
prior(t), is normal with mean and variance given

by

EEB
prior = µ0, V EB

prior =
1

(
∑I

i=1 ni)2

I∑

i=1

n2
i

(
σ2

i

ni
+ τ̂2

)
. (4.4)

The Empirical Bayes posterior predictive distribution mEB
post(x̄) can be derived in a similar man-

ner resulting also in a normal mEB
post(t) with mean and variance:

EEB
post =

∑I
i=1 niẼi∑I

i=1 ni

, V EB
post =

1

(
∑I

i=1 ni)2

I∑

i=1

n2
i

(
σ2

i

ni
+ Ṽi

)
, (4.5)

where

Ẽi =
nixi·/σ2

i + µ0/τ̂2

ni/σ2
i + 1/τ̂2

and Ṽi =
1

ni/σ2
i + 1/τ̂2

The measures of surprise (4.2) and (4.3) can also be computed in close form. The (prior)
Empirical Bayes measures are

pEB
prior = 2 ·


1− Φ


 |tobs − µ0|√

V EB
prior





 , RPSEB

prior = exp

{
−(tobs − µ0)2

2V EB
prior

}
,

where Φ denotes the standard normal distribution function. The posterior Empirical Bayes
measures can similarly be derived in close-form, but they are of much less interest and we do
not produce them here (see Castellanos, 2002).

The inadequacies of mEB
post for testing the null model can already be seen in the above for-

mulae, but they are more evident in the particular homocedastic, balanced case: σ2
i = σ2 and

ni = n ∀ i, i = 1, . . . , I. In this case the distribution of T simplifies to:

T ∼ N

(∑I
i=1 θi

I
,
σ2

In

)
.

Also, there is a closed-form expression for the m.l.e. of τ2:

τ̂2 = max

{
0,

∑I
i=1(xi· − µ0)2

I
− σ2

n

}
.

Then, the mean and variance of mEB
prior, as given in (4.4) are

EEB
prior = µ0, V EB

prior =
σ2

n + τ̂2

I
.

Similarly, the mean and variance of mEB
post, given in (4.5) reduce to

EEB
post =

ntobs/σ2 + µ0/τ̂2

n/σ2 + 1/τ̂2
, V EB

post =
2nσ2τ̂2 + σ4

nI(nτ̂2 + σ2)
.
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For a given µ0 (and fixed τ), it is now easy to investigate the behavior of mEB
prior and mEB

post as
tobs → ∞, indicating flagrant incompatibility between the data and H0. mEB

prior centers at µ0,
which in principle allows for declaring incompatible a very large value tobs; however, the variance
also grows to ∞ as tobs grows, thus alleviating the incompatibility, and maybe ‘missing’ some
surprisingly large tobs. Thus, the behavior of mEB

prior is reasonable, but might be conservative.
On the other hand, the behavior of mEB

post is completely inadequate. Indeed, for very large tobs,
it centers precisely at tobs thus precluding detecting as unusual any value tobs, no matter how
large!. Moreover, the variance is seen to go to (2σ2)/(n I), a finite constant. It is immediate to
see that mEB

post should not be used to check this particular (and admittedly simple) model; as a
matter of fact, for tobs → ∞ (extremely inadequate models) we expect p-values of around 0.5.
We remark that the previous argument does not belong to any particular measure of surprise,
rather it reflects the inadequacy of mEB

post for model checking, whatever measure of surprise
we use. Note also that we expect similar inadequacies to occur with the posterior predictive
distribution.

4.2 Posterior Distribution

No major simplifications occur for this specific H0. The posterior distribution is not of close-form
(nor even for the homocedastic, balanced case), and hence neither is the posterior predictive
distribution. We can however easily generate from it with virtually the same Gibbs sampler used
in Section 3.2: if suffices to (obviously) ignore the full conditional for µ and replace µ with the
value µ0 in the other two full conditionals (3.7) and (3.8), which were standard distributions.

4.3 Partial Posterior Distribution

There is no close-form expression for the partial posterior distribution either, but considerably
simplification occurs since the Metropolis-within-Gibbs step is no longer needed and a straight
Gibbs sampler suffices. The full conditional for τ2 is as given in (3.10) with µ replaced by µ0;
the full conditional of each θi is here also normal:

π(θi | τ2, θ−i,xobs \ tobs) = N(θi | E0
i , V 0

i )

where

E0
i =

1
V 0

i

[
ni

σ2
i

(
xi· − tobs +

∑
l 6=i nl θl/σ2

l∑
j nj/σ2

j

)
+

1
τ2

µ0

]
, (4.6)

1
V 0

i

=
ni

σ2
i

+
1
τ2
− n2

i

σ4
i

∑
j nj/σ2

j

. (4.7)

Details of the derivations appear in the Appendix.
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4.4 Some examples

We next consider four examples in which we carry out the testing H0 : µ = 0. We consider I = 8
groups, with n = 12 observations per group, and σ2 = 4. In one of the examples (Example 1) H0

is true and the means θi are generated from a N(0, 1). In the remaining three examples the null
H0 is wrong, with θi ∼ N(1.5, 1) in Example 1, θi ∼ N(2.5, 1) in Example 2, and θi ∼ N(2.5, 3)
in Example 3. The simulated sample means are:

Example 1: x = (-2.18, -1.47, -0.87, -0.38, 0.05, 0.29, 0.96, 2.74).

Example 2: x = (-0.05, 0.66, 1.37, 1.70, 1.72, 2.14, 2.73, 3.68).

Example 3: x = (1.53, 1.65, 1.71, 1.75, 1.87, 2.16, 2.47, 3.68).

Example 4: x = (0.50, 1.52, 1.59, 2.73, 2.88, 3.54, 4.21, 5.86).

In Figure 3 we show the predictive distributions for all proposals in the 4 examples. A quite
remarkable feature is that in every occasion, mEB

post basically coincides with mpost, so much that
they can hardly be told apart; We were expecting them to be close, but not so close. Also,
when the null is true (Example 1), all distributions rightly concentrate around the null and, as
expected, the most concentrated is mEB

post (and mpost), and the least the mppp (mEB
prior ignores the

uncertainty in the estimation of τ2). When the null model is wrong, however, even though both
mppp and mEB

prior have the right location, mppp is more concentrated than mEB
prior, thus indicating

more promise in detecting extreme tobs; Notice the hopeless (and identical) behavior of mEB
post

and mpost: both concentrate around tobs, no matter how extreme; that is, there is no hope that
it can detect incompatibility of a very large tobs with the hypothetical value of 0.

In Table 3 we show the different measures of surprise for the four Examples. All behave well
when the null is true, but only the ppp and the prior empirical Bayes measures detect the wrong
models (ppp more clearly, thus anticipating greater power). On the other hand mEB

post and mpost

produce very similar measures and both are incapable of detecting clearly unappropriate null
models. Notice that the conservatism of the posterior predictive measures (and the posterior
empirical Bayes ones) is extreme.

5 A Comparison with other Bayesian methods for Model Check-

ing

In this section we retake the main goal of checking the adequacy of the hierarchical model:

Xij | θi
i∼ N(θi, σ

2) i = 1, . . . , I, j = 1, . . . , ni,

π(θ |µ, τ) =
I∏

i=1

N(θi |µ, τ2),
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Example 1 Example 2 Example 3 Example 4

p SPR p SPR p SPR p SPR

ppp 0.859 0.966 0.008 0.016 0.000 0.000 0.005 0.009
EB prior 0.831 0.977 0.016 0.056 0.007 0.026 0.013 0.047
EB post 0.711 0.998 0.313 0.888 0.305 0.879 0.378 0.953
post 0.712 0.991 0.333 0.945 0.325 0.919 0.392 0.995

Table 3: p-values and RPS for testing µ = 0 in the four examples.
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Figure 3: Different predictive distribution for T in each example.

with σ2 unknown, as well as µ, τ2. We first provide some few details needed to derive the
MS used so far when σ2 is unknown, then we briefly review three recent methods for Bayesian
checking of hierarchical models, proposed in Dey et al.(1998), O’Hagan(2003) and Marshall and
Spiegelhalter (2001). We do not specifically address here (because the philosophy is somewhat
different) the much earlier, likelihood/Empirical Bayes proposal of Lange and Ryan (1989),
which basically consists in checking the normality of some standardized version of estimated
residuals. We apply the four methods considered so far and the three new methods to a data
set proposed by O’Hagan (2003).

O’Hagan (2003) Example:
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In the general scenario of checking the normal-normal hierarchical model, O’Hagan (2003)
uses the following data set:

Group 1 2.73, 0.56, 0.87, 0.90, 2.27, 0.82. x1·= 1.36
Group 2 1.60, 2.17, 1.78, 1.84, 1.83, 0.80. x2·= 1.67
Group 3 1.62, 0.19, 4.10, 0.65, 1.98, 0.86. x3·= 1.57
Group 4 0.96, 1.92, 0.96, 1.83, 0.94, 1.42. x4·= 1.34
Group 5 6.32, 3.66, 4.51, 3.29, 5.61, 3.27. x5·= 4.44

Note that x5· is considerably far from the other 4 sample means. 2

5.1 Methods used so far.

The empirical Bayes methods (both the prior and the posterior) have an easy generalization to
the unknown σ2 case. It suffices to substitute σ2 by its usual m.l.e. estimate and apply the
procedures in Section 3 for σ2 known.

For both, the posterior predictive and the partial posterior predictive measures, we need to
specify a new (non-informative) joint prior. Since we can use the standard non-informative prior
for σ2, we take:

π(µ, σ2, τ2) ∝ 1
σ2

1
τ
. (5.1)

To simulate from the posterior distribution, we again use Gibbs sampling. The full conditionals
for θ, µ and τ2 are the same as for the known σ2 and they are given in (3.8), (3.6) and (3.7),
respectively. The full conditional for the new parameter, σ2, is:

σ2 |θ, µ, τ2,xobs ∼ χ−2(m, σ̃2) ,

where

m =
I∑

i=1

ni , σ̃2 =
1
m

I∑

i=1

ni∑

j=1

(xij − θi)2 .

The (joint) partial posterior distribution is

πppp(θ, σ2, µ, τ2 |xobs \ tobs) ∝ π(θ, σ2, µ, τ2|xobs)
f(tobs |θ, σ2)

,

and again we use the same general procedure as for the σ2 known scenario (see Section 3). We
only need to specify how to simulate from the full conditional of σ2:

πppp(σ2 |θ, µ, τ2,xobs \ tobs) ∝ χ−2(m, σ̃2)
f(tobs |θ, σ2)

.
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We use Metropolis-Hastings with χ−2(m, σ̃2) as proposal distribution. The acceptance proba-
bility (at stage k) of candidate σ2 ∗, given the simulated values (θ(k), σ2 (k), µ(k), τ2 (k)) is:

α = min

{
1,

f(tobs|θ(k), σ2 (k))
f(tobs|θ(k), σ2 ∗)

}
.

We next derive the different measures of surprise for O’Hagan data.

O’Hagan (2003) Example (cont.) :

The empirical Bayes, posterior predictive and partial posterior predictive measures of surprise
applied to this data set are

pEB
prior SPREB

prior pEB
post SPREB

post ppost SPRpost pppp SPRppp

0.195 0.625 0.371 0.972 0.405 0.977 0.015 0.036

Table 4: MS (σ2 unknown) for O’Hagan data set.

We again observe the same behavior as the one repeatedly observed in previous examples: in
spite of such an ‘obvious’ data set, only the partial posterior measures detect the incompatibility
between data and model; the empirical Bayes prior measures are too conservative, and the
posterior predictive measures (and their very much alike empirical Bayes posterior ones) are
completely hopeless. 2

5.2 Simulation-based model checking

This method is proposed in Dey et al. (1998), as a computationally intense method for model
checking. This methods works not only with checking statistics T , but more generally, with
discrepancy measures d, that is, with functions of the parameters and the data; this feature also
applies to the posterior predictive checks that we have been considering all along. In essence, the
method consists in comparing the posterior distribution d |xobs with R posterior distributions
of d given R data sets xr, for r = 1, . . . , R, generated from the (null) predictive model; note that
the method requires proper priors. Comparison is carried out via Monte Carlo Tests (Besag and
Clifford, 1989).

Letting xr, for r = 0 denote the observed data xobs, their algorithm is as follows:

- For each posterior distribution of d given xr, r = 0, . . . R, compute the vector of quantiles
q(r) = (q(r)

.05, q
(r)
.25, q

(r)
.5 , q

(r)
.75, q

(r)
.95).

- Compute the vector q of averages, over r, of these quantiles: q = (q.05, q.25, q.5, q.75, q.95).
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- Compute the r + 1 Euclidean distances between q(r), r = 0, 1, . . . , R and q .

- Perform a 0.05 one-sided, upper tail Monte Carlo test, that is, check whether or not the
distance corresponding to the original data is smaller than the 95% percentile of the r + 1
distances.

In reality, this method is not a competitor of the ones we have been considering previously, since
it requires proper priors, and hence is not available for objective model checking. We, however,
apply it also to O’Hagan data.

O’Hagan (2003) Example (cont.) :

In order to perform the Simulation-based model checking, we need proper priors. We use the
ones proposed in O’Hagan (2001):

µ ∼ N(2, 10), σ2 ∼ 22W, τ2 ∼ 6W, where W ∼ χ−2
20 . (5.2)

Along with the statistic used so far, we have also considered a measure of discrepancy which in
this case is just a function of the parameters:

T1 = max Xi· , T2 = max |θi − µ| .

With 1000 simulated data sets from the null, the results are shown in Table 5. It can be seen
that, with the given prior, incompatibility is detected with T2, but not with T1. We do not know
whether T2 would detect incompatibility with other priors (see related results in Section 5.3).

‖q(0) − q‖ .95 quantile

T1 2.313 13.463
T2 1.823 0.808

Table 5: Euclidean distance between q(0) and q and the 0.95 quantile of all distances.

2

5.3 O’Hagan method

O’Hagan (2003) proposes a general method to investigate adequacy of graphical models at each
node. We will not describe his method in full generality, but only in how it applies to checking
the second level of our normal-normal hierarchical model.

To investigate conflict between the data and the normal assumption for each of the group
means, the proposal investigates conflict between the likelihood for θi

ni∏

i=1

f(xij | θi, σ
2),
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and the (null) density for θi:
π(θi |µ, τ2).

To check conflict between two known univariate densities/likelihoods, O’Hagan proposes a
“measure of conflict” based on their relative heights at an ‘intermediate’ value. Specifically, the
likelihoods/densities are first normalized so that their maximum height is 1 (notice that this is
equivalent to dividing by their respective maximum, as in RPS before). Then the (common)
density height, z, at the intersection point between the two modes is computed. The proposed
measure of conflict is c = −2 ln z. For the particular case of comparing two normal distributions,
N(ωi, γ

2
i ), for i = 1, 2, this measure is:

c =
(

ω1 − ω2√
γ1 +

√
γ2

)2

. (5.3)

O’Hagan indicates that a conflict measure smaller than 1 should be taken as indicative of no
conflict, whereas values of 4 or larger would indicate clear conflict. No indication is given for
values lying between 1 and 4.

When, as usual, the distributions involved depend on unknown parameters, the measures
of conflict (in particular (5.3)), can not be computed. O’Hagan proposal is then to use the
median of their posterior distribution. Notice that this is closely related to computing a relative
height on the posterior predictive distribution and, hence, the concern exists that it can be
too conservative for useful model checking. In fact this conservatism was highlighted in the
discussions by Bayarri(2003) and Gelfand(2003).

Interestingly enough, O’Hagan defends use of proper priors for the unknown parameters,
so neither posterior predictive nor posterior distributions are needed for implementation of his
proposal (since the prior predictives and priors are proper). Alternatively, if one wishes to insist
on using posterior distributions (instead of the, more natural, prior distributions), then proper
priors are no longer needed, and the method can thus be generalized. Accordingly, we also apply
his proposal with the non-informative prior (5.1).

O’Hagan (2003) Example (cont.):

We compute the measure (5.3) for the data set proposed by O’Hagan (2003). To derive the
posterior distributions, we use both, the proper priors proposed by O’Hagan for this example,
given in (5.2), and the non informative prior (5.1). The posterior medians for c are shown in
Table 6. It can be seen that the results are very dependent on the prior used: the spurious
group 5 is detected with the specific proper prior used , but not with the non-informative priors
(thus suffering from the expected conservatism). We recall that data was clearly indicating an
anomalous group 5.

2
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θ1 θ2 θ3 θ4 θ5

O’Hagan prior 0.433 0.143 0.218 0.458 4.809
Non informative Prior 0.158 0.092 0.110 0.165 1.363

Table 6: Posterior medians of ci, i = 1, . . . , 5, for O’Hagan data set.

5.4 ‘Conflict’ p-value

Marshall and Spiegelhalter (2001) proposed this approach based on, and generalizing, cross-
validation methods (see Gelfand et al., 1992; Bernardo and Smith, 1994).

In cross-validation, to check adequacy of group i, data in group i, Xi, is used to compute the
‘surprise’ statistic (or diagnostic measure), whereas the rest of the data, X−i, is used to train
the improper prior. A mixed p-value is accordingly computed as:

pi,mix = Prmcross(· |X−i) (Ti ≥ T obs
i ) , (5.4)

where the completely specified distribution used to computed the i-th p-value is

mcross(ti |X−i) =
∫

f(ti | θi, σ
2) π(θi |µ, τ2)π(µ, τ2, σ2 |X−i) dθ,

and thus there is no double use of the data.
To avoid the issue of defining the statistic or discrepancy measure Ti = T (Xi) (which can

be difficult for non-normal generalized linear models) Marshall and Spiegelhalter (2001) aim to
preserving the cross-validation spirit while avoiding choice of a particular statistic or discrep-
ancy measure Ti = T (Xi). Specifically, they propose use of conflict p-values for each group i,
computed as follows:

– Simulate θrep
i from the posterior θi |X−i.

– Simulate θfix
i from the posterior θi |Xi.

– Compute θdiff
i = θrep

i − θfix
i .

– Compute the ‘conflict’ p-value for group i, i = 1, . . . , I as

pi, con = Pr(θdiff ≤ 0 |x) . (5.5)

Marshall and Spiegelhalter (2001)) show that for location parameters θi, the conflict p-value (5.5)
is equal to the cross-validation p-value (5.4) based on statistics θ̂i with symmetric likelihoods
and using uniform priors in the derivation of θfix

i .
A clear disadvantage of this approach (as well as with the cross-validation mixed p-values) is

that we have as many p-values as groups, and multiplicity might be an issue. (O’hagan measures
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might suffer from it too.) Since we are dealing with p-values, adjustment is most likely done by
classical methods (controlling either the family-wise error rate, as the Bonferroni method, or the
false discovery rate and related methods, as the Benjamini and Hochberg, 1995, method). None
of these methods is full proof and the danger exists that they also result in a lack of power.

O’Hagan (2003) Example (cont.):

We compute the conflict p-values for O’Hagan data set. We again use both, O’Hagan priors
and non-informative priors. The results are shown in Table 7. Taken at face value, these p-
values behave nicely and detect the outlying group. We have not explored any ‘corrections’ for
multiplicity.

Group 1 Group 2 Group 3 Group 4 Group 5

Non Informative priors 0.662 0.592 0.610 0.677 0.003
O’Hagan priors 0.842 0.737 0.733 0.879 0.003

Table 7: Conflict p-values for the O’Hagan data set using Non Informative Priors and O’Hagan Priors.

2

6 Conclusions

In this paper we have investigated the checking of hierarchical models from an objective Bayesian
point of view (that is, introducing only the information in the data and model). We have
explored several ways of eliminating the unknown parameters to derive ‘reference’ distributions.
We have also explored different ways of characterizing ‘incompatibility’. We propose use of the
partial posterior predictive measures, which we compare with many other proposals. Some of
our findings are:

– MSppp behave considerably better than the alternative MSEB
prior, MSEB

post and MSpost. The
behavior of MSpost can be particularly bad with casually chosen T ’s, failing to reject
clearly wrong models (but notice that the T we use is also proposed in Gelman et al.
(1995, pages 181-182). As a matter of fact, the measures MSpost are very similar to the
clearly inappropriate MSEB

post.

– In our (limited) simulation study, the null sampling distribution of pppp is found to be
approximately uniform, while these of pEB

prior and ppost are far from uniformity. Also, pppp

is the most powerful for the considered alternatives.

– The simulation-based model checking seems to work well in detecting the incompatibility
between the model and the data, but it requires proper priors.
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– O’Hagan method is highly sensitive to the prior chosen, and in fact it seems to be conser-
vative with non-informative priors.

– The conflict p-values pi,con seems to work well, but they produce as many p-values as
number of groups and multiplicity might be an issue.

7 Appendix

Derivation of the full conditional of θi in Section 4.3

The full condirional partial posterior density for θi:

π(θi | τ2, θ1, . . . , θi−1, θi+1, . . . , θI ,xobs \ tobs) ∝

∝ πpost(θi | τ2, θ1, . . . , θi−1, θi+1, . . . , θI ,xobs)
f(tobs | θ1, . . . , θi, . . . , θI)

∝ exp

{
−1

2

(
ni

σ2
i

+
1
τ2

)(
θi − nixi·/σ2

i + µ0/τ2

ni/σ2
i + 1/τ2

)2
}

exp





1
2

I∑

l=1

nl

σ2
l︸ ︷︷ ︸

s

(
tobs −

∑I
j=1 njθj/σ2

j∑I
j=1 nj/σ2

j

)2





∝ exp

{
−1

2

(
θ2

i

(
ni

σ2
i

+
1
τ2

)
− 2θi

(
ni

σ2
i

xi· +
1
τ2

µ0

))}
exp





1
2s


stobs − ni

σ2
i

θi −
∑

l 6=i

nl

σ2
l

θl




2




∝ exp



−

1
2


θ2

i

((
ni

σ2
i

+
1
τ2

)
− n2

i

σ4
i s

)
− 2θi


 ni

σ2
i

xi· +
1
τ2

µ0 −
ni

(∑
l 6=i nlθl/σ2

l − stobs

)

σ2
i s









 ,

which, after some algebra, reduces to

π(θi | τ2, θ1, . . . , θi−1, θi+1, . . . , θI ,xobs \ tobs) ∝ exp

{
− 1

2V 0
i

(θi − E0
i )2

}
,

whith E0
i and V 0

i given in (4.6) and (4.7) respectively. The result then follows if V 0
i can be

shown to be greater than 0, which is equivalent to showing that

(V 0
i )−1 =

ni

σ2
i

+
1
τ2
− n2

i

σ4
i

∑I
j=1 nj/σ2

j

> 0

⇔ ni

σ2
i

(
1− ni

σ2
i

∑I
j=1 nj/σ2

j

)
+

1
τ2

> 0 ,

which is true because 1− ni/σ2
i∑I

j=1 nj/σ2
j

> 0.
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