
A maximal-space algorithm for the
container loading problem

F. Parreño ‡ , R. Alvarez-Valdes † , J.F. Oliveira § ∗,
J.M. Tamarit † ,

† University of Valencia, Department of Statistics and Operations Research,
Burjassot, Valencia, Spain

§ Faculty of Engineering, University of Porto, Portugal
∗ INESC Porto – Instituto de Engenharia de Sistemas e Computadores do

Porto, Portugal
‡ University of Castilla-La Mancha. Department of Computer Science,

Albacete, Spain

Abstract

In this paper a greedy randomized adaptive search procedure (GRASP)
for the container loading problem is presented. This approach is based
on a constructive block heuristic that builds upon the concept of
maximal-space, a non-disjoint representation of the free space in a
container.

This new algorithm is extensively tested over the complete set of
Bischoff and Ratcliff problems, ranging from weakly heterogeneous
to strongly heterogeneous cargo, and outperforms all the known non-
parallel approaches that, partially or completely, have used this set
of test problems. When comparing against parallel algorithms, it is
better on average but not for every class of problem. In terms of
efficiency, this approach runs in much less computing time than that
required by parallel methods. Thorough computational experiments
concerning the evaluation of the impact of algorithm design choices
and internal parameters on the overall efficiency of this new approach
are also presented.

Keywords: Container loading; 3D packing; heuristics; GRASP

1

Figure 1: A solution of Instance BR 3 79 [2]

1 Introduction

The Single Container Loading Problem (CLP) is a three-dimensional
packing problem in which a large parallelepiped has to be filled with smaller
parallelepipeds, available in different sizes and limited quantities, so that
empty space is minimized (Figure 1). Under the improved typology for cut-
ting and packing problems proposed by Wäscher et al. [21], the CLP can
be classified as a three-dimensional rectangular single large object placement
problem (3-dimensional rectangular SLOPP). This is an NP-hard problem
as the NP-hard one-dimensional knapsack problem can be transformed into
the 3D SLOPP.

From the applications point of view, this problem arises in practice when-
ever containers or trucks have to be filled/loaded with boxes, so that the usage
of the container is maximized. The minimization of empty space inside the
containers is not only an economic requirement but also an ecological issue,
given the impact that goods transportation has on the global effect of human
activities in our planet’s sustainability.

In 1980 George and Robinson [14] proposed the first fairly sophisticated
heuristic for the container loading problem. It was a wall-building procedure
and since then many variants and improvements have been developed [1],
including, more recently, meta-heuristic approaches based on this heuristic
[16]. In 1997 Gehring and Bortfeldt [12] presented a genetic algorithm for the
container loading problem, based on a column-building procedure. This was

2

the first of an important series of papers by those same authors who, between
1998 and 2002, presented a Tabu Search [5], a hybrid Genetic Algorithm [6]
and a parallel version of the genetic algorithm [13]. In the same line of work,
Bortfeldt, Gehring and Mack developed a parallel tabu search algorithm
[7] and a parallel hybrid local search algorithm which combines simulated
annealing and tabu search, their best algorithm so far [15]. Eley [10] pro-
poses an algorithm that combines a greedy heuristic, which generates blocks
of boxes, with a tree-search procedure. Moura and Oliveira [16] develop a
GRASP algorithm based on a modified version of George and Robinson [14]
constructive algorithm. All the previously mentioned papers have in common
the use of a set of 1500 problems, distributed over 15 classes with different
characteristics as benchmark problems for the computational experiments.
These problems were generated by Bischoff and Ratcliff [2]. Pisinger [17]
presents a wall-building heuristic, which seems to perform quite well, but
unfortunately the author does not use Bischoff and Ratcliff’s problems for
his computational experiments.

When speaking about real-world container loading problems space usage
is the most important objective, but other issues have to be taken into ac-
count, such as cargo stability, multi-drop loads or weight distribution ([2], [4],
[8], [20]). Among these additional considerations, cargo stability is the most
important one. Sometimes it is explicitly taken into account in the design
of the algorithms and in the definition of feasible solutions for the container
loading problem. At other times the algorithms’ results are also evaluated
against standard measures of cargo stability. However, when container vol-
ume usage is very high, stability almost becomes a consequence of this high
cargo compactness. Some freight companies value space utilization so highly
that they use foam pieces to fill the remaining gaps and increase stability
without compromising space usage.

In this paper we present a new algorithm for the container loading prob-
lem that is based on an original heuristic enhanced by a GRASP solu-
tion space search strategy. At the core of this approach is the concept of
maximal-spaces that explains the efficiency of the algorithm. When con-
sidering Bischoff and Ratcliff’s problems, this new algorithm outperforms
the previously published approaches, taking much less computational time,
mainly in the harder classes of problems.

The remainder of this paper is organized as follows: in the next section
the basic constructive algorithm, based on the concept of maximal-space, is
presented in its several variants. In Section 3 the GRASP implementation
is presented in its constitutive parts, and in Section 4 thorough computa-
tional experiments are described and results presented. Finally, in Section 5
conclusions are drawn.

3

2 A constructive algorithm

At the base of any GRASP algorithm is a constructive heuristic algorithm.
The constructive algorithm proposed in this paper is a block heuristic. The
box blocks may take the shape of columns or layers. A layer is a rectangular
arrangement of boxes of the same type, in rows and columns, filling one side
of the empty space. Other authors have used the term wall to refer to the
same concept. We prefer the more general term layer because it can be put
vertically or horizontally in the empty space. As usual in block heuristics,
the feasible placement positions are described as lists of empty spaces and
each time a block is placed in an empty space, new spaces are generated.
The present block algorithm differs from the existing approaches because it
represents the feasible placement points as a set of non-disjoint empty spaces,
the maximal-spaces. This representation brings additional complexity to
space management procedures but induces increased flexibility and quality
in container loading problem solutions. Additionally, this heuristic starts to
place boxes from the eight corners of the selected empty space, according to
well-defined selection criteria. Details on this new constructive heuristic are
given in the rest of this section .

We follow an iterative process in which we combine two elements: a list
B of types of boxes still to be packed, initially the complete list of boxes,
and a list L of empty maximal-spaces, initially containing only the container
C. At each step, a maximal-space is chosen from L and, from the boxes in
B fitting into it, a type of box and a configuration of boxes of this type are
chosen to be packed. That usually produces new maximal-spaces going into
L and the process goes on until L = ∅ or none of the remaining boxes fit into
one of the remaining maximal-spaces.

• Step 0: Initialization

L={C}, the set of empty maximal-spaces.
B = {b1, b2, . . . , bm}, the set of types of boxes still to be packed.
qi = ni (number of boxes of type i to be packed).
P = ∅, the set of boxes already packed.

• Step 1: Choosing the maximal-space in L

We have a list L of empty maximal-spaces. These spaces are called
maximal because at each step they are the largest empty parallelepiped
that can be considered for filling with rectangular boxes. We can see an
example for a 2D problem in Figure 2. Initially we have an empty rect-
angle and when we cut a piece at its bottom left corner, two maximal-
spaces are generated. These spaces do not have to be disjoint. In the

4

same Figure 2 we see two more steps of the filling process with the
maximal-spaces generated.

Working with maximal-spaces has two main advantages. First, we do
not have to decide which disjoint spaces to generate, and then we do
not need to combine disjoint spaces into new ones in order to accommo-
date more boxes. We represent a maximal-space by the vertices with
minimum and maximum coordinates.

To choose a maximal-space, a measure of its distance to the container’s
corners is used. For every two points in R3, a = (x1, y1, z1) and b =
(x2, y2, z2), we define the distance d(a, b) as the vector of components
|x1 − x2|, |y1 − y2| and |z1 − z2| ordered in non-decreasing order. For
instance, if a = (3, 3, 2) and b = (0, 5, 10), d(a, b) = (2, 3, 8), resulting
from ordering the differences 3, 2, 8 in non-decreasing order. For each
new maximal-space, we compute the distance from every corner of the
space to the corner of the container nearest to it and keep the minimum
distance in the lexicographical order.

d(S) = min{d(a, c), a vertex of S, c vertex of container C}

For instance, if we have the maximal-space S1 = {(4, 4, 2), (6, 6, 10)}
in a (10,10,10) container, the corner of S1 nearest to a corner of the
container is (6,6,10) and the distance to that corner is d(S1) = (0, 4, 4).
At each step we take the maximal-space with the minimum distance
to a corner of the container and use the volume of the space as a tie-
breaker. If we have a second maximal-space S2 = {(1, 1, 2), (4, 4, 9)},
we have dist(S1) = (0, 4, 4) and dist(S2) = (1, 1, 1). From among these
spaces we would choose space S1 to be filled with boxes. At each step,
the chosen space will be denoted by S∗.

The corner of the maximal-space with the lowest distance to a corner of
the container will be the corner in which the boxes will be packed. The
reason behind that decision is to first fill the corners of the container,
then its sides and finally the inner space.

• Step 2: Choosing the boxes to pack

Once a maximal-space S∗ has been chosen, we consider the types of
boxes i of B fitting into S∗ in order to choose which one to pack. If
qi > 1, we consider the possibility of packing a column or a layer, that
is, packing several copies of the box arranged in rows and columns, such
that the number of boxes in the block does not exceed qi. In Figures
3 and 4 we can see different possibilities for packing a box type i with

5

1 2

31 4

6

5

Figure 2: Maximal-spaces in two dimensions

qi = 12. Figure 3 shows alternatives for packing a column of boxes,
while in Figure 4 we consider different ways of packing a layer with this
box type. If some rotations of the pieces are allowed, the corresponding
configurations will be considered.

(a) Axis X (b) Axis Y (c) Axis Z

Figure 3: Three different alternatives for a column

Two criteria have been considered to select the configuration of boxes:

i The block of boxes producing the largest increase in the objective
function. This is a greedy criterion in which the space is filled with

6

(a) Axis XY (b) Axis YX (c) Axis XZ

(d) Axis ZX (e) Axis YZ (f) Axis ZY

Figure 4: Six different alternatives for a layer

the block producing the largest increase in the volume occupied
by boxes.

ii The block of boxes which fits best into the maximal-space. We
compute the distance from each side of the block to each side of
the maximal-space and order these distances in a vector in non-
decreasing order. The block is chosen using again the lexicographi-
cal order. We can see an example in Figure 5, in which we consider
several alternatives for filling an empty space of (20, 20, 10). The
block (a) completely fills the space and its distance is (0,0,0); the
block (b) completely fills one side of the space and its distance is
(0,0,9); for the block (c), only its height matches the space height
and its distance is (0,2,7); finally, none of the dimensions of block
(d) matches the space dimensions and its distance is (2,2,3).

For both criteria, ties are broken by choosing the configuration with the
minimum number of boxes. In Section 4 we test both criteria and make
a decision about which one will be used in the final implementation.

After choosing a block with ri boxes, we update P with the type i and
the number of boxes packed and set qi = qi − ri. If qi = 0, we remove
piece i from the list B.

• Step 3: Updating the list L

Unless the block fits into space S∗ exactly, packing the block produces

7

(a) (0,0,0) (b) (0,0,9) (c) (0,2,7) (d) (2,2,3)

Figure 5: Best fit of the empty space

new empty maximal-spaces, which will replace S∗ in the list L. More-
over, as the maximal-spaces are not disjoint, the block being packed
can intersect with other maximal-spaces which will have to be reduced.
Therefore, we have to update the list L. Once the new spaces have
been added and some of the existing ones modified, we check the list
and eliminate possible inclusions. For the sake of simplicity, Figure 2
illustrates this process for a two-dimensional problem. When the sec-
ond box is packed in maximal-space 2, this space is eliminated from
the list and is replaced by two new spaces 3 and 4. When the third
piece is packed into maximal-space 4, as it is completely filled it just
disappears, but spaces 1 and 3 are also partially filled and must be
reduced, producing spaces 5 and 6.

3 GRASP Algorithm

The GRASP algorithm was developed by Feo and Resende [11] to solve
hard combinatorial problems. For an updated introduction, refer to Resende
and Ribeiro [19]. GRASP is an iterative procedure combining a constructive
phase and an improvement phase. In the constructive phase a solution is
built step by step, adding elements to a partial solution. In order to choose
the element to be added, a greedy function is computed, which is dynamically
adapted as the partial solution is built. However, the selection of the element
is not deterministic. A randomization strategy is added to obtain different
solutions at each iteration. The improvement phase, usually consisting of a
simple local search, follows the constructive phase.

3.1 The constructive phase

In our algorithm the constructive phase corresponds to the constructive
algorithm described in Section 2, introducing a randomization procedure

8

when selecting the type of box and the configuration to pack. We consider
all feasible configurations of all types of boxes fitting into S∗ and evaluate
them according to the chosen objective function (the best increase of volume
or the best fit into the space). The configuration is selected at random from
among a restricted set of candidates composed of the best 100δ% of the
blocks, where 0 ≤ δ ≤ 1 is a parameter to be determined.

It is difficult to determine the value of δ that gives the best average results.
The principle of reactive GRASP, proposed for the first time by Prais and
Ribeiro [18], is to let the algorithm find the best value of δ in a small set
of allowed values. The parameter δ is initially taken at random from a set
of discrete values {0.1, . . . , 0.8, 0.9}, but after a certain number of iterations,
the relative quality of the solutions obtained with each value of δ is taken into
account and the probability of values consistently producing better solutions
is increased. The procedure is described in Figure 6, following Delorme et
al. [9]. In this figure the parameter α is fixed at 10, as in [18].

3.2 Improvement phase

Each solution built in the constructive phase is the starting point for a
procedure in which we try to improve the solution. The procedure proposed
here consists of eliminating the final k% blocks of the solution (for instance,
the final 50%) and filling the empty spaces with the deterministic constructive
algorithm. At Step 2 of the constructive algorithm we again consider the two
different objective functions described in Section 2, the largest increase in the
volume used and the best fit into the empty maximal-space being considered.

The improvement phase is only called if the objective function value of
the solution of the constructive phase V ≥ Vworst +0.50(Vbest−Vworst), where
Vworst and Vbest correspond to the worst and best objective function values
of solutions obtained in previous GRASP iterations.

4 Computational experiments

The above algorithm was coded in C++ and run on a Pentium Mobile at
1500 MHz with 512 Mbytes of RAM. In order to assess the relative efficiency
of our algorithm we have compared it with the most recent and efficient
algorithms proposed for the container loading problem.

9

Initialization:

D = {0.1, 0.2, . . . , 0.9}, set of possible values for δ

Vbest = 0; Vworst = ∞

nδ∗ = 0, number of iterations with δ∗, ∀ δ∗ ∈ D.

Sumδ∗ = 0, sum of values of solutions obtained with δ∗.

P (δ = δ∗) = p δ∗ = 1/|D| ,∀ δ∗ ∈ D

numIter = 0

While (numIter < maxIter)

{

Choose δ∗ from D with probability p δ∗ .

nδ∗ = nδ∗ + 1

numIter = numIter + 1

Apply Constructive Phase with δ∗obtaining solution S
with objective value V

Apply Improvement Phase obtaining solution S ′ with
value V ′

If V
′

> Vbest then Vbest = V
′

.

If V
′

< Vworst then Vworst = V
′

Sumδ∗ = Sumδ∗ + V
′

If mod(numIter, 500) == 0 :

evalδ =
(

meanδ − Vworst

Vbest − Vworst

)α

∀δ ∈ D

p δ =
evalδ

(

∑

δ
′
∈D

eval
δ
′

) ∀δ ∈ D

}

Figure 6: Reactive Grasp

10

4.1 Test problems

The tests were performed on 1500 problems generated by Bischoff and Ratcliff
[2] and Davies and Bischoff [8]. The 1500 instances are organized into 15
classes of 100 instances each. The number of box types increases from 3 in
BR1 to 100 in BR15. Therefore, this set covers a wide range of situations,
from weakly heterogenous to strongly heterogenous problems. The number of
boxes of each type decreases from an average of 50.2 boxes per type in BR1 to
only 1.30 in BR15. The total volume of the boxes is on average 99.46% of the
capacity of the container, but as the boxes’ dimensions have been generated
independently of the container’s dimensions, there is no guarantee that all
the boxes of one instance can actually fit into the container. Therefore,
this figure has to be used as an upper bound (probably quite loose) on the
maximum percentage of volume which the boxes can fill.

Following the presentation of authors with whom we compare our re-
sults, in the tables of this computational experiment section for each class
we present the average value of the solutions obtained on its 100 instances.

4.2 Choosing the best strategies

Table 1 compares the results obtained by the constructive algorithm of Sec-
tion 2, when the block to pack is selected according to each one of the four
strategies considered in Step 2, obtained by combining the two objective
functions (volume, best-fit) with the two types of configurations (columns,
layers). This table, like all other tables in this section, shows the percent-
ages of container volume occupied by boxes in the solution. The tables also
show the aggregate results for just the first seven classes, in order to compare
with authors who only use these classes in their computational experience.
The results of Table 1 have been obtained on the complete set of 1500 test
instances. Therefore, they can be directly compared with other algorithms.
If we compare them with the constructive and metaheuristic algorithms in
Table 5, we can see that our initial simple constructive procedure can already
compete with these algorithms, especially for strongly heterogeneous classes.

In order to choose the best combination of configuration and objective
function we apply statistical analysis to the data summarized in Table 1.
First, we use multivariate analysis of variance for repeated measures, con-
sidering that for each instance we have the results obtained by the four
strategies. These strategies define the intra-subject factor, while the instance
classes define the inter-subject factor. This analysis allows us to consider sep-
arately the effect of the strategies and the instance classes on the results ob-
tained and also to make pairwise comparisons. As this analysis requires some

11

normality conditions, we also perform a non-parametric analysis for related
measures, the Friedman test, and the Wilcoxon test for pairwise comparisons.
Both types of tests show that the effect of the different algorithmic strategies
is statistically very significant (p < 0.001). The pairwise comparisons also
show significant differences for each pair of strategies. These conclusions are
illustrated in Figure 7. The use of the criterion Best Fit for the objective
function produces results which are significantly worse than using an objec-
tive function based on the increase in the volume occupied. With this ob-
jective function, building layers is significantly better than building columns,
but this difference only corresponds to the weakly heterogeneous instances
of the first classes. For strongly heterogeneous problems, with few copies of
each box type, building layers is almost equivalent to building columns and
the results are very similar. In fact, over the 1500 instances, building layers
gets better results in 833 cases, while building columns obtains better results
in 623 and there are 44 ties. A first consequence of this analysis is that we
will use the objective function based on the increase of volume and we will
build layers of boxes when filling empty spaces.

Columns Layers
Best-fit Volume Best-fit Volume

BR1 82,36 82,14 85,33 84,34

BR2 82,22 82,93 85,15 84,57

BR3 81,96 84,53 85,40 85,92
BR4 81,97 85,19 85,48 86,71
BR5 82,39 85,16 85,49 86,52
BR6 82,83 85,55 84,70 86,87
BR7 83,08 86,16 84,75 86,31
BR8 83,35 86,23 84,12 86,35
BR9 83,75 86,00 83,89 86,29
BR10 83,32 86,04 84,18 85,84

BR11 83,54 85,90 83,59 85,99
BR12 83,52 85,69 83,94 85,82
BR13 83,62 85,47 83,75 85,58
BR14 83,30 85,45 83,71 85,50
BR15 82,82 85,67 83,93 85,73
Mean B1-B7 82,40 84,52 85,19 85,89
Overall mean 82,94 85,21 84,49 85,89
*The best values appear in bold

Table 1: Constructive phase: selecting the configuration

We have also tested whether the new distance defined in Step 1 of the
constructive algorithm, denoted as lexicographical distance, really is better
than the usual Euclidean distance. Figure 8 shows the results obtained with
both distances. The statistical tests mentioned above, when applied to these
data, show that using the new distance for selecting the space to fill produces
significantly better results that using the classical Euclidean distance (p <
0.001).

12

81

82

83

84

85

86

87

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Instance class

%
 V

o
lu

m
e Columns - Fit

Columns - Volume

Layers - Fit

Layers - Volume

Figure 7: Comparing objectives and strategies

In order to choose the best strategies for the GRASP algorithm, we have
done a limited computational study using only the first 10 instances of each
class of problems and setting a limit of 5000 iterations. Hence, the results of
Tables 2 and 3 cannot be compared with other algorithms.

Table 2 explores possible values for the percentage of removed blocks in
the improvement procedure. The values considered are 10%, 30%, 50%,
70% and 90%, as well as a strategy consisting of choosing this value at
random from [25%,75%]. We again use the parametric ANOVA procedure
and the non-parametric Friedman test to compare these values. The pairwise
comparisons distinguish strategies removing 10% and 30% as significantly
worse than the others, but between the other four values, 50%, 70%, 90% or
at random from [25%,75%], there are no significant differences. Therefore,
we choose the value 50% because it requires less computational effort and
therefore less computing time.

The good results obtained when removing high percentages of the blocks
may seem strange at first sight. One explanation could be that the quality of
the solutions depends critically on the layout of the first boxes packed. The
randomized constructive phase provides a wide set of alternatives for these
first packing steps. For the remaining boxes, at each iteration we have two
alternatives: the one obtained by continuing with the randomized procedure
and the one obtained by completing the solution in a deterministic way. The
overall results show a significant improvement when the two alternatives are
combined.

Finally, in Table 3 we compare three different improvement methods,
differing in the objective function used when filling the container again with

13

81

82

83

84

85

86

87

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Instance class

%
 V

ol
um

e

Euclidean

Lexicographic

Figure 8: Comparing distances for selecting the space to fill

the deterministic algorithm. The first one uses volume, the second the best-fit
criterion and the third uses both criteria, repeating the procedure twice. The
statistical tests show that there are very significant differences between them,
but the main reason for that result is the relatively poor performance of the
best-fit criterion, as can be seen in Figure 9. If we eliminate this alternative
and compare the other two strategies, the differences are not clear. The
Wilcoxon test gives a p−value of 0.039. This is mainly due to the fact that in
classes 7 to 15 both strategies produce very similar results. However, Figure
9 shows and the tests confirm that for classes 1 to 6 there is a significant
difference in favor of the strategy using both criteria. As the increase in
running time is not too large and we are looking for an algorithm working
well for all classes, we decided to use this strategy in the final implementation.

4.3 Studying the random component of the algorithm

The GRASP algorithm has a random component in the constructive phase.
In the experiments in the previous subsection each instance was run only
once, but in order to assess the effect of the associated randomness, we run
the algorithm 10 times for each of the first 10 instances of each class, with
a limit of 5000 iterations per run. The results are summarized in Table 4.
The second column shows the results when running the algorithm just once.
Columns 3 to 6 show the results for 5 runs and columns 7 to 8 the results
of 10 runs. Finally, column 10 shows the results obtained by running the
algorithm only once, but with a limit of 50000 iterations.

The ranges of variation between the best and the worst solutions obtained

14

Removing Pieces
Problem 10% 30% 50% 70% 90% Random 25%-75%
BR1 92,55 92,36 92,65 92,63 92,27 92,64

BR2 93,11 93,42 93,44 93,38 93,25 93,44
BR3 92,88 93,05 93,32 93,25 93,10 93,33
BR4 92,60 92,91 92,87 92,91 92,56 93,00
BR5 92,31 92,52 92,64 92,51 92,11 92,41

BR6 91,76 92,11 92,44 92,49 91,85 92,37

BR7 91,12 91,34 91,59 91,73 91,38 91,46

BR8 89,69 90,21 90,83 91,09 90,86 91,05

BR9 88,97 89,76 90,42 90,63 90,66 90,33

BR10 88,36 89,16 89,79 89,78 90,19 89,84

BR11 88,02 88,44 89,34 89,69 89,66 89,31

BR12 87,15 88,12 88,85 89,13 89,24 88,95

BR13 86,72 87,67 88,15 88,25 88,91 88,31

BR14 86,82 87,62 88,36 88,45 88,71 88,21

BR15 86,85 87,89 88,25 88,55 88,75 88,29

Mean B1-B7 92,33 92,53 92,71 92,70 92,36 92,67

Overall mean 89,93 90,44 90,86 90,96 90,90 90,86

*The best values appear in bold

Table 2: Percentage of removed pieces

Without Objective function for the improvement method
improving Volume Best-fit Volume+Best-fit

Problem Vol.(%) Vol.(%) Time Vol.(%) Time Vol.(%) Time
BR1 92,09 92,65 0,88 92,84 1,04 92,95 1,11

BR2 92,86 93,46 1,85 93,79 2,17 93,95 2,39

BR3 92,24 93,32 3,50 93,21 3,87 93,54 4,39

BR4 91,95 92,87 5,06 93,21 5,63 93,05 6,53

BR5 91,36 92,59 6,43 93,02 7,09 93,01 8,21

BR6 91,11 92,41 9,40 92,20 10,42 92,72 12,14

BR7 90,13 91,58 14,51 91,34 15,99 91,62 18,80

BR8 89,20 90,87 29,65 90,39 32,35 90,74 38,69

BR9 88,08 90,42 45,74 89,61 50,16 90,43 60,44

BR10 87,31 89,79 71,20 89,02 77,54 89,69 95,94

BR11 86,83 89,37 98,60 88,64 107,33 89,29 135,12

BR12 86,72 88,95 134,79 88,09 147,07 88,95 182,96

BR13 86,16 88,15 176,94 87,91 194,19 88,22 240,71

BR14 85,99 88,36 230,60 87,34 253,25 88,25 326,26

BR15 86,26 88,30 284,83 87,33 311,56 88,30 387,41

Mean B1-B7 91,68 92,70 5,95 92,80 6,60 92,98 7,88

Overall mean 89,22 90,87 74,27 90,53 81,31 90,98 99,75

*The best values appear in bold

Table 3: Results of improvement methods

15

87

88

89

90

91

92

93

94

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Instance class

%
 V

ol
um

e Volume

Best_Fit

Volume+Best_Fit

Figure 9: Comparing improvement methods

when running the algorithm 5 or 10 times can be obtained by subtracting
columns 2 and 3, and columns 5 and 6. The average range for 5 runs is 0.80%
and for 10 runs is 1.06%. Even with this iteration limit of 5000 iterations,
the algorithm is very stable. If the iteration limit is increased, this variation
is lower still.

Table 4 also indicates, and the statistical tests confirm, that if we choose
the average of the occupied volume as the measure for showing the per-
formance of the algorithms, the average volumes obtained by running the
algorithm once do not differ significantly from those obtained if we run the
algorithm five or ten times and then calculate the averages of those five or
ten results (columns 5 and 9).

Obviously, running the algorithm 10 times and keeping the best solution
produces better results than running it just once, but the interesting question
is whether this extra computing effort of running the algorithm 10 indepen-
dent times would not be better used by running it once with a limit of 50000
iterations. If the GRASP iterations were independent, the results should be
the same. In our implementation, the iterations are linked by the Reactive
GRASP procedure in which the probabilities of the values of parameter δ
are updated after a given number of iterations. The results of the previous
iterations should guide this procedure to favor values of δ producing best
solutions. Therefore, the results obtained using the algorithm once up to
50000 iterations should be at least equal to and possibly better than those
obtained by running it 10 independent times. The results of Table 4 show
a slight advantage of the algorithm with 50000 iterations, but the statisti-
cal tests performed on the results summarized in columns 6 and 10 do not

16

1 run 5 runs 10 runs 1 run
5000 iter 5000 iter 5000 iter 50000 iter

Min Max Mean Min Max Mean

BR1 92.95 92.40 93.11 92.71 92.29 93.41 92.82 93.42

BR2 93.95 93.68 94.22 94.00 93,51 94.28 93.95 94.28

BR3 93.54 93.08 94.04 93.58 92.97 94.10 93.46 94.05

BR4 93.05 92.71 93.61 93.25 92.62 93.82 93.26 94.03

BR5 93.01 92.59 93.48 93.00 92,57 93.68 93.06 93.79

BR6 92.72 92.32 93.21 92.72 92,12 93.31 92.66 93.21

BR7 91.62 91.32 92.23 91.70 91,24 92.51 91.74 92.55

BR8 90.74 90.38 91.37 90.81 90.33 91.71 90.87 91.66

BR9 90.43 90.11 90.89 90.45 90.03 91.05 90.45 91.12

BR10 89.69 89.38 90.12 89.70 89.30 90.21 89.72 90.50

BR11 89.29 89.05 89.85 89.36 88.93 90.01 89.37 90.02

BR12 88.95 88.57 89.35 88.95 88.47 89.61 88.95 89.43

BR13 88.22 87.99 88.77 88.34 87.89 88.82 88.28 88.79

BR14 88.25 87.94 88.66 88.24 87.86 88.73 88.21 88.77

BR15 88.23 88.08 88.66 88.33 88.04 88.79 88.35 88.89

Mean BR1-BR7 92.98 92.59 93.41 92.99 92.48 93.59 92.99 93.62

Mean BR1-BR15 90.98 90.64 91.44 91.01 90.54 91.60 91.01 91.63

Table 4: Studying the algorithm’s randomness

show any significant difference between them. Therefore, we can draw two
conclusions. First, instead of running the algorithm 10 times and reporting
the best results obtained, we can run it once with 50000 iterations. Second,
the learning mechanism of the Reactive GRASP does not seem to have any
significant effect on the long term quality of the solutions. The preliminary
experiments we ran showed that this way of determining δ performed better
than other alternatives, but its effect seems to diminish in the long run.

4.4 Comparison with other algorithms

As a consequence of the results obtained in the exploratory experiments de-
scribed in previous subsections, for the following computational tests the
constructive phase of the GRASP will use the lexicographical distance at
Step 1, building layers of boxes at Step 2 and an objective function based on
the increase of volume. The value of the parameter δ in the randomization
procedure will be determined by the Reactive GRASP strategy. In the im-
provement phase, the final 50% of the blocks will be removed and the empty
space filled twice, once with each objective function.

The way in which our algorithm packs the boxes, starting by packing from
the corners, then the sides and finally the center of the container, does not
guarantee cargo stability and does not produce a workable packing sequence.
Therefore, a postprocessing phase in which the solution is compacted is ab-
solutely necessary. We have developed a compacting procedure which takes
each box from bottom to top and tries to move it down, along axis Z, until it

17

is totally or partially supported by another box. Then, a similar procedure
takes boxes from the end to the front of the container and tries to move
them to the end, along axis Y . Finally, there is a procedure moving them
from left to right, along axis X. The three procedures are called iteratively
while there are boxes which have been moved. When the compacting phase
is finished, the empty spaces are checked for the possibility of packing some
of the unpacked boxes. In the final solution every box is supported totally
or partially by other boxes and the boxes are given in an order in which they
can really be packed into the container.

The complete computational results on the whole set of 1500 instances
appear in Tables 5 and 6. These two tables include a direct comparison
with the results of the best algorithms proposed in the literature, which have
benchmarked themselves against these test problems. Therefore, we compare
our algorithm against 16 approaches. Among them we can distinguish two
types of algorithms: algorithms that pack the boxes so that they are com-
pletely supported by other boxes; and algorithms that do not consider this
constraint. In the first group we have the following algorithms:

• H BR: a constructive algorithm by Bischoff and Ratcliff [2];

• H B al: a constructive algorithm by Bischoff, Janetz and Ratcliff [3];

• H B: a heuristic approach by Bischoff [4];

• GA GB: a genetic algorithm by Gehring and Bortfeldt [12];

• TS BG: a tabu search approach by Bortfeldt and Gehring [5];

• H E: a greedy constructive algorithm with an improvement phase by
Eley [10];

• G M: a GRASP approach by Moura and Oliveira [16].

In the second group we have the following algorithms:

• HGA BG: a hybrid genetic algorithm by Gehring and Bortfeldt [6];

• PGA GB: a parallel genetic algorithm by Gehring and Bortfeldt [13];

• PTSA: a parallel tabu search algorithm by Bortfeldt, Gehring and
Mack [7];

• TSA: a tabu search algorithm by Bortfeldt, Gehring and Mack [7];

18

• SA: a simulated annealing algorithm by Mack, Bortfeldt and Gehring
[15];

• HYB: a hybrid algorithm by Mack, Bortfeldt and Gehring [15];

• PSA: a parallel simulated annealing algorithm by Mack, Bortfeldt and
Gehring [15];

• PHYB: a parallel hybrid algorithm by Mack, Bortfeldt and Gehring
[15];

• PHYB XL: a massive parallel hybrid algorithm by Mack, Bortfeldt
and Gehring [15];

In Table 5 we compare our GRASP algorithm (5000 iterations) with
fast constructive procedures and metaheuristic algorithms requiring mod-
erate computing times. The computing times cannot be compared directly
because each author has used a different computer. In general, the run-
ning times for all approaches are lower for the weakly heterogenous problems
and increase with the number of different box types. The times required by
algorithms H B al [3] and H BR [2] are not reported, but obviously these
algorithms are very fast. H B [4] was run on a Pentium IV at 1.7 GHz, with
times ranging on average from 26.4 seconds for BR1 to 321 seconds for BR15.
H E [10] ran on a Pentium at 200 Mhz with a time limit of 600 seconds which
was reached only for 26 out of the 700 instances of BR1-BR7. Algorithms
GA GB, TS GB and HGA GB were run on a Pentium at 400 Mhz, with
average times of 12, 242 and 316 seconds respectively. The parallel PGA ran
on five Pentiums at 400 Mhz and took on average 183 seconds. Finally, G M
was run on a Pentium IV at 2.4 GHz, with an average time of 69 seconds.

We can compare the fast constructive algorithms H B al and H BR with
our constructive algorithm, whose results appear in the last column of Table
1, using a t-test. We have tested for each class whether the average volume
obtained by our algorithm is significantly better than the reported averages
of H B al and H BR. The statistical tests conclude that for each class our
constructive algorithm outperforms both procedures, except for class BR1,
for which our results do not differ significantly from those obtained by H BR
(p = 0.12).

The other algorithms in Table 5 have been compared with our GRASP
algorithm. Again, we have compared the average results obtained with our
algorithm on the 100 instances of each class with the averages reported for
each class by the other algorithms. The statistical tests confirm that our
GRASP algorithm gets significantly better results for every class. The dif-
ferences are more important for strongly heterogeneous problems. In fact,

19

as Bortfeldt et al. state in their papers, their algorithms are best suited for
weakly heterogeneous classes. In particular, their Tabu Search algorithm,
TS BG, obtains very good results in relatively short times in the first seven
classes. In any case, the Bortfeldt et al. algorithms will be more adequately
compared in Table 6, where their more recent and powerful procedures are
considered.

Table 6 compares GRASP with more recent metaheuristics that require
longer computing times, especially in their parallel versions. In this case,
we have allowed our algorithm to run up to an extremely high number of
iterations, 200000, to assess its performance for longer running times. The
last row of the table shows the reported average running times. They are in-
cluded only as a reference, because the algorithms have been run on different
computers. Mack et al. [15] use a Pentium-PC at 2Ghz for the serial pro-
cedures, a LAN of four of these computers for the parallel implementation
of PSA and PHYB and a LAN of sixty-four computers for the PHYB.XL
implementation.

An approximate comparison, according to the reported running times,
would be to compare our version of the GRASP algorithm with 50000 it-
erations with the serial methods and GRASP with 200000 iterations with
the parallel methods. In the first set of comparisons, we compare the best
serial method, HYB, with our GRASP with 50000 iterations. The statistical
tests show that our algorithm outperforms the serial methods for all classes,
except for BR1 in which the p − value is 0.052 and the equality cannot be
rejected at a level α = 0.05. In a second series of comparisons, we com-
pare the best results of the three parallel methods, PTSA, PSA and PHYB
with our GRASP with 200000 iterations. Again, our algorithm produces sig-
nificantly better results for all classes (p < 0.01), except for BR1 in which
the p − value is 0.114. Finally, we compare the massively parallel method
PHYB.XL with GRASP with 200000 iterations. In this case, equality cannot
be rejected for classes BR1, BR2 and BR5 (with p− values of 0.48, 0,52 and
0.66), PHYB.XL is better for classes BR3 and BR4 and GRASP is better for
classes BR6 and BR7. Again, the Mack et al. algorithms work very well for
weakly heterogeneous classes but our procedure obtains progressively better
results when heterogeneity increases.

5 Conclusions

We have developed a new GRASP algorithm which obtains good results for
all classes of test instances, from weakly to strongly heterogeneous problems,
especially for the latter. We think that these good results are due to three

20

Problem class H B al H BR GA GB TS BG HGA BG PGA GB H B H E G M GRASP Time
BR1 81,76 83,37 86,77 92,63 87,81 88,1 89,39 88 89,07 93,27 1,27

BR2 81,7 83,57 88,12 92,7 89,4 89,56 90,26 88,5 90,43 93,38 2,32

BR3 82,98 83,59 88,87 92,31 90,48 90,77 91,08 89,5 90,86 93,39 4,62

BR4 82,6 84,16 88,68 91,62 90,63 91,03 90,9 89,3 90,42 93,16 6,52

BR5 82,76 83,89 88,78 90,86 90,73 91,23 91,05 89 89,57 92,89 8,58

BR6 81,5 82,92 88,53 90,04 90,72 91,28 90,7 89,2 89,71 92,62 12,23

BR7 80,51 82,14 88,36 88,63 90,65 91,04 90,44 88 88,05 91,86 19,25

BR8 79,65 80,1 87,52 87,11 89,73 90,26 — — 86,13 91,02 38,20

BR9 80,19 78,03 86,46 85,76 89,06 89,5 — — 85,08 90,46 63,10

BR10 79,74 76,53 85,53 84,73 88,4 88,73 — — 84,21 89,87 97,08

BR11 79,23 75,08 84,82 83,55 87,53 87,87 — — 83,98 89,36 136,50

BR12 79,16 74,37 84,25 82,79 86,94 87,18 — — 83,64 89,03 183,21

BR13 78,23 73,56 83,67 82,29 86,25 86,7 — — 83,54 88,56 239,80

BR14 77,4 73,37 82,99 81,33 85,55 85,81 — — 83,25 88,46 307,62

BR15 75,15 73,38 82,47 80,85 85,23 85,48 — — 83,21 88,36 394,66

Mean B1-B7 81,97 83,38 88,30 91,26 90,06 90,43 90,55 88,79 89,73 92,94 7,83

Mean 80,17 79,2 86,39 87,15 88,61 88,97 — — 86,74 91,05 101,00

*The best values appear in bold

Table 5: GRASP computational results. Part I

21

Serial methods Parallel methods GRASP
Class TSA SA HYB PTSA PSA PHYB PHYB.XL 5000 Iter 50000 Iter 200000 Iter
BR1 93.23 93.04 93.26 93.52 93,24 93,41 93,70 93,27 93,66 93,85
BR2 93.27 93.38 93.56 93.77 93,61 93,82 94,30 93,38 93,90 94,22

BR3 92.86 93.42 93.71 93.58 93,78 94,02 94,54 93,39 94,00 94,25

BR4 92.40 92.98 93.30 93.05 93,40 93,68 94,27 93,16 93,80 94,09

BR5 91.61 92.43 92.78 92.34 92,86 93,18 93,83 92,89 93,49 93,87
BR6 90.86 91.76 92.20 91.72 92,27 92,64 93,34 92,62 93,22 93,52
BR7 89.65 90.67 91.20 90.55 91,22 91,68 92,50 91,86 92,64 92,94
Mean volume 92.00 92,53 92,86 92,70 92,91 93,20 93,78 92,94 93,53 93,82
Mean time 38 72 205 121 81 222 596 8 77 302

*The best values appear in bold

Table 6: GRASP computational results. Part II

22

main reasons. First, the use of maximal-spaces allows us to have, at each
step, the best possible spaces into which a box can fit. Second, the way in
which the spaces are filled, though it seems counterintuitive, keeps maximal
empty spaces larger and available for packing new boxes. Third, the GRASP
scheme permits the combination of randomized and deterministic packing
strategies. We have performed a preliminary computational test to deter-
mine the best strategies and parameter values from among those we have
designed. The resulting algorithm produces good quality solutions in short
computing times and can improve them if longer times are available. By
adding a post processing phase in which the solutions are compacted, they
become more stable and are sometimes even improved in terms of volume
utilization. Nevertheless, more complex metaheuristics, based on the same
ideas but adding more powerful improvement schemes, could improve the
results further. The next phase of our research will address this aspect.

Acknowledgements

This study has been partially supported by the Spanish Ministry of Sci-
ence and Technology, DPI2005-04796, and by Project PBI-05-022, Consejeria
de Ciencia y Tecnologia, Junta de Comunidades de Castilla-La Mancha.

We also thank professor Ana Moura, from the Polytechnic Institute of
Leiria, Portugal, for the fruitful discussions on this work.

References

[1] Bischoff, E.E. and Marriot, M.D. (1990) A Comparative Evalu-
ation of Heuristics for Container Loading, European Journal of Opera-

tional Research, 44, 267-276.

[2] Bischoff, E.E. and Ratcliff, M.S.W. (1995) Issues in the Devel-
opment of Approaches to Container Loading, Omega, 23, 377–390.

[3] Bischoff, E.E. Janetz, F. and Ratcliff, M.S.W. (1995) Load-
ing Pallets with Nonidentical Items, European Journal of Operational

Research, 84, 681–692.

[4] Bischoff, E.E. (2006) Three dimensional packing of items with lim-
ited load bearing strength, European Journal of Operational Research,
168, 952–966.

23

[5] Bortfeldt, A. and Gehring, H. (1998) A Tabu Search Algorithm
for Weakly Heterogeneous Container Loading Problems, OR Spectrum,
20, 237–250.

[6] Bortfeldt, A. and Gehring, H. (2001) A Hybrid Genetic Algo-
rithm for the Container Loading Problem, European Journal of Opera-

tional Research, 131, 143–161.

[7] Bortfeldt, A. Gehring, H. and Mack, D. (2003) A Parallel Tabu
Search Algorithm for Solving the Container Loading Problem, Parallel

Computing 29, 641–662.

[8] Davies, A.P. and Bischoff, E.E. (1998) Weight distribution consid-
erations in container loading. Working Paper, European Business Man-
agement School, Statistics and OR Group, University of Wales, Swansea.

[9] Delorme, X. and Gandibleux, X. and Rodriguez, J. (2003)
GRASP for set packing problems, European Journal of Operational Re-

search 153, 564-580.

[10] Eley, M. (2002) Solving Container Loading Problems by Block Ar-
rangement, European Journal of Operational Research, 141, 393–409.

[11] Feo, T. and Resende, M.G.C. (1989) A Probabilistic Heuristic for
a Computationally Difficult Set Covering Problem, Operations Research

Letters 8, 67-71.

[12] Gehring, H. and Bortfeldt, A. (1997) A Genetic Algorithm for
Solving the Container Loading Problem, International Transactions in

Operational Research, 4, 401–418.

[13] Gehring, H. and Bortfeldt, A. (2002) A Parallel Genetic Algo-
rithm for Solving the Container Loading Problem, International Trans-

actions in Operational Research, 9, 497–511.

[14] George, J. A. and Robinson, D. F. (1980) A Heuristic for Packing
Boxes into a Container, Computers and Operations Research, 7, 147-156.

[15] Mack, D. Bortfeldt, A. and Gehring, H. (2004) A Parallel
hybrid local search algorithm for the container loading problem, Inter-

national Transactions in Operational Research 11, 511–533.

[16] Moura, A. and Oliveira, J.F. (2005) A GRASP approach to the
Container-Loading Problem IEEE Intelligent Systems, 20, 50-57.

24

[17] Pisinger, D. (2002) Heuristics for the container loading problem,
European Journal of Operational Research, 141, 382-392.

[18] Prais, M. and Ribeiro, C.C. (2000) Reactive GRASP: An applica-
tion to a matrix decomposition problem in TDMA traffic assignment,
INFORMS Journal on Computing 12, 164-176.

[19] Resende, M.G.C and Ribeiro, C.C. (2003) Greedy Randomized
Adaptive Search Procedures, in Handbook of Metaheuristics, F.Glover
and G.Kochenberger, Eds., Kluwer Academic Publishers, pp. 219-249.

[20] Ratcliff, M. S. W. and Bischoff, E. E. (1998) Allowing for weight
considerations in container loading, OR Spectrum, 20, 65-71.

[21] Wäscher, G. and Haussner, H. and Schumann, H. An improved
typology of cutting and packing problems, European Journal of Opera-

tional Research, in Press.

25

