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Abstract

Bulk service queues and simulation tools have been used to analyze the congestion of the

waiting list for renal transplants in the Páıs Valencià, Spain, from January 1997 to December

1999. The main characteristics of the queue model are the arrivals of patients onto the waiting

list, the process of cadaveric donations, and the number of kidneys, either one or two, provided

by each donor. Bayesian inference is considered in order to estimate the acceptance, donation

and transplantation rates. Predictions are provided for the number of new people entering the

waiting list and for the number of donors and transplants during a period of time . A first

measure of the whole congestion of the system, by comparing the acceptance rate with the

transplantation rate, is also discussed.

KEY WORDS: Bayesian statistics; Health services; Queueing models; Renal transplants; Wait-

ing lists.

1 Introduction

In this paper we present a first analysis of the congestion of the waiting list for renal transplants
in the Páıs Valencià, one of the seventeen autonomous regions into which Spain is divided. This
study makes use of queueing models, Bayesian statistics and simulation tools.

Queueing systems occur any time customers demand a service from some facility with servers.
They are the obvious probabilistic models when dealing with scenarios of congestion and blockages.
Therefore, it seems very natural to think of a waiting list for a medical transplant as a queueing
system: patients needing a kidney transplant wait in a queue to be served and leave the system
when they receive a transplant.

Queueing models have a long tradition (Bailey, 1952 [1]) as a very useful tool for evaluating,
at least approximately, the performance of health care systems in which waiting lists occur: ap-
pointment systems and waiting list management in outpatient clinics (Jackson et al., 1964 [2],
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Worthington, 1991, [3] etc.), managed markets for hospital treatment (Shwartz and Lenard, 1994,
[4], Iversen, 2000, [5]), planning the capacity of emergency services (Ridge et al., 1998 [6]), design-
ing, planning and staffing service units (Gorunescu et al., 2002 [7]), etc.. Queueing systems are
also a valuable tool when analyzing waiting lists for transplants. Zenios (1999) [8] has developed
a multiclass queueing model with reneging to represent a transplant waiting list and has also par-
ticipated in many papers dedicated to kidney allocation problems in waiting lists in the United
States. Su and Zenios (2002) [9] and Zenios et al. (2002) [10] are just some of his more relevant
papers on the subject.

Waiting lists for medical transplants are such a very serious social and health care problem
that they have attracted a great variety of quantitative studies with different objectives and tech-
nical procedures: David and Yechiali (1985) [11] analyze the decision problem associated with
transplanting a kidney to a potential recipient within the general setting of the theory of optimal
stopping; Davies and Roderick (1998) [12] use discrete event simulation to analyze the evolution
of the number of patients needing a renal transplant in the United Kingdom (UK) over a period
of 15 years; Smits et al. (1998) [13] use the competing risk method and survival tools in order to
estimate the chance of a transplant within a period of time after registration; Gibbons et al. (2003)
[14] analyse geographical differences in the total amount of time a patient waits for an organ in
the framework of a general study of the National Academy of Sciences at the request of the US
Congress.

This paper presents an analysis of the waiting list for renal transplants in the Páıs Valencià
within the framework of a single-server bulk service queueing model. This particular model allows
us to jointly analyze the process by describing the number of patients with end-stage renal-disease
who were accepted for a renal transplant and the main characteristics of the donor’s source. This
is a real-world problem and our essential information about it are data gathered within a given
period of time: the number of patients entering the waiting list, the number of donors and the
number of transplants. When using stochastic models to analyze real problems with data we need
to use statistical methods in order to connect the real world of the data with the probabilistic one.

Compared to the consolidated tradition of Queueing Theory, the statistical analysis of queueing
systems is a recent and unexplored field of research. Most of the papers in this area are in the
framework of the frequentist approach but in recent years there has been increasing interest in
Bayesian methods. See Bhat et al. (1997) [15] for a very good review on this topic, Armero
and Bayarri (1999) [16] for a discussion of the advantages and difficulties of Bayesian analyses of
queues and the recent paper by Auśın et al. (2003) [17] for a practical Bayesian modeling of the
distribution of the length of the stay in hospital in order to optimize the number of beds in service.

Bayesian statistical methods are used to estimate the parameters of the proposed model: the
expected number of new patients accepted onto the waiting list for a kidney transplant per year
(usually known as the acceptance rate), the effective donation rate and the proportion of effective
donors that provide their two kidneys. Also, we will take advantage of this knowledge in order to
provide a first measure of the congestion of the system by comparing the acceptance ratewith the
transplantation rate through the traffic intensity in the system.

This paper is organized into seven sections, this Introduction being the first one. The rest
of the paper is organized as follows. Section 2 is devoted to the available data. We explain the
difficulties involved in working with our data and we present a brief summary of them. Section
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3 deals with queueing models. We identify the main components of the waiting list in terms
of queueing elements and propose a simple, easy and preliminary model that captures the main
characteristics of the problem. In Section 4 we analyze the uncertainty involved in the admission
of new patients onto the waiting list. The process of donations and transplants to recipients is
discussed in Section 5. In these last two sections we pay special attention to predicting the number
of daily entrances, effective donations and transplants. Section 6 combines the information provided
by the arrivals and donations through the traffic intensity, the most basic measure of performance
of the congestion in the system. The paper ends with a short Section devoted to some concluding
remarks and future research.

2 The data

The National Organization of Transplants (Matesanz and Miranda, 1996 [18]) is the Spanish insti-
tution which coordinates the donation and transplantation of all types of organs, tissues and bone
marrow. This network has one coordinator in each autonomous region, who is usually a member
of the Health Authority of the Regional Government. The Páıs Valencià (see Figure 1) is one of
the Spanish autonomous regions that has taken on the management of all health services. In 1992,
the Regional Government created the Registry of Transplants with the aim of computerizing, man-
aging and keeping all the information relative to transplants in the Páıs Valencià. This registry
was structured into three sub-registries: people waiting on the list for a transplant, transplanted
patients and donors. Each sub-registry is also divided according to the type of organ or tissue.

The data in this paper have been supplied by this registry. In particular, we have collected the
daily number of patients entering the waiting list, the daily number of donors and the number of
kidneys, one or two, provided by each donor. They were registered from January 1997 to December
1999. We ruled out data before January 1997 because in 1996 a new transplant hospital joined the
network (making a total of four in the Páıs Valencià) and that modified the management of the
waiting lists.

During the period under analysis (1095 days in all), 531 new patients were accepted onto the
renal transplant waiting list. 564 kidney transplants coming from 323 donations were carried
out. This apparent discrepancy between donations and kidneys is due to the fact that a donor
can provide one or both kidneys. Specifically, we have noticed 241 double donations and only 82
single. As for transplantations, 293 out of the 564 kidneys were transplanted to incident patients
whereas the remaining where grafted onto prevalent ones.

Table 1 shows the daily frequency distribution (in terms of percentages) of the number of
patients admitted onto the waiting list, the number of donations and of transplants. It is worth
mentioning that on approximately 70% of the days there are no arrivals, but that there are a
few days (19 days in all) with more than three inputs. The sample mean of the daily number of
patients accepted for a transplant is 0.4849 patients/day, nearly 1 patient every two days, and the
variance is computed as 0.8643 patients2/day. There are almost 75 per cent of the days without
donations (and, consequently, without transplants). The sample mean and variance of the daily
donations is 0.2949, the same value for both quantities. Notice also the special behaviour of the
sample distribution of the transplants with regard to the higher percentages in the even values.
This peculiar property is due to the fact that double donations are more frequent than singles
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ones. The sample average of the daily number of transplants is 0.5151 transplants. Its variance is
0.9447 transplants2, nearly twice as big as its mean.

Figure 2 displays the cumulative daily number of arrivals, donations and transplants recorded
between January 1997 and December 1999. The growth rate corresponding to donations seems
fairly constant over time. In contrast, the cumulative polygonal for arrivals and for transplants
indicates a more irregular behaviour. In the case of the arrivals, there are some clustered data
because they are just registered on working days and also as a consequence of the heterogeneity of
the different supplier hospitals.

As we shall explain later, the daily number of arrivals and donations are the stochastic processes
that provide the queueing structure for our analysis. We have used the Kolmogorov-Smirnov test
in order to easily check the assumption of the Poisson distribution for modelling them. As we
suspected, there was no evidence against that hypothesis for the donation process (observed ks

= 0.0055, p-value = 1.0000, almost a textbook example), but there was some for the process of
arrivals (observed ks = 0.0822, p-value = 0.0011). The long right tail in the frequency distribution
of the daily arrivals seems to be principally responsible for this.

3 The queueing model

Simple waiting models are usually defined by specifying the arrival pattern, the service mechanism
and the queueing discipline. Following the specific vocabulary of queueing systems, people entering
the waiting list for a kidney are the customers. An arrival occurs when a patient-customer is
admitted onto the waiting list for a graft. When a patient is transplanted he/she immediately
leaves the system.

The identification of the service is not so evident. Remember that in queueing theory, the total
time that a customer spens in the system has to be expressed as the sum of the queueing time
and the service time. In our problem, we consider the total time spent in the system by a patient
as his/her waiting time in the list for a kidney. Consequently, we need to distinguish the service
time and the queueing time. Since the creation of the Registry of Transplants in 1992 there has
always been a waiting list in the Páıs Valencià. So there is always a patient waiting for a kidney
and for this reason, we can identify the queueing time of a patient as the time elapsed from his
arrival to the time the kidney of the preceding patient arrives. His(her) service time would be
the time elapsed from the arrival of the kidney assigned to the previous patient to the time his

(her) kidney arrives. Figure 3 shows a diagram illustrating the service mechanism with regard to
the donation process. This representation is also appropriate when the same donor provides two
kidneys. See Figure 4 for an extensive diagram of this bulk service. In a queueing system, the
discipline is the way in which the customers are selected for service. There are four transplant
team centers in the Páıs Valencià. Each available kidney is allocated to a recipient depending on
clinical and geographical criteria that follow a system from “the inside to the outside” according
to the hierarchy in Figure 5.

The activity and relationships between the patients (as possible recipients) of these centers and
the donations could be represented in terms of a managed internal market for service transplant
as presented in Iversen (2000)[5]. The queueing discipline is a decisive element when analyzing
the length of individual waiting times. In contrast, it is irrelevant when considering other types
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of variables characterizing the congestion of the queue. The traffic intensity, in which we are
interested in this paper, is a clear example of this last statement. Thus, from this point on, we
will not pursue it.

In accordance with the foregoing comments and the description of the data in Section 2, we start
this study by selecting the structure of the Markovian queueing model M/MX/1 as appropriate
for the analysis of the waiting list for renal transplants: new patients enter the waiting list daily
following, approximately, a Poisson process with unknown entrance rate λ; donors donate their
kidneys according to a Poisson process with unknown donor rate µ; each donor provides X = 2
kidneys with unknown probability θ, or, X = 1 kidney with the remaining probability 1− θ.

4 Joining the waiting list

Let us consider the Poisson process {NA(t), t ≥ 0} with parameter λ that describes the daily
number of new patients accepted for a renal transplant in the Páıs Valencià. The parameter λ

represents the daily entrance rate to the waiting list. It is unknown and we are going to estimate
it by using Bayesian statistical tools. We assume a prior situation of prior ignorance and express
this state of lack of knowledge by means of a flat prior distribution, p(λ) = λ−1. Given λ, NA(1)
is distributed as a Poisson random variable with parameter λ. Therefore, the likelihood function
of λ corresponding to arrival data will be:

l(λ) ∝
1095∏
i=1

λai e−λ

ai!
∝ λ531e−1095λ,

where ai denotes the number of new patients registered on day i and ta =
∑1095

i ai = 531 is the
total number of new arrivals onto the waiting list registered from January 1997 to December 1999.

Bayes theorem allows us to compute the posterior p(λ | data) distribution of λ easily , a Gamma
distribution Ga(λ | 531, 1095), which contains all the current information on the daily entrance

rate. In particular, the posterior expectation is E(λ | data)= 0.48493 new arrivals every day with a
posterior variance D2(λ | data)= 0.00044. The central 95% posterior interval (0.44456, 0.52704) is
very accurate due to the small variability obtained in the estimation of λ. During the years 1997,
1998 and 1999, the population in the Páıs Valencià was around 4.0372 millions. Consequently, the
expected acceptance rate (i.e. expected new patients taken on per year) reached 43.84 per million
population (pmp from now on) with (40.20, 47.65) pmp as the corresponding central 95% posterior
interval.

As important as this inference, we can deal with the prediction of the number of new patients
NA(t) admitted in a period of t days, or the time TA between two consecutive arrivals onto the
waiting list. They are observable quantities that can give complementary information about the
process of arrivals onto the waiting list. Let us start by first analyzing NA(t). Given λ, NA(t) is a
Poisson random variable with parameter λ t; its posterior predictive distribution will be:

p(NA(t) = k | data) =
∫

p(NA(t) = k | λ) p(λ | data) dλ = Gp(k | 531, 1095, t), (4.1)

where Gp(k | α, β, t) stands for the probability at k of a GammaPoisson distribution defined as:

Gp(k | α, β, t) =
βα

Γ(α)
Γ(α + k)

k!
tk

(β + t)k+α
, k = 0, 1, 2, . . . (4.2)
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Figure 6 displays the posterior predictive distribution of the daily number NA(1) of new arrivals
onto the waiting list. Its expectation is E(NA(1) | data) = 0.4849 patients, nearly one person every
two days, with a posterior variance D2(NA(1) | data) = 0.4854. It is worth pointing out the great
variability involved in this predictive stage in comparison with that in the estimation process.

Now we analyze TA, the elapsed time between two consecutive admissions onto the waiting list.
Given λ, TA is exponentially distributed with parameter λ. Thus, its posterior predictive density
is easily computed as:

pTA
(t | data) =

∫
pTA

(t | λ) p(λ | data) dλ = Gg(t | 531, 1095, 1), (4.3)

where Gg(t | α, β, n) stands for the density at t of a GammaGamma distribution as defined as:

Gg(t | α, β, n) =
βα

Γ(α)
Γ(α + n)

Γ(n)
t(n−1)

(β + t)α+n
, t > 0. (4.4)

For this predictive, we have computed E(TA | data)=2.066 days and D2(TA | data)=4.2846. In
other words, we expect approximately one new patient on the waiting list every two days, but with
great irregularities.

5 Donors and transplants

Let us first discuss the process corresponding to donors. As in the previous Section, we consider
that daily donations occur according to a Poisson process {ND(t), t ≥ 0} with unknown parameter
µ, the daily effective donation rate. With the same type of inferential process as carried out to
estimate λ and the current data of donations (a total of 323 from January 1997 to December 1999)
we have obtained the Gamma distribution Ga(323, 1095) as the posterior of µ. Therefore, we can
compute E(µ | data) = 0.2950 donations/day with a small variability, D2(µ | data) = 0.0003. If
we think in terms of the effective donation rate, defined as the annual number of donations pmp,
we will expect a total number of 26.6707 donations. As an indicator of its performance, we have
computed (23.8393, 29.6544) as the central interval with probability 0.95.

The same procedure for predicting the number of new arrivals onto the waiting list, and the
time between two consecutive arrivals, applies here to compute the posterior predictive distribution
of the number ND(t) of effective donations managed in a period of t days, and the time TD elapsed
between two sequential effective donations. Thus, ND(t) | data ∼ Gp(323, 1095, t) and TA | data ∼
Gg(325, 1095, 1).

Figure 7 shows the posterior predictive distribution of ND(t) in the case of t = 1 day. As a
summary of its behaviour we have computed its expectation as 0.295 donors and variance equal
to 0.2953 donors2. In the case of the time between two consecutive donations we would have, a
mean period of about 3.4 days between two consecutive donations with 11.63 days2 as the variance,
again, a large quantity as is usual when dealing with predictions.

Now, let us discuss the transplants. Since each donor can provide one or two of his (her) two
kidneys, the process of donors and transplants are not coincident. What is more, the number of
transplants NT (t) in a period of t days depends on the number of effective donations ND(t) in this
period and the probability θ of a double donation. Specifically, during a given period of time, the
number of transplants is the sum of the number of donors plus the number of double donations.
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This last quantity is a binomial random variable with parameters, the number of donations and
the probability of having a double donation, that is,

NT (t) | ND(t), θ ∼ ND(t) + Binomial(ND(t), θ). (5.5)

Therefore, we first estimate θ and then we address the prediction of the number NT (t) of
transplants in a period of t days. As θ is a probability, we can carry out a basic conjugate analysis
in order to make inferences about it. We choose a non-informative prior distribution in the family of
the Beta distributions. Specifically, we select the prior p(θ) = Be(1, 1). The likelihood function of
θ corresponding to the data of effective donations (323 in all, 241 with two kidneys and 82 with only
one) is proportional to θ241 (1− θ)82. Consequently, the posterior distribution of θ will be a Beta
distribution with parameters 242 and 83. From this posterior distribution we compute the expected
value of θ as E(θ | data)=0.7450, the variance as D2(θ | data)=0.0006, and (0.6959, 0.7905) as a
95% credible interval. In short, we have found out that approximately 3 out of every 4 effective
donations are double.

Now we can return to the prediction of NT (t). As this variable depends on ND(t) and θ, we
could express its posterior predictive distribution as follows:

p(NT (t) = k | data) =
k∑

j=[ k+1
2 ]

∫
p(NT (t) = k | θ, ND(t) = j, ) p(θ, ND = j, | data) dθ, (5.6)

where [x] denotes the largest integer ≤ x. But since ND(t) and θ are posterior independent and
ND(t) depends, in turn, on the service rate µ, we will have:

p(NT (t) = k | data) =
k∑

j=[ k+1
2 ]

∫
p(NT (t) = k | ND(t) = j, θ) p(ND = j | µ)p(µ | data)p(θ | data) dθ dµ. (5.7)

This predictive does not have a closed expression and so we can use Monte Carlo integration
in order to approximate it from a random sample {(µ(i), θ(i)), i = 1, . . . , N} of the posterior
distribution of µ and θ (Ga(µ | 323, 1095) and Be(θ | 242, 83), respectively) as:

p(NT (t) = k | data) ≈ 1
N

N∑
i=1

k∑
j=[ k+1

2 ]

p(NT (t) = k | ND(t) = j, θ(i))p(ND(t) = j | µ(i)). (5.8)

This approximate distribution is presented graphically in Figure 8. It is interesting to point
out the peaks in the even values of the distribution, which are a direct consequence of the great
quantity of double donations. We have also calculated the mean and variance of the daily number
of transplants as 0.5132 and 0.9454, respectively.

Finally, we can consider the daily transplant rate as defined as µ(1 + θ). Because its posterior
distribution does not have an analytic expression, we have approximated it by means of a simulated
sample. Specifically, we have constructed a sample {µ(i)(1+ θ(i)), i = 1, . . . , N} from the posterior
distribution of µ and θ. Figure 9 displays a kernel approximation of the posterior distribution
of the daily transplant rate. As a näıve visual comparison between the rate of arrivals onto and
departures from the waiting list, we have also included the draw of the posterior distribution
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Ga(λ | 531, 1095) of the arrival rate. Note the symmetrical shape of both distributions. We have
approximated the posterior mean and variance of the daily transplant rate as 0.5146 and 0.00089,
respectively. And also, the expected annual number of transplants ppm is 46.5146, with the interval
(41.3636, 52.0041) as a 95% credible region of this rate.

6 The congestion

So far we have considered the arrivals and donations separately. From now on, we will combine
both elements in order to provide the traffic intensity, the most basic measure of the congestion
of the waiting list. This is a parameter that compares the arrival rate with the transplant rate in
the form:

ρ =
λ

µ(1 + θ)
. (6.9)

The traffic intensity plays a remarkable role in Queueing Theory. Specifically, the queue will be
stable (that is, the queue length will not go to infinity) if and only if ρ < 1. Figure 10 presents
a graphical approximation to the posterior distribution of the traffic intensity with a vertical line
indicating the frontier value ρ = 1. It has also been constructed from a random sample of the
posterior p(ρ | data) which we have generated from the corresponding sample from the joint
posterior distribution of λ, µ and θ. Its posterior expectation is E(ρ | data) ≈ 0.9452 with variance
D2(ρ | data) ≈ 0.00457. A credible interval with probability 0.95 is (0.8226, 1.0836). Also, we have
computed, approximately, the posterior probability of the waiting list will eventually be stable as
0.796. This knowledge about ρ indicates a high level of congestion in the waiting list (McQuarrie
(1983)[19] suggested the upper bound 0.9 as the limit to maintain quality in Health Services). It
seems that, in the long run, the queue could reach the steady-state, but the evidence in favour of
this assumption is not too strong. This information also suggests that the possible convergence
to the equilibrium is very slow. In any case, from a managerial point of view, a very interesting
feature would lie in predicting the temporal evolution of the number of patients on the waiting
list in order to understand better the dynamic behaviour of the congestion. This information will
be very valuable in any quantitative evaluation (resources, needs, costs, etc.) of the system. In
Abellán et al. (2003)[20] there is a detailed analysis of this topic within the framework of several
simulated scenarios of congestion.

7 Conclusions and future research

This paper is the result of the joint effort of a multidisciplinary team made up of epidemiologists
and statisticians. It presents a simple analysis of a real problem which is tricky, complex and on
which contains a lot of human suffering and happiness depends. It is, along with the paper by
Abellán et al. (2003)[20], the first two results of our research devoted to statistically analyzing the
waiting list for a renal transplant in the Páıs Valencià.

At the beginning of the project, we dedicated most of our efforts to managing an appropriate
data bank, to learn about several social and medical aspects of the problem, and to represent
the dynamic of the waiting list through a probabilistic model. Our intention was to build, test
and validate a simple and robust model that imitates the most basic features of the flow and
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interactions of the stochastic processes involved in the problem (the entrance of patients onto the
waiting list and the arrival of donations).

Our first results are on the right track. In particular, the predictions in Abellán et al. (2003)[20]
about the evolution of the number of patients waiting for a kidney seem to indicate a good per-
formance of the model. This fact is also corroborated by the opinion of a group of nephrologists
from the four Transplantation Units in the Páıs Valencià who have decided to participate in the
project.

We know that our work is in its early stages. Our main objective is to gain more knowledge
about the problem. But we believe that the complexity of the subject suggests it should be
tackled by making several complementary analyses. In particular, our more immediate efforts are
dedicated to better understanding the arrival, donation and transplant processes in relation to the
age, geographical area of residence and date of entrance of the recipients and donors.

From a technical point of view we intend to improve the queueing model by refining the Poisson
assumption for the arrival process and also by incorporating the possibility that a patient needing
a transplant will abandon the waiting list. We also know that we need to learn more about the
simulation of stochastic systems, particularly discrete event simulation, in order to perform a more
realistic and accurate simulation procedure.
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Figure 1: Spain and its autonomous regions. The Páıs Valencià is the shaded area.

Daily arrivals 0 1 2 3 4 5 6 8
% of days 70.14 18.26 07.58 02.28 00.91 00.18 00.55 00.09

Daily donations 0 1 2 3
% of days 74.34 22.28 02.92 00.46

Daily transplants 0 1 2 3 4 5 6
% of days 74.34 05.39 17.35 00.73 01.92 00.09 00.18

Table 1: Frequency distribution of the daily number of arrivals, donors and transplants from
January 1997 to December 1999
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Figure 2: Cumulative number of daily arrivals, effective donations and transplants registered from
January 1997 to December 1999.
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Figure 3: Graphical representation of the queueing time, service time and waiting time on the list
by a patient when only one kidney is obtained from the donor.
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Figure 4: Graphical representation of the queueing time, service time and waiting time on the list
by a patient when a donor provides two kidneys.
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Figure 5: Geographical criteria of allocation of kidneys to recipients.
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Figure 6: Posterior predictive distribution of the daily number of new arrivals onto the waiting
list.
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Figure 7: Posterior predictive distribution of the daily number of effective donations.
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Figure 8: Approximate posterior predictive distribution of the daily number of transplants.

 

 

0.4 0.5 0.6 0.7

0
5

10
15

20

Daily arrival rate
Daily transplant rate

Figure 9: Posterior predictive distribution of the daily number of new arrivals onto the waiting
list.
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Figure 10: Approximate posterior distribution of the traffic intensity.
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