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Abstract

In this paper the Min-Max version of the Windy Rural Postman Problem with several
vehicles is introduced. For this problem, in which the objective is to minimize the length
of the longest tour in order to find a set of balanced tours for the vehicles, we present here
an ILP formulation and study its associated polyhedron. Based on its partial description,
a branch-and-cut algorithm has been implemented and computational results on a large
set of instances are finally presented.
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1 Introduction

The Windy Rural Postman Problem (WRPP) is an important Arc Routing Problem which
generalizes most of the single-vehicle Arc Routing Problems, and can be defined as follows.
Let G = (V, E) be an undirected graph with two nonnegative costs cij , cji associated with
each edge e = (i, j), corresponding to the costs of traversing e from i to j and from j to i,
respectively. Such a graph will be called a ‘windy’ graph in what follows. Let ER be a subset
of required edges (representing those edges requiring some service to be done along them).
The WRPP consists of finding a tour of minimum cost, traversing each edge in ER at least
once.

The WRPP is interesting because some real-life situations can be modelled with windy
graphs. For example, in Benavent et al. [8] the problem of finding the traversal of 3-
dimensional structures such as bridges or building skeletons by a climbing robot is described.
The problem is modelled as a WRPP because the cost (energy consumption) of traversing
an edge (either inspecting a side of a beam or moving from it to another) in each of its
two directions can be different. On the other hand, windy graphs include as special cases
undirected, directed and mixed graphs, so all the theoretical results obtained from their study
and the algorithms proposed for their resolution can also be applied to the knowledge and
resolution of their special cases. Furthermore, the Rural Postman Problem also generalizes
the famous Chinese Postman Problem (CPP), where all the edges of the graph are required.
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In this paper we deal with the more realistic situation where there exists a fleet of identical
vehicles that will jointly serve the required edges. In the context of the above application,
most real structures are so large that the robot is not capable of inspecting all the beams
within the working period of time allowed by its on-board batteries. Then, several traversals
for the robot need to be designed and the problem becomes a multi-vehicle problem.

Node Routing Problems with several vehicles, like the Capacitated Vehicle Routing Prob-
lem (CVRP) and its extensions, have been widely studied in the Literature. Its equivalent Arc
Routing Problem is the Capacitated Arc Routing Problem (CARP) introduced by Golden
and Wong in 1981 ([18]) that has recently received a lot of attention. Consider a fleet of
identical vehicles of limited capacity based at a depot node and a subset of required edges
with known demands to be serviced by the vehicles. The CARP consists of determining a
set of vehicle tours, each one starting and ending at the depot, such that each required edge
is serviced by only one vehicle, the demand associated with each tour does not exceed the
vehicle capacity and the total cost is minimized. As far as we know, the only polyhedral
study of the CARP appears in Belenguer and Benavent [7]. The situation for the case of
the CVRP is similar. Despite of the huge number of papers on the CVRP, the literature
on the polyhedral study of this problem is very scarce. The reason is that the dimension of
the polyhedron, as well as the conditions for the inequalities to be facet-inducing, strongly
depend on the demand values, thus leading to extremely involved conditions.

When the capacity of the vehicles is not restricted and we look for K routes starting and
ending at the depot, in such a way that all the edges of the graph are serviced by exactly
one vehicle and the total distance is minimized, we have the K-CPP which Assad, Pearn
and Golden [5] showed to be solvable in polynomial time in the undirected and directed
cases. Nevertheless, Pearn [20] proved that the K-CPP is NP -hard when it is defined on a
mixed or windy graph. The Min-Max K-CPP, that was introduced in Frederickson, Hecht
and Kim [14], is a more realistic problem, in which the objective is to minimize the length
of the longest route among the K vehicles. This is a way of balancing the working load of
the vehicles. Same authors proved that the Min-Max K-CPP is NP -hard and proposed a
(2− 1

K )-approximation algorithm. More recently Ahr and Reinelt present several lower bounds
and heuristics for this problem ([2]) and a Tabu Search procedure that produces very good
solutions ([3]). Finally, in Ahr [1] some more results on the Min-Max K-CPP, including an
exact solution method based on a branch-and-cut approach, are presented.

The problem we consider here is the Min-Max K-vehicles Windy Rural Postman Problem
(MM K-WRPP) that can basically be defined as follows. Given a windy graph, a distin-
guished vertex (the depot), a subset of required edges and a fixed number K of vehicles, the
problem consists of finding a set of K tours for the vehicles in such a way that each tour
starts and ends at the depot and each required edge is serviced by exactly one vehicle. The
objective is to minimize the length of the longest tour in order to find a set of balanced tours
for the vehicles. Moreover, as noted in [3], “this kind of objective is preferable when the aim
is to serve each customer as early as possible”.

This paper is organized as follows. In Section 2 the definition and a formulation of the
problem is presented. Also the notation that will be used through the paper and some valid
inequalities are there introduced. Section 3 defines and partially describes the polyhedron
associated with the MM K-WRPP solutions. A Branch-and-Cut algorithm based on the
polyhedral description of the MM K-WRPP is presented in Section 4, while the computational
results obtained on a large set of instances are shown in Section 5. Finally in Section 6 some
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conclusions are drawn.

2 The Min-Max K-vehicles Windy RPP

Let G = (V, E) be an undirected graph with two costs cij , cji associated with each edge
e = (i, j). Let us assume that node 1∈ V represents the depot. Let ER ⊂ E be the set of
required edges. We have a given number K of vehicles and we have to find a tour (closed walk
starting and ending at the depot) for each vehicle such that each required edge is traversed
at least once by at least one vehicle. Let us call K-WRPP solution to a set of such tours (one
per vehicle). The goal is to find a K-WRPP solution such that the cost of the maximum cost
vehicle tour is minimum.

For the sake of simplicity we assume that each vertex in V is incident with at least one
required edge. This is not a restriction as there exists a simple way to transform an instance
not satisfying this assumption into an equivalent one which does (see, e.g., Christofides et al.
[10] or Eiselt et al. [13]).

For each edge e = (i, j) ∈ E we define 2K variables xk
ij , x

k
ji representing the number of

times edge e is traversed by vehicle k from i to j or from j to i, respectively. In addition, if
edge e is required, we define K more variables yk

ij which take the value 1 if edge e is serviced
by the vehicle k and 0 otherwise. Finally, an artificial variable z is used to minimize the
maximum tour cost.

Given two node subsets S, S′ ⊆ V , (S : S′) denotes the edge set with one end-point in S
and the other in S′. Given a node subset, S ⊆ V , let us denote δ(S) = (S : V \S) and let
E(S) = {(i, j) ∈ E : i, j ∈ S} be the set of edges with both endpoints in S. The previous
sets restricted to the required edges are denoted by δR(S), ER(S) and (S : S′)R. Finally, for
any subset F ⊆ E, xk(F ) denotes

∑

(i,j)∈F

(xk
ij + xk

ji).

We propose the following formulation for the Min-Max K-WRPP:

Minimize z

s.t.:
∑

e∈E

(
cijx

k
ij + cjix

k
ji

) ≤ z ∀k=1, . . . , K (1)

∑

∀k
yk

e = 1, ∀e∈ER (2)

xk
ij + xk

ji ≥ yk
e ∀e∈ER and ∀k=1, . . . ,K (3)

∑

(i,j)∈δ(i)

(xk
ij − xk

ji) = 0, ∀i∈V and ∀k (4)

xk(δ(S)) ≥ 2yk
e , ∀S⊂V \{1}, ∀e∈ER(S), ∀k=1, . . . , K (5)

xk
ij , x

k
ji ≥ 0 and integer ∀(i, j) ∈ E, ∀k=1, . . . , K (6)

yk
e ∈ {0, 1} ∀e∈ER ∀k=1, . . . ,K (7)
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Inequalities (1) imply that the maximum cost vehicle route is minimized. Equations (2)
assure that each required edge is serviced by exactly one vehicle and inequalities (3), called
traversing inequalities, force a vehicle to traverse the edges it serves. Symmetry equations (4)
force each vehicle route to be symmetric, while connectivity inequalities (5) ensure that each
vehicle route connects the edges it serves and the depot.

A solution for the K-WRPP on G is a vector (x1, y1, x2, y2, . . . , xK , yK) with (2|E| +
|ER|)K components satisfying (2) to (7). We will call route associated with vehicle k to the
pair (xk, yk) and tour associated with vehicle k to xk. Note that this formulation allows
solutions in which a vehicle tour xk is formed by several disconnected subtours, one of them
connecting all the edges it serves to the depot and the others traversing edges not serviced by
this vehicle. In particular, if (x1, y1, x2, y2, . . . , xK , yK) is a K-WRPP solution and B(e, k) ∈
Z(2|E|+|ER|)K is a vector with the two components xk

ij = xk
ji = 1, for a given edge e = (i, j) ∈ E

and a vehicle k, and all the other components equal to zero, then (x1, y1, x2, y2, . . . , xK , yK)+
MB(e, k) is also a K-WRPP solution, for any positive integer M . This property is needed
for the convex hull of the K-WRPP solutions on G to be a polyhedron (see Belenguer and
Benavent [7]). Note also that solutions where a given vehicle neither traverses nor serves any
edges are also allowed (xk = yk = 0).

2.1 Other valid inequalities

In order to solve the problem with a Branch & Cut method, the above linear formulation
should be strengthen. Consider the (1 vehicle) WRPP defined on graph G and let F (x) ≥ c0

be a valid inequality for this problem. Given a K-WRPP solution (x1, y1, x2, y2, . . . , xK , yK),
adding all the vehicle tours we obtain that x =

∑
xk is a WRPP tour on G. Then, x satisfies

F (x) ≥ c0, or
∑

k F (xk) ≥ c0, which turns to be valid for the K-WRPP. We will call aggregate
inequalities to these inequalities. R-odd cut, K-C, Honeycomb and other inequalities for the
WRPP described in Corberán et al. [11] are then valid inequalities for the MM K-WRPP.
In particular, the aggregate R-odd cut inequalities are:

K∑

k=1

xk(δ(S)) ≥ |δR(S)|+ 1, ∀S ⊂ V such that |δR(S)| is odd (8)

and are based on the fact that any K-WRPP solution must cross any given edge cutset
an even number of times. On the other hand, when we consider a single vehicle k, all the
edges e ∈ ER can not be considered as ‘required’ for vehicle k because it could either not
serve nor traverse e. The actual required edges for a given vehicle k are those serviced by
it, which are determined by the vector yk. Then, given a route (xk, yk), the tour xk must
satisfy the conditions derived from the fact that edges e ∈ ER such that yk

e = 1 are its
required edges. This is the idea behind the disaggregate inequalities as the one we present
in what follows. For example, let δ(S) be an edge cutset on G. If a given vehicle k serves
a subset F ⊂ δR(S) of required edges and |F | is odd, then this vehicle has to traverse the
cutset δ(S) at least |F | + 1 times. Nevertheless, the inequality xk(δ(S)) ≥ |F | + 1 is not
valid for KWRPP(G) since vehicle k is not forced to serve the edges in F and therefore it
does not have to necessarily traverse this cutset |F |+ 1 times. A generalization of the R-odd
inequalities involving variables yk is then needed.

Let δ(S) be an edge cutset on G and let F ⊂ δR(S) be a subset of required edges with
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|F | odd. For each vehicle k, we call parity inequality to

xk(δ(S)) ≥ 2yk(F )− |F |+ 1 (9)

Theorem 1 Parity inequalities (9) are valid for the MM K-WRPP.

Proof: If vehicle k serves all the edges in F then yk(F ) = |F | and the RHS of the inequality
is |F |+ 1. In this case, since |F | is odd, vehicle k has to traverse the cutset at least |F |+ 1
times and xk(δ(S)) ≥ |F | + 1 holds. If vehicle k serves all the edges in F but one then
yk(F ) = |F | − 1, the RHS of the inequality is |F | − 1 and the inequality is trivially satisfied.
Other cases are also trivial. ¨

Parity inequalities (9) are also known as cocircuit inequalities ([6]) and have also been
used in other Arc Routing Problems ([7], [17]).

The argument supporting the validity of the above inequalities can be generalized from
a single vehicle to several ones. For instance, if all the edges in F ⊂ δR(S) are serviced by
a subset of vehicles then these vehicles have to jointly traverse the cutset at least |F | + 1
times. Let δ(S) be an edge cutset on G and let F ⊂ δR(S) be a subset of required edges with
|F | odd. For each subset of P < K vehicles {k1, k2, . . . , kP }, we will call P -aggregate parity
inequality to

xk1(δ(S)) + · · ·+ xkP (δ(S)) ≥ 2yk1(F ) + · · ·+ 2ykP (F )− |F |+ 1 (10)

Theorem 2 P -aggregate parity inequalities (10) are valid for the MM K-WRPP.

Proof: The proof is similar to that of Theorem 1. Note that if all the edges in F are served
by vehicles k1, k2, . . . , kP then yk1(F ) + · · ·+ ykP (F ) = |F | and the RHS of the inequality is
|F |+ 1. In this case, vehicles k1, k2, . . . , kP have to jointly traverse the cutset at least |F |+ 1
times and the inequality holds. ¨

The above ideas about obtaining disaggregate and P -aggregate inequalities from valid
inequalities for the (1 vehicle) WRPP can also be applied to K-C, Honeycomb, Path-Bridge
and other inequalities. This will be the subject of future work.

3 The K-WRPP polyhedron

Let KWRPP(G) be the convex hull of all the K-WRPP solutions, i.e., of all vectors

(x1, y1, x2, y2, . . . , xK , yK) ∈ ZK
(
2|E|+|ER|

)
satisfying (2) to (7). It can be seen that

KWRPP(G) is a polyhedron. Note that we include neither variable z nor inequalities (1)
because this does not affect the set of feasible solutions of our problem. Moreover the poly-
hedral study done in this paper can be applied to similar problems with different objective
functions such as minimizing the total cost of the K routes as in the K-CPP.

Theorem 3 If G is connected then dim(KWRPP(G)) = K
(
2|E|−|V |+1

)
+ (K−1)|ER|

5



Proof: KWRPP(G) is a polyhedron in ZK
(
2|E|+|ER|

)
. All its points satisfy the |ER| linearly

independent equations (2) and the K|V | equations (4), K|V − 1| of which are linearly
independent. Hence,

dim(KWRPP(G))≤ K
(
2|E|−|V |+ 1

)
+(K−1)|ER|

Let us prove that dim(KWRPP(G))≥ K
(
2|E| − |V | + 1

)
+ (K−1)|ER| by finding such a

number plus one affinely independent (or linearly independent, because 0 /∈ aff(KWRPP(G)))
K-WRPP solutions.

Consider the (1 vehicle) WRPP defined on G and let WRPP(G) denote its associated
polyhedron. It is known ([11]) that, if G is connected, dim(WRPP(G))= 2|E|−|V |+ 1. Let
us call m = dim(WRPP(G)). Since 0 ∈aff(WRPP(G)), there exist m linearly independent
WRPP tours z1, z2, . . . , zm on G which traverse all the edges in ER at least once. Note that
we can build K-WRPP solutions in the following way. One vehicle performs any WRPP tour
zj above and serves all the required edges while the other vehicles do nothing. In a more
general way, we can select some vehicles to perform WRPP tours zj above while the other
vehicles do not leave the depot. The required edges are assigned to be serviced by the former
vehicles in an arbitrary way. For the sake of simplicity, let us suppose we have K = 3 vehicles.
We can define K-WRPP solutions arranged as rows of the matrix shown in Figure 1, where
a block with a large 0 (or 1) represents a submatrix with all its entries 0 (or 1), I represents
the identity matrix and a block with a large Z1 means a submatrix with all its rows equal
to the WRPP tour z1. These K

(
2|E| − |V | + 1

)
+ (K−1)|ER| + 1 K-WRPP solutions are

linearly independent because the matrix has full rank. Note that, from the structure of the
matrix, we can assert that the result is also true for any value of K≥2. ¨

In what follows we study if the inequalities in the formulation induce facets of
KWRPP(G). As in Theorem 3 above, in the proofs of the theorems in this section we
will represent the K-WRPP solutions we define only for K = 3 vehicles, although they can
be extended to any value of K. Let us begin with the trivial inequalities.

3.1 Trivial inequalities

Theorem 4 If edge e = (i, j)∈E is not a bridge of G, then inequalities xk
ij ≥ 0 and xk

ji≥ 0
are facet-inducing for KWRPP(G) for all k.

Proof: Let us consider, for example, x1
ij ≥ 0. We define d=dim(KWRPP(G)) affinely in-

dependent K-WRPP solutions satisfying x1
ij = 0. Since edge (i, j) is not a bridge of G

then inequality xij ≥ 0 is facet-inducing for WRPP(G) (see [11]) and there are m =
dim(WRPP(G))= 2|E|−|V | + 1 affinely independent WRPP tours on G satisfying xij = 0,
say w1, w2, . . . , wm. Let us suppose that w1, w2, . . . , wm−1 are linearly independent. As in
the proof of theorem 3, let z1, z2, . . . , zm be m linearly independent WRPP tours on G. The
K-WRPP solutions arranged as the rows of the matrix in Figure 2 proves the result for K =3.
¨
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X1 X2 X3 Y 1 Y 2 Y 3

z1

z2

... 0 0 1 0 0
zm

z1

z2

0 ... 0 0 1 0
zm

z1

z2

0 0 ... 0 0 1
zm

Z1 Z1 0 I 1-I 0

0 Z1 Z1 0 I 1-I

z1 z1 z1 1 0 ... 0 0 1 ... 1 0 0 ... 0

Figure 1: K-WRPP solutions to prove dimension

X1 X2 X3 Y 1 Y 2 Y 3

w1

w2

... 0 0 1 0 0
wm−1

z1

z2

0 ... 0 0 1 0
zm

z1

z2

0 0 ... 0 0 1
zm

W1 Z1 0 I 1-I 0

0 Z1 Z1 0 I 1-I

w1 z1 z1 1 0 ... 0 0 1 ... 1 0 0 ... 0

Figure 2: K-WRPP solutions satisfying x1
ij =0
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Theorem 5 If edge e=(i, j)∈E is not a bridge of G, then inequality yk
e ≥0 is facet-inducing

for KWRPP(G) for all k.

Proof: Let us consider, for example, y1
e ≥ 0. Again, let z1, z2, . . . , zm be m linearly inde-

pendent WRPP tours on G. The K-WRPP solutions arranged as the rows of the matrix in
Figure 3 satisfy y1

e = 0. Note that there are dim(KWRPP(G)) rows, because blocks in (d)
have only |ER|−1 rows). It is easy to see that this matrix has full rank if we do as follows.
Subtract the first row of block (d) and the first row of block (c) from the last row. Subtract
the first row of block (b) and the first row of block (c) from the rows in block (e). Subtract
the first row of block (a) from the rows in block (d). ¨

X1 X2 X3
e Y 1

e Y 2 Y 3

z1 z1 0 1
z2 z2 0 1

(a) ... ... 0 ... 1 ... 0 0
zm zm 0 1

z1

z2

(b) 0 ... 0 0 1 0
zm

z1

z2

(c) 0 0 ... 0 0 1
zm

0 1

(d) Z1 Z1 0 ... I
... 1-I 0

0 1

(e) 0 Z1 Z1 0 I 1-I

(f) z1 z1 z1 0 1 0 ... 0 1 0 1 ... 1 0 0 ... 0

Figure 3: K-WRPP solutions satisfying y1
e =0

Note: Trivial inequalities yk
e ≤ 1 for e∈ER are implied by yk

e ≥0 and the system equations
(2)

∑K
k=1 yk

e = 1.

3.2 Traversing inequalities

Theorem 6 If edge e = (i, j)∈ER is not a bridge of G, then the traversing inequality (3),
xk

ij + xk
ji ≥ yk

e , is facet-inducing for KWRPP(G) for all k.

Proof: The proof is similar to that of Theorem 5 and is omitted here for the sake of brevity.
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3.3 Connectivity inequalities

Theorem 7 Connectivity inequalities (5), xk(δ(S))≥2yk
e , for all S⊂V \{1} and e∈ER(S)

and for all k are facet-inducing for KWRPP(G) if subgraphs G(S) and G(V\S) are connected.

Proof: Let S ⊂ V \{1} and e ∈ ER(S). We define a WRPP instance G′ in which all the
edges in E are required except those in δ(S). Given that subgraphs G(S) and G(V \S) are
connected, inequality x(δ(S)) ≥ 2 is facet-inducing for WRPP(G′) (see [11]) and there exist
m linearly independent tours w1, w2, . . . , wm for the WRPP on G′ satisfying x(δ(S)) = 2.
Note that these tours traverse only one or two edges in δ(S) and then they are not able to
serve all the edges in δR(S). Nevertheless, it can be seen that given any edge f ∈ER\{e}, there
is a tour wi above that traverses edges e and f (rows (d) of the matrix in Figure 4). These d
vectors represented as rows are linearly independent feasible solutions for the K-WRPP and
satisfy x1(δ(S)) = 2y1

e . ¨

X1 X2 X3
e Y 1

e Y 2 Y 3

w1 1 0
w2 1 0

(a) ... Z1 0 ... 0 ... 1 0
wm 1 0

z1

z2

(b) 0 ... 0 0 1 0
zm

z1

z2

(c) 0 0 ... 0 0 1
zm

wi 1 0

(d) ... Z1 0 ... I
... 1-I 0

wj 1 0

(e) 0 Z1 Z1 0 I 1-I

(f) wi z1 z1 1 1 0 ... 0 0 0 1 ... 1 0 0 ... 0

Figure 4: K-WRPP solutions satisfying x1(δ(S)) = 2y1
e

Note: Aggregate connectivity inequalities
∑

k xk(δ(S)) ≥ 2 are not facet-inducing because
they can be obtained by adding the k facet-inducing connectivity inequalities (5) xk(δ(S)) ≥
2yk

e associated with a required edge e, where e ∈ ER(V \ S) (e ∈ ER(S)) if the depot 1 ∈ S
(1 ∈ V \ S).
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3.4 R-odd cut and parity inequalities

Theorem 8 Aggregate R-odd cut inequalities (8),
∑K

k=1 xk(δ(S)) ≥ |δR(S)|+1, for all S⊂V
such that |δR(S)| is odd, are facet-inducing for KWRPP(G) if |δR(S)| ≥ 3 and subgraphs
G(S), G(V \S) are connected.

Proof: Given that G(S) and G(V \S) are connected, the R-odd cut inequality x(δ(S)) ≥
|δR(S)|+ 1 is facet-inducing for WRPP(G) ([11]) and there are m linearly independent tours
w1, w2, . . . , wm for the WRPP on G satisfying x(δ(S)) = |δR(S)| + 1. Hence, the vectors
represented in the rows of the 3 first blocks of matrix shown in Figure 5 are feasible K-WRPP
solutions. We also need feasible K-WRPP solutions satisfying

∑K
k=1 xk(δ(S)) = |δR(S)| + 1

X1 X2 X3 Y 1 Y 2 Y 3

w1

w2

(a) ... 0 0 1 0 0
wm

w1

w2

(b) 0 ... 0 0 1 0
wm

w1

w2

(c) 0 0 ... 0 0 1
wm

w∗i w∗j
(d) ... ... 0 B 1-B 0

w∗r w∗s
w∗i w∗j

(e) 0 ... ... 0 B 1-B
w∗r w∗s

Figure 5: K-WRPP solutions satisfying
∑K

k=1 xk(δ(S)) = |δR(S)|+ 1

and using two vehicles simultaneously. This is possible since |δR(S)| ≥ 3. Let p≥ 2 be the
integer such that |δR(S)| = 2p−1. The R-odd cut inequality (8) is then

∑K
k=1 xk(δ(S))≥2p.

For each edge e ∈ ER we define a feasible K-WRPP solution using vehicles 1 and 2 in the
following way. Let us suppose that 1 ∈ S.

• If e ∈ δR(S) then vehicle 1 serves only edge e and traverses the cutset δ(S) twice.
Vehicle 2 serves all the edges in ER\{e} and traverses δ(S) 2p−2 times.

• If e ∈ ER(S) then vehicle 1 serves only edge e and does not traverse the cutset δ(S).
Vehicle 2 serves all the edges in ER\{e} and traverses the cutset δ(S) 2p times.

• If e ∈ ER(V \S) then vehicle 1 serves edge e and another required edge ē ∈ δ(S) and
traverses the cutset twice. Vehicle 2 serves all the edges in ER\{e, ē} and traverses the
cutset δ(S) 2p−2 times.
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We repeat the above construction for vehicles 2 and 3, 3 and 4 and so on. Hence, the vectors
represented in the rows of the blocks (d) and (e) of matrix shown in Figure 5 are also feasible
K-WRPP solutions satisfying

∑K
k=1 xk(δ(S))=2p, where matrix block B is:

B =

ē δR(S) ER(S) ER(V \S)

I 0 0

0 I 0

1
1
... 0 0 I
1

In order to see that the matrix shown in Figure 5 has full rank we proceed as follows. Given
that the m vectors w1, w2, . . . , wm satisfy x(δ(S)) = 2p, if we add the columns corresponding
to the variables X1 in the cutset δ(S) and divide this sum by 2p we obtain a column with
all its entries in the block (a) equal to 1. By subtracting this column from those columns
corresponding to Y 1 we obtain a 0 block in the rows in (a) and columns corresponding to
Y 1. We proceed in the same way with the columns corresponding to vehicle 2, and with the
columns corresponding to vehicle 3 and we transform the ‘1’ blocks in (b) and (c) into ‘0’
blocks. Obviously, blocks B in (d) and (e) described above also change. Note that the proof
will be complete if we prove that the matrix in which B is transformed is non singular.

From each column of B in (d) we have subtracted the sum of the columns of (d) corre-
sponding to the variables X1 in the cutset δ(S) divided by 2p. From the definition of the
K-WRPP solutions corresponding to (d), what we have subtracted is 0 for the edges in ER(S)
and 2

2p = 1
p for the edges in δR(S) ∪ ER(V \S). Then B has been transformed into:

ē δR(S) ER(S) ER(V \S)

I−1
p1 −1

p1 −1
p1

0 I 0

p−1
p

p−1
p
... −1

p1 −1
p1 I−1

p1
p−1

p
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Subtracting the first row from all the rows in the bottom blocks, a non singular ma-
trix is obtained because the (2p−1)×(2p−1) submatrix in the top-left block is non singular. ¨

Note: If δR(S) = {e} the aggregate R-odd cut inequality (8),
∑

k xk(δ(S)) ≥ 2, is not facet-
inducing because it is the sum of K parity inequalities (9), xk(δ(S)) ≥ 2yk

e (taking F = {e}),
that are showed to be facet-inducing in what follows.

Theorem 9 Parity inequalities (9), xk(δ(S)) ≥ 2yk(F ) − |F | + 1, for all S ⊂ V , for all
F ⊂ δR(S) such that |F | is odd and for all k are facet-inducing for KWRPP(G) if subgraphs
G(S) and G(V \S) are connected.

Proof: Let G′ be the WRPP instance in which all the edges in G are required except those
in δR(S) \ F . Given that G(S) and G(V \S) are connected, inequality x(δ(S)) ≥ |F | + 1
is facet-inducing for WRPP(G′) ([11]) and therefore there are m linearly independent tours
w1, w2, . . . , wm for the WRPP on G′ satisfying x(δ(S)) = |F |+ 1 and traversing the edges in
F . Let z1, z2, . . . , zm be as in the proof of Theorem 3. Furthermore, for each e ∈ F let w∗i be
a tour on G satisfying x(δ(S)) = |F | − 1 which traverses all the required edges in F except e.
Finally, for each edge e ∈ ER \ F let wi be the tour on set {w1, w2, . . . , wm} which traverses
all the edges in F exactly once plus edge e. It can be seen that the rows of matrix shown in
Figure 6 represent feasible K-WRPP solutions on G and that they are linearly independent.
¨

Theorem 10 P-aggregate parity inequalities (10), xk1(δ(S)) + · · ·+ xkP (δ(S)) ≥ 2yk1(F ) +
· · ·+ 2ykP (F ) − |F |+ 1, for all S⊂V , for all F ⊂ δR(S) such that |F | is odd and for every
set {k1, k2, . . . , kP } of P < K vehicles are facet-inducing for KWRPP(G) if subgraphs G(S)
and G(V \S) are connected and |F | ≥ 3.

Proof: Let p≥ 2 be the integer such that |F | = 2p−1. As in the proof of Theorem 9, if
G′ is the WRPP instance in which all the edges in G are required except those in δR(S) \ F
then there exist m linearly independent tours w1, w2, . . . , wm for the WRPP on G′ satisfying
x(δ(S)) = 2p. Let z1, z2, . . . , zm be as in the proof of Theorem 3. For each e ∈ F let w∗i be
a tour on G satisfying x(δ(S)) = 2p−2 which traverses all the required edges in F except e
and let wi be a tour on G satisfying x(δ(S)) = 2 that traverses edge e. Finally, for each edge
e∈ER\F let wi be the tour on set {w1, w2, . . . , wm} traversing all the edges in F∪{e} exactly
once. For the sake of simplicity, in what follows we will assume K = 3 and P = 2 (k1 = 1,
k2 = 2). It can be seen that the rows of matrix shown in Figure 7 represent feasible K-WRPP
solutions on G satisfying the inequality (10), x1(δ(S))+x2(δ(S)) ≥ 2y1(F )+2y2(F )−|F |+1
as an equality. To show they are linearly independent we will work with the matrix columns
as in Theorem 8 in order to transform the two 1 blocks in the columns associated with
Y 2

F into zeros. Adding the columns corresponding to the variables X2 in the cutset δ(S)
and dividing this sum by 2p we obtain a column with all its entries corresponding to the
vectors w1, w2, . . . , wm equal to 1 (since they satisfy x(δ(S)) = 2p) and with all its entries
corresponding to the vectors wi, . . . , wj equal to 1

p (since they satisfy x(δ(S)) = 2). By
subtracting this column from those corresponding to Y 2

F , all its blocks become 0 except for
the block corresponding to vectors wi which becomes I−1

p1 (that is non singular since its size
is (2p− 1)×(2p− 1)). It is easy to see that the submatrix formed by the 9 top left blocks has
full rank and hence the complete matrix has also full rank. ¨
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X1 X2 X3 Y 1
F Y 2

F Y 3
F Y 1

F
Y 2

F
Y 3

F
w1

w2

... Z1 0 1 0 0 0 1 0
wm

2z1

z2

W1 ... 0 1 0 0 0 1 0
zm

z1

z2

W1 Z1 ... 1 0 0 0 0 1
zm

w∗i
... Z1 0 1-I I 0 0 1 0
w∗j
w∗i
... 0 Z1 1-I 0 I 0 0 1
w∗j
wi

... Z1 0 1 0 0 I 1-I 0
wj

W1 Z1 Z1 1 0 0 0 I 1-I

Figure 6: K-WRPP solutions satisfying x1(δ(S)) = 2y1(F )− |F |+ 1

Note: If F = {e} then the P-aggregate parity inequality (10) is not facet-inducing because
it is the sum of the parity inequalities (9) corresponding to each vehicle ki, xki(δ(S)) ≥ 2yki

e .

4 The Branch & Cut algorithm

In this section an exact algorithm for the MM K-WRPP is described. The Branch & Cut
method presented here is based on a cutting-plane procedure that identifies violated inequal-
ities of several classes.

4.1 Initial relaxation

The initial LP relaxation contains equations (2), assuring that each required edge is serviced
by exactly one vehicle, symmetry equations (4), min-max inequalities (1), traversing inequal-
ities (3) and a new family of constraints whose aim is to reduce the symmetry of polyhedron
KWRPP(G). Note that if (x1, y1, x2, y2, . . . , xK , yK) ∈ KWRPP(G) then any arrangement
of the single routes, such as (x2, y2, x1, y1, . . . , xK , yK) also belongs to KWRPP(G). In other
words, given a point in KWRPP(G), if the routes associated with two different vehicles
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X1 X2 X3 Y 1
F Y 2

F Y 3
F Y 1

F
Y 2

F
Y 3

F
w1

w2

... 0 Z1 1 0 0 0 0 1
wm

w1

w2

0 ... Z1 0 1 0 0 0 1
wm

2z1

z2

W1 0 ... 1 0 0 0 0 1
zm

w∗i wi

... ... Z1 1-I I 0 0 0 1
w∗j wj

w∗i
... 0 Z1 1-I 0 I 0 0 1
w∗j
wi

... 0 Z1 1 0 0 I 0 1-I
wj

wi

0 ... Z1 0 1 0 0 I 1-I
wj

Figure 7: K-WRPP solutions satisfying x1(δ(S)) + x2(δ(S)) = 2y1(F ) + 2y2(F )− |F |+ 1

are switched, another feasible point in KWRPP(G) is obtained. Therefore we have a very
large number of equivalent solutions. This property is specially bad for the behavior of
cutting-plane algorithms, and in order to avoid this problem, we introduce the following
set of additional constraints as suggested by Gendreau ([15]) and Ghiani et al. ([16]). Let
(e1, e2, . . . , em) be any ordering of the required edges . The idea is to force the numbering of
vehicles to follow the numbering of the smallest index edge that they service. This can be
done as follows ([16]):

y1
e1

= 1 (11)

yk
ei
≤

∑

j=1,...,i−1

yk−1
ej

k=3, . . . , K, i ≥ 2 (12)

yk
ei

= 0 k= i + 1, . . . ,K, i=1, . . . , m− 1 (13)

Vehicle 1 will serve edge e1. Constraints (12) state that if a required edge ei is serviced by
vehicle k then at least one ‘previous’ edge ej , j = 1, . . . , i−1, has to be serviced by the vehicle
k−1, while constraints (13) prevent edges ei, i = 1, . . . , m−1 from being serviced by vehicles
with indices larger than i.

We have noted that the strength of the above inequalities depends to a great extent on
the ordering chosen for the required edges. After some computational testing, we decided to
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order the required edges following a simple rule: the first required edge is the farthest one
from the depot, the second edge is the farthest one from both, the depot and the first edge,
and so on.

4.2 Separation Algorithms

In this section, we present the separation algorithms that have been used to identify the
inequalities that are violated by the current LP solution at any iteration of the cutting plane
algorithm.

Given an LP solution (x1, y1, x2, y2, . . . , xK , yK) ∈ R(2|E|+|ER|)K we define the ‘aggregate’
vector x as x =

∑K
k=1 xk and its associated weighted graph G = (V, E, ER, x), where V, E and

ER are the sets of vertices, edges and required edges of the original graph G and xe = xij +xji

is the weight associated with each edge e ∈ E. This ‘aggregate’ graph is the input to
the separation procedures described in Corberán et al. [12] to find connectivity, R-odd
cut, KC, KC02, HC and HC02 inequalities violated by x. If such an inequality F (x) ≥
c0 is found then the corresponding aggregate inequality

∑K
k=1 F (xk) ≥ c0 is violated by

(x1, y1, x2, y2, . . . , xK , yK). We refer to that paper for a detailed description of these aggregate
separation procedures.

Concerning the disaggregate inequalities, we proceed as follows. For each vehicle k, the
part of the LP solution that corresponds to this vehicle can be represented by the weighted
graph G

k = (V k
, E

k
, xk, yk), where V

k
, E

k are the sets of vertices and edges of the subgraph
of G induced by the edges e ∈ E such that xk

e = xk
ij + xk

ji > 0, plus the depot node, if
necessary.

4.2.1 Separation of disaggregate connectivity inequalities

Connectivity inequalities (5) can be exactly separated, for each vehicle k, with the following
polynomial algorithm. For each edge e ∈ ER, such that yk

e > 0, compute the minimum cut
in graph G

k separating edge e from the depot. If the weight of this cut is less than 2yk
e , then

the corresponding inequality (5) is violated.

Note that, although polynomial, the above exact algorithm is quite time consuming, so
we have also used a simple heuristic that consists of computing the connected components
of a graph constructed as G

k, but including only those edges e ∈ E such that xk
e > 0. For

each connected component of this graph that does not include the depot node, inequality (5)
is checked for the set S of nodes in the component and the required edge e ∈ ER(S) with
maximum value of yk

e .

4.2.2 Separation of disaggregate parity inequalities

Disaggregate parity inequalities (9) have been separated using two heuristic and one exact
polynomial procedures. The heuristic algorithms are based on the following simple procedure.
Given a cutset δ(S), it can be easily checked if there exists a subset F ⊆ δR(S) for which (9)
is violated. Note that (9) can be written as follows:
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∑

e∈δ(S)\δR(S)

xk
e +

∑

e∈δR(S)\F
xk

e +
∑

e∈F

(xk
e − 2yk

e + 1) ≥ 1

Then, as in Ghiani and Laporte [17], we can determine the subset F ⊆ δR(S) of odd
cardinality for which the LHS of the inequality gets its maximum value for the current
LP solution as follows. For each e ∈ δR(S), include e in the subset F if, and only if,
xk

e ≥ xk
e − 2yk

e + 1, that is, if yk
e ≥ 0.5. If |F | is odd, we are done, otherwise, a simple

check can determine the required edge to be removed from or added to F , in such a way that
the resulting subset minimizes the LHS. If the LHS is less than 1 the inequality (9) is then
violated. Otherwise there exists no F ⊆ δR(S) for which (9) is violated for the given cutset
δ(S).

This procedure has been applied to several subsets S ⊆ V \{1}. In particular for S = {v},
for every v ∈ V . Furthermore, we construct the graph induced by those required edges e for
which yk

e ≥ 0.5 and xk
e − yk

e > 0, and those non required edges e for which xk
e > 0. Then,

the connected components of this graph determine cutsets for which the above procedure is
applied.

Disaggregate parity inequalities can also be exactly separated with a polynomial algorithm
similar to the one proposed by Padberg & Rao [19]. It is based on the computation of
a minimum weight odd cut on a graph G′

k which is constructed as follows. Initially, G′
k

contains the set of nodes V
k, the edges e ∈ E \ ER such that xk

e > 0, and the edges e ∈ ER

such that xk
e − yk

e > 0. All the nodes are initially labelled as even. Then, for each edge
e = (i, j) ∈ ER such that yk

e > 0, a new node ie is created and two edges are added: (i, ie)
with weight 1− yk

e , and (ie, j) with weight yk
e ; the new node ie is labelled odd, and the label

of node i is changed, from even to odd (or viceversa). Let S′ be the set of nodes in the shore
of the depot defining the odd minimum cut in this graph and let S = S′

⋂
V

k. Let F be
the subset of required edges e ∈ δR(S) such that the edge with weight 1 − yk

e is in the odd
minimum cut δ(S′). It can be shown that |F | is odd and the weight of the minimum cut
δ(S′) in graph G′

k can be written as:

xk(δ(S))− 2yk(F ) + |F |

Therefore, a violated parity inequality (9) exists if, and only if, the weight of this cut is
less than 1.

4.3 The cutting plane algorithm and branching strategies

At each iteration of the cutting plane algorithm the exact and heuristic separation algorithms
are called in a specific order and a number of violated inequalities are added to the LP
relaxation, which is then solved again. The algorithm has been implemented as follows:

1. Aggregate inequalities:

(a) R-odd cut and connectivity separation heuristics.
(b) Exact connectivity separation if the corresponding heuristics have failed.
(c) Exact R-odd cut separation if no violated inequalities have been found by the

corresponding heuristics.
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(d) If the total number of violated inequalities found is less than 10, run heuristic
algorithms for separating K-C and K-C02 inequalities.

(e) If the total number of violated inequalities found is less than 10, run heuristic
algorithms for separating HC and HC02 inequalities.

2. Disaggregate inequalities:

(a) Parity and connectivity separation heuristics.
(b) Exact connectivity separation if no violated disaggregate connectivity inequalities

have been found so far.
(c) Exact parity separation for every vertex. If no violated disaggregate parity

inequalities have been found so far execute the exact parity separation algorithm.

The above cutting plane procedure is applied at each node of the tree until no new violated
inequalities are found. When this happens we branch using the Strong Branching strategy
[4] implemented in Cplex. This strategy branches on variables and allows to assign different
priorities to them. Variables with higher priority are the first ones used for branching. We
have assigned decreasing priorities to the variables yk

e associated with the service of the
required edges according to the ordering determined to implement the inequalities (11) to
(13) avoiding symmetry.

5 Computational results

We present here the computational results obtained on a large set of instances previously
published in the literature. The B&C procedure has been coded in C/C++ using the Cplex
9.0 MIP Solver with Concert Technology 2.0. All the tests were run on an Intel Pentium IV
2.80GHz and 2GB RAM with a time limit of 30 minutes. In what follows we describe the
characteristics of the instances.

The set of WRPP instances was presented in Benavent et al. [8] and generated
from the 24 RPP instances proposed in Christofides et al. [9]. They can be found in
http://www.uv.es/corberan. These RPP instances have up to 50 vertices, 184 edges, 78
required edges and 8 R-sets (vertex sets of the connected components induced by the required
edges). From each of these 24 RPP instances 6 different WRPP instances were generated.
The computational results obtained on this set of 24×6 instances for 2 and 3 vehicles are
shown in Tables 1 and 2, respectively.

Table 1 shows the characteristics of the instances as well as the computational results
for the case with 2 vehicles. First column shows the number of the set of WRPP instances
corresponding to the original RPP from Christofides et al. [9]. Columns 2,3,4 and 5 present
the number of vertices, edges, required edges and R-sets for all the instances in each set,
respectively. Column 7 shows the average gap between the lower bound at the root node and
the best feasible solution found, while column 8 reports the average final gap for the unsolved
instances. Finally, in column 9 the average time in seconds for the 6 instances is presented.

With 2 vehicles, all the small size instances have been solved in a few seconds. We have
also solved 25 out of 30 medium size instances (C20 to C24) in less than 30 minutes. For the
5 unsolved instances, the gap between the lower bound and the best feasible solution found is
only 2.71% on average. Note that very few instances have been solved at the root node (before
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# of # of Root node Final Time
|V | |E| |ER| R-sets opt. gap gap (scs.)

C01 11 13 7 4 6 0.88 - 0.07
C02 14 33 12 4 6 5.59 - 0.19
C03 28 57 26 4 6 2.53 - 1.03
C04 17 35 22 3 6 5.15 - 0.56
C05 20 35 16 5 6 5.04 - 0.24
C06 24 46 20 7 6 2.24 - 0.68
C07 23 47 24 3 6 3.03 - 1.35
C08 17 40 24 2 6 4.02 - 0.62
C09 14 26 14 3 6 4.93 - 0.13
C10 12 20 10 4 6 6.78 - 0.09
C11 9 14 7 3 6 5.78 - 0.05
C12 7 18 5 3 6 4.59 - 0.03
C13 7 10 4 3 6 0.00 - 0.02
C14 28 79 31 6 6 3.07 - 3.35
C15 26 37 19 8 6 3.05 - 0.35
C16 31 94 34 7 6 3.54 - 14.10
C17 19 44 17 5 6 3.24 - 0.32
C18 23 37 16 8 6 4.40 - 0.32
C19 33 54 29 7 6 2.28 - 1.52
C20 50 98 63 7 6 2.83 - 173.20
C21 49 110 67 6 6 1.68 - 214.23
C22 50 184 74 6 4 1.31 0.72 85.18
C23 50 158 78 6 4 2.82 5.64 359.69
C24 41 125 55 7 5 2.15 0.84 35.84

Global 25.13 58.92 28.08 5.04 3.37 2.71 31.9

Table 1: Computational results on the MM 2-WRPP instances

branching), not even the smallest ones. The average gap obtained at the root node is 3.37%.
This could mean that, besides the MM K-WRPP being a very hard problem, the polyhedral
description must be improved, specially with regard to the disaggregate inequalities. This
is more evident for the instances with 3 vehicles, where the average gap at the root node is
6.05% (see Table 2). Even so, all the instances of small size but one have been solved in a
few seconds and also 7 out of the 30 medium size instances in less than 30 minutes. We want
to point out that although the graphs are of medium size the corresponding LP’s are large.

18



# of Root node Final Time
opt. gap gap (scs.)

C01 6 0.00 - 0.1
C02 6 10.56 - 0.6
C03 6 7.06 - 6.2
C04 6 7.27 - 7.3
C05 6 7.63 - 0.7
C06 6 7.29 - 8.9
C07 6 5.81 - 12.2
C08 6 7.47 - 40.0
C09 6 7.85 - 0.4
C10 6 5.20 - 0.1
C11 6 3.58 - 0.1
C12 6 3.50 - 0.0
C13 6 0.00 - 0.0
C14 6 7.08 - 61.3
C15 6 4.61 - 4.5
C16 5 7.63 4,92 198.8
C17 6 6.03 - 2.3
C18 6 4.66 - 1.6
C19 6 4.67 - 28.0
C20 3 6.20 5.22 270.2
C21 1 11.27 11.59 1329.7
C22 0 5.78 5.56 1800.0
C23 0 5.47 5.32 1800.0
C24 3 8.60 6.65 1687.8

Global 6.05 6.82 220.9

Table 2: Computational results on the MM 3-WRPP instances
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6 Conclusions and future research directions

In this paper we have presented the Min-Max version of the Windy Rural Postman Problem
with multiple vehicles, in which the objective is to minimize the length of the longest tour.
An ILP formulation has been proposed and some families of valid inequalities have been
presented. We have also studied its associated polyhedron and we have proved that several
large families of inequalities are facet-inducing. Finally, a branch-and-cut algorithm has
been implemented with separation procedures for the families above. Our algorithm has
been tested on a large set of small and medium size instances from the Literature. The
results are encouraging since the algorithm has been capable of solving all of the small and
some of the medium size instances in only a few minutes. We think these results could be
improved by using separation procedures for some other families of disaggregate inequalities.
The implementation of such procedures as well as a better description of the MM K-WRPP
polyhedron will be the subject of future work.
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