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Abstract

Recently, in the field of project scheduling problems the concept of partially re-
newable resources has been introduced. Theoretically, it is a generalization of both
renewable and non-renewable resources. From an applied point of view, partially
renewable resources allow us to model a large variety of situations that do not fit
in classical models, but can be found in real problems in timetabling and labor
scheduling. In this paper we develop some preprocessing techniques and several
heuristic algorithms for the problem. Preprocessing significantly reduces the di-
mension of the problems, therefore improving the efficiency of solution procedures.
Heuristic algorithms based on GRASP and Path relinking are then developed and
tested on existing test instances, obtaining excellent results.

Keywords: Project management and scheduling; Partially renewable resources;
Heuristics; GRASP; Path relinking

1 Introduction

Project scheduling consists of allocating scarce resources to the set of activities in a
project over time. Project scheduling has been the object of a great deal of research since
the first methods, CPM[7] and PERT[15], were developed in the 1950’s. These initial
methods were able to manage large projects and were considered a useful tool in the
planning process. However, they assumed unlimited resources, an assumption severely
reducing their application to most real problems. Therefore, many researchers started
to study the resource-constrained case (RCPSP). Up to now, many exact and heuristic
algorithms have been developed (see the book by Demeulemeester and Herroelen[4] for
an excellent state-of-the -art description). The now classic RCPSP basically includes
two types of resources: renewable resources, in which the availability of each resource
is renewed at each period of the planning interval, and non-renewable resources, whose
availability is given once for the whole project and are consumed throughout the process
of the activities requiring them.
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However, in recent years new types of resource have been proposed to allow the
model to include new types of constraints. An example is allocatable resources[9, 14],
in which the units of the resource required by a given operation i remain occupied
from the start of a given allocating activity up to the completion of activity i. This
type of resource is useful to model situations in which the units of a resource are not
indistinguishable. For instance, if the resource corresponds to workers of a given type,
the person performing an activity consisting of a direct service to clients must carry
out some other activity involving the same clients and cannot be changed for another
worker of the same type.

Another example of new resources is cumulative resources[10, 11]. In this case, the
amount of a resource decreases when it is used by some activities, but it can increase
as the result of the process of some other activities, as is the case in some industries
involving chemical products.

Another new type of resource is partially renewable resources. The availability
of the resource is associated to a subset of periods of the planning horizon and the
activities requiring the resource only consume it if they are processed in these periods.
Although these resources may seem strange at first glance, they can be a powerful tool
for solving project scheduling problems. On the one hand, from a theoretical point of
view, they include renewable and non-renewable resources as particular cases. In fact, a
renewable resource can be considered a partially renewable resource with an associated
subset of periods consisting of exactly one period. Non-renewable resources are partially
renewable resources where the associated subset is the whole planning horizon. On the
other hand, partially renewable resources make it possible to model complicated labor
regulations and timetabling constraints, therefore allowing us to approach many labor
scheduling and timetabling problems as special cases of project scheduling problems.

As an example, let us consider a project involving human resources. We can find
some contractual conditions like that of working at most 2 weekend days out of every
3 consecutive weeks. This condition cannot be modelled as a renewable resource, be-
cause this type of resource considers each period separately. It cannot be modelled as
a non-renewable resource because this type of resource considers the whole planning
horizon. We model this condition as a partially renewable resource with a set of periods
{6, 7, 13, 14, 20, 21} for the first three weekends and a total availability of 2 units. Each
task consumes 1 unit of this resource for each weekend day in which it is processed. In
Figure 1 we see three activities A, B, and C scheduled within the timescale depicted
above. Activity A is in process at periods 6 and 7 and then it consumes 2 units of the
resource. Activity B does not consume the resource and activity C consumes 1 unit in
period 20. If these 3 activities had to be done by the same worker, the solution in the
figure would not be possible because it would exceed resource availability.

Partially renewable resources were first introduced by Böttcher et al.[1] in 1999.
They proposed an integer formulation and developed exact and heuristic algorithms.
Schirmer[13] studied these new type of resources thoroughly in his book on project
scheduling problems. He presented many examples of special conditions which can be
suitably modelled using partially renewable resources. He also proposed several families
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Figure 1: Example of partially renewable resource

of approximate algorithms for solving the RCPSP/π.
In this paper we develop some preprocessing techniques and several heuristic algo-

rithms for project scheduling under partially renewable resources. Preprocessing reduces
the dimension of the problems in terms of resources and possible finishing times for the
activities in the project, therefore improving the efficiency of the algorithms. Some
heuristic algorithms, based on GRASP and Path Relinking, are then developed and
tested on existing test instances. In Section 2 the elements of the problem are defined
and an integer formulation provided. Section 3 contains the preprocessing routines. In
Section 4 we develop the heuristic algorithms. Section 5 is devoted to the computational
experience and Section 6 to conclusions and future lines of research.

2 Formulation of the problem

The RCPSP/π can be defined as follows: Let J be the set of n = |J | activities,
numbered from 1 to n, where activity 1 and activity n are dummy activities representing
the beginning and end of the project. Let Pj be the set of activities which are immediate
predecessors of activity j and P ′

j the set of all predecessors of j. Each activity j has
a duration of dj and cannot be interrupted. Let R be the set of partially renewable
resources. Each resource r ∈ R has a total availability Kr and an associated set of
periods Πr. An activity j requiring resource r will consume kjr units of it at each
period t ∈ Πr in which it is processed. Finally, let T be the planning horizon in
which all the activities must be processed. For each activity j we obtain the earliest
and latest finishing times, EFTj , LFTj , by critical path analysis. We denote Ej =
{EFTj , ...., LFTj}, the set of possible finishing times, and Qjt = {t, ..., t + dj − 1}.

The RCPSP/π consists of sequencing the activities so that the precedence and re-
source constraints are satisfied and the makespan is minimized.

If we define the variables:

xjt =

{

1 if activity j finishes at time t

0 otherwise.

the problem can be formulated as follows:
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Min
∑

t∈En

txnt (1)

s.t.
∑

t∈Ej

xjt = 1 j ∈ J (2)

∑

t∈Ei

txit ≤
∑

t∈Ej

(t − dj)xjt j ∈ J, i ∈ Pj (3)

∑

j∈J

kjr

∑

t∈Πr

∑

q∈Qjt

⋂

Ej

xjq ≤ Kr r ∈ R (4)

xjt ∈ {0, 1} j ∈ J, t ∈ Ej (5)

The objective function (1) minimizes the finishing time of the last activity and hence
the makespan of the project. According to constraints (2) each activity must finish
once. Constraints (3) are the precedence constraints and constraints (4) the resource
constraints. Note that in this problem there is only one global constraint for each
resource r ∈ R. Another special characteristic of this problem is that all the activities
must finish inside a closed interval Ej , because sets Πr are defined with respect to the
planning horizon T . Therefore, the existence of feasible solutions is not guaranteed. In
fact, Schirmer[13] has shown that the feasibility variant of the RCPSP/π is NP-complete
in the strong sense.

The above formulation is called the normalized formulation by Böttcher et al. [1] and
Schimer[13]. Alternative formulations are considered in their papers, but they finally
adopt the normalized formulation due to its simplicity.

3 Preprocessing

Preprocessing has two objectives. First, to decide whether a given instance is un-
feasible or if it has feasible solutions. If the latter is the case, a second objective is
to reduce the number of possible finishing times of the activities and the number of
resources. If these two objectives are satisfactorily achieved, the solution procedures
will not waste time trying to solve unfeasible problems and will concentrate their efforts
on the relevant elements of the problem.

Preprocessing consists of several phases:

1. Reducing the planning horizon T

For each instance, we are given a planning horizon T . This value plays an
important role in the problem formulation. In fact, late finishing times of the
activities, LFTj are calculated starting from T in a backward recursion. Therefore,
the lower the value T , the fewer variables the problem will have. In order to reduce
T , we try to build a feasible solution for the given instance, using the GRASP
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algorithm which will be described later. The GRASP iterative process stops as
soon as a feasible solution is obtained or after 200 iterations. The new value T
is updated to the makespan of the feasible solution obtained. Otherwise, T is
unchanged.

If the makespan of the solution equals the length of the critical path in the
precedence graph, the solution is optimal and the process stops and returns the
solution.

2. Eliminating idle resources

Each resource r ∈ R is consumed only if the activities requiring it are processed
in periods t ∈ Πr. Each activity can only be processed in a finite interval. It is
therefore possible that no activity requiring the resource can be processed in any
period of Πr. In this case, the resource is idle and can be eliminated. More
precisely, if we denote the possible processing times of activity j by PPTj =
{EFTj − dj + 1, .., EFTj , ...., LFTj} , and ∀j ∈ J | krj > 0 : Πr

⋂

PPTj = ∅,
the resource r ∈ R is idle and can be eliminated.

3. Eliminating non-scarce resources

Schirmer[13] distinguishes between scarce and non-scarce resources. He con-
siders a resource r ∈ R as scarce if

∑

j∈J kjrdj > Kr, that is, if an upper bound
on the maximum resource consumption exceeds resource availability. In this case,
the upper bound is computed by supposing that all the activities requiring the
resource are processed completely inside Πr.

We have refined this idea by taking into account the precedence constraints.
Specifically, we calculate an upper bound on the maximal consumption of resource
r by solving the following linear problem:

Max
∑

j∈J

kjr

∑

t∈Πr

∑

q∈Qjt

⋂

Ej

xjq (6)

s.t.
∑

t∈Ej

xjt = 1 j ∈ J (7)

T
∑

m=t

xim +

t+dj−1
∑

s=1

xjs ≤ 1 j ∈ J, i ∈ Pj , t ≤ T (8)

xjt ≥ 0 j ∈ J , t ∈ Ej (9)

The objective function (6) maximizes the resource consumption over the whole
project. Constraints (7) ensure that each activity finishes once. Constraints (8)
are the precedence constraints. We use this expression, introduced by Christofides
et al.[3], because it is more efficient than the usual precedence constraint. In fact,
this linear problem has the integrality condition and its optimal solution is always
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integer [2]. If the solution value is not greater than the resource availability, this
resource will not cause any conflict and can be skipped in the solution process.

4. A filter for variables based on resources

For each activity j and each possible finishing time t ∈ Ej we perform the
following test to decide if this time t is not feasible for activity j to finish in.
Q′

jrt = {t − dj + 1, t − dj + 2, ..., t}
⋂

Πr is the set of processing times of j which
lie inside Πr if it finishes at time t, and mjrt = |Q′

jrt| denotes the corresponding
number of periods.

• For each predecessor i ∈ P ′
j , let ERit be the reduced set of possible finishing

times of i if j finishes at time t.

• For each successor l (j ∈ P ′
l ), let ERlt be the reduced set of finishing times

of l if j finishes at time t.

• Let Uj be the set of activities not related to j by precedence constraints.

• Consider the resources r ∈ R, one at a time, and compute the minimal
consumption of the resource if activity j finishes at time t:

MCr = mjrtkjr +
∑

i∈P ′
j

mins∈ERi
{mirskir} + (predecessors of j)

∑

l|j∈P ′
l

mins∈ERl
{mlrsklr} + (successors of j)

∑

h∈Uj

mins∈Eh
{mhrs|khr} (remaining activities)

• If MCr > Kr, time t is not feasible for activity j to finish in and the corre-
sponding variable xjt = 0.

When this filter is applied to an activity j some of its possible finishing times
can be eliminated. From then on, the set of possible finishing times is no longer
Ej . We denote by PFTj the set of finishing times passing the filter.

This filter is applied iteratively. After a first run on every activity and every
finishing time, if some of the variables are eliminated the process starts again but
this time computing MCr on the sets PFTj , PFTi, PFTl, PFTs instead of the
original Ej , Ei, El, Es. As the minimum are calculated over restricted subsets, it
is possible that new finishing times fail the test and are eliminated. The process
is repeated until no finishing time is eliminated in a complete run.

5. Consistency test for finishing times

When the above filter eliminates a finishing time of an activity j, it is possible
that some of the finishing times of its predecessors and successors are no longer
feasible. For instance, suppose an activity j with PFTj = {9, 10, 11, 12, 13, 14, 15}
and duration dj = 3 and an activity i ∈ Pj with PFTi = {6, 7, 8, 9, 10, 11, 12}.
If the resource filter eliminates t = 15 from PFTj , then t = 12 is not possible
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for activity i because if i finishes at time 12, j must necessarily finish at time 15,
which is unfeasible. Therefore, time 12 for activity i is eliminated.

In general, for an activity j let us denote by τj = max{t | t ∈ PFTj}. Then, for
each i ∈ Pj the finishing times t ∈ PFTi such that t > τj − dj can be eliminated.
Analogously, if for activity j, γj = min{t | t ∈ PFTj}, for each i | j ∈ Pi the
finishing times t ∈ PFTi such that t < γj + di can be eliminated.

This test is also applied iteratively until no more finishing times are eliminated.
If, after applying these two procedures for reducing variables, an activity j has
PFTj = ∅, the problem is unfeasible and the procedure stops, returning the
unfeasibility status of the given instance.

6. Constructing a trial solution

In the first step of the preprocessing procedure we tried to build a feasible
solution. If the feasible solution was obtained, we checked if its makespan was
equal to the length of the critical path. If this was the case, the solution was
optimal. After the elimination of variables, we then check if the makespan of that
solution equals the minimum time in PFTn. If this is the case, the solution is
optimal.

Otherwise, we build a trial solution by assigning a finishing time tj = min{t | t ∈
PFTj} to each activity j. Obviously this solution satisfies the precedence con-
straints. If it satisfies the resource constraints as well, it is the optimal solution.

4 GRASP algorithm

GRASP, greedy randomized adaptive search procedure, is an iterative process com-
bining a constructive phase and an improvement phase. The construction phase builds
a solution step by step, adding elements to a partial solution. The element to add is
selected according to a greedy function which is dynamically adapted as the solution
is built. However, the selection is not deterministic, but subjected to a randomization
process. Hence, when we repeat the process we can obtain different solutions. When
a feasible solution has been built, its neighborhood is explored in a local search phase
until a local optimum is found. Resende and Ribeiro[12] present a comprehensive re-
view of GRASP and an extensive survey of GRASP literature can be found in Festa
and Resende[6].

4.1 The constructive phase

A deterministic constructive algorithm

We have adapted the Serial Scheduling Scheme (SSS) proposed by Schirmer[13],
which in turn is an adaptation of the Serial Scheduling Scheme commonly used
for the classical RCPSP. We denote by FTj the finishing time assigned to activity
j. At each stage of the iterative procedure an activity is scheduled by choosing
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from among the current set of decisions, pairs (j, t) of an activity j and a possible
finishing time t ∈ PFTj . The selection is based on a priority rule.

Step 0. Initialization

s = 1 (counter of stage)

FT1 = 0 (sequencing dummy activity 1)

S1 = {1} (partial schedule at stage 1)

∀r ∈ R : RKr1 = Kr (remaining capacity of resource r at stage 1)

TDr1 =
∑

j∈J

kjrdj (maximum possible demand for r at stage 1)

SR1 = {r ∈ R | TDr1 > RKr1} (set of possible scarce resources)

EL1= set of eligible activities, those activities for which activity 1 is the only
predecessor

Step 1. Constructing the set of decisions

Ds = {(j, t) | j ∈ ELs , t ∈ PFTj}

Step 2. Choosing the decision

Select the best decision (j∗, t∗) in Ds, according to a priority rule

Step 3. Feasibility test

If (j∗, t∗) is resource-feasible, go to Step 4.

Else

Ds = Ds \ {(j
∗, t∗)}

If Ds = ∅, STOP. The algorithm does not find feasible solution.

Else, go to Step 2.

Step 4. Update

s = s + 1

FTj∗ = t∗

Ss = Ss−1 ∪ {j∗}

ELs = (ELs−1 \ {j
∗}) ∪ {j ∈ J |Pj ⊆ Ss}

∀l ∈ J | j ∈ Pl : PFTl = PFTl \ {τ | t∗ + dl > τ}

∀r ∈ R : RKrs = RKr,s−1 − kj∗rmj∗rt∗

TDrs = TDr,s−1 − kj∗rdj∗

If TDrs ≤ RKrs , then SRs = SRs−1 \ {r}

If s = n, STOP. The sequence is completed.

Else, go to Step 2.

At Step 1, the construction of Ds could have included the feasibility test
of Step 3, as in Schirmer’s[13] original scheme. However, we have preferred not
to check the resource availability of every decision and only check the decision
already chosen. In problems with a large number of possible finishing times for
the activities, this strategy is more efficient.
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We keep the set of possible scarce resources SRs updated because some priority
rules based on resource consumption only take this type of resources into account.

Priority rules

We have tested the 32 priority rules used by Schirmer[13]. The first 8 are
based on the network structure, including classical rules such as EFT, LFT, SPT
or MINSLK. The other 24 rules are based on resource utilization. 12 of them
use all the resources and the other 12 only the scarce resources. A preliminary
computational experience, which will be fully described in Section 6, allowed us
to choose the most promising rules and use them in the next phases of the algo-
rithm’s development. These preliminary results also showed that even with the
best performing rules the deterministic constructive algorithm failed to obtain a
feasible solution for many instances of 10 activities generated by Böttcher et al.[1].
Therefore, the objective of the randomization procedures which were included in
the algorithm was not only to produce diverse solutions but to ensure that for
most of the problems the algorithm would obtain a feasible solution.

Randomization strategies

We introduce randomization procedures for selecting the decision at Step 2 of
the constructive algorithm. Let sjt be the score of decision (j, t) on the priority
rule we are using and smax = max{sjt|(j, t) ∈ Ds}, and let δ be a parameter to
be determined (0 < δ < 1). We have considered three alternatives:

(a) Random selection on the Restricted Candidate List, S

Select decision (j∗, t∗) at random in set S = {(j, t) | sjt ≥ δsmax}

(b) Biased selection on the Restricted Candidate List, S

The decisions involving the same activity j are given a weight which is in-
versely proportional to the order of their finishing times. For instance, if
in S we have decisions (2, 4), (2, 5), (2, 7), (2, 8) involving activity 2 and or-
dered by increasing finishing times, then decision (2, 4) will have a weight
of 1, decision (2, 5) weight 1/2, decision (2, 7) weight 1/3 and decision (2, 8)
weight 1/4. The same procedure is applied to the decisions corresponding
to the other activities. Therefore, the decisions in S corresponding to the
lowest finishing times of the involved activities will be equally likely and the
randomized selection process will favor them.

(c) Biased selection on the set of decisions Dn

We have also implemented the Modified Regret-Based Biased Random Sam-
pling (MRBRS/δ) proposed by Schirmer[13], in which the decision (j, t) is
chosen from among the whole set Dn but with its probability proportional
to its regret value. The regret value is a measure of the worst possible con-
sequence that might result from selecting another decision.

A repairing mechanism
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The randomization strategies described above significantly improve the ability
of the constructive algorithm to find feasible solutions for tightly constrained in-
stances. However, a limited computational experience showed that not even with
the best priority rule and the best randomization procedure could the constructive
algorithm obtain feasible solutions for all the instances of 10 activities generated
by Böttcher et al.[1]. Therefore, we felt that the algorithm was not well-prepared
for solving larger problems and we decided to include a repairing mechanism for
unfeasible partial schedules.

In the construction process, if at Step 3 all decisions in Dn fail the feasibility
test and finally Dn becomes empty, instead of stopping the process and starting
a new iteration, we try to re-assign some of the already sequenced activities to
other finishing times in order to free some resources that could be used for the
first of the unscheduled activities to be processed. If this procedure succeeds, the
constructive process continues. Otherwise, it stops. A detailed description of the
repairing mechanism is not provided because it is very similar to the double move
described in the next subsection.

4.2 The improvement phase

Given a feasible solution obtained in the constructive phase, the improvement phase
basically consists of two steps. First, identifying the activities whose finishing times
must be reduced in order to have a new solution with the shortest makespan. These
activities are labelled as critical. Second, moving critical activities in such a way that
the resulting sequence is feasible according to precedence and resource constraints. We
have designed two types of moves: simple and double. In a simple move, only a critical
activity is moved, leaving the remaining activities unchanged. In a double move, non-
critical activities are moved to make the move of a critical activity possible.

1. Building M , the set of critical activities

Step 0. Initialization

M = {n} (the last activity of the project n is always critical)

sn = 1 (activity n has not yet been studied for enlarging M).

Step 1. Adding activities to M

While( ∃j ∈ M | sj = 1) {

Take the largest j ∈ M with sj = 1

Set sj = 0

∀i ∈ Pj :

If FTi + dj = FTj (there is no slack between i and j)

M = M ∪ {i}

si = 1 }
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At Step 1, the condition for including an activity in M simply says that if j
has to be moved to the left, reducing its finishing time, a predecessor i which is
processed immediately before j must also be moved to the left in order to leave
room for moving j. This condition can be refined if we take into account that
the preprocessing filters may have eliminated some possible finishing times of the
activities. If t′j = max{t ∈ PFTj | t

′
j < FTj}, the condition of Step 1 can be

written as: If FTi + dj > t′j , then i is critical.

For instance, suppose we have activity 4 ∈ M with FT4 = 14, d4 = 5, PFT4 =
{10, 11, 12, 14}, and activity 2 is a predecessor of 4 with FT2 = 8. If activity 4 has
to be moved to the left, its new finishing time will be 12 at most and therefore
FT2 can no longer be 8. Activity 2 must be moved to the left and hence 2 ∈ M .
In this example, t′4 = 12 and FT2 + d4 = 13.

2. Simple move

We try to move every activity j ∈ M to the left, in topological order, to a new
finishing time satisfying the precedence and resource constraints. If an activity
cannot be moved, the procedure stops. If for an activity there are several possible
new finishing times, that with minimum global resource consumption is chosen.

Step 0. Initialization

RKr, ∀r ∈ R, are the resources not used in the current sequence

uj = 1, ∀j ∈ M (activity still to be moved)

possible = true (the move is still possible)

Step 1. Moving activities in M

While( ∃j ∈ M |uj = 1)

{

Take the minimum j ∈ M with uj = 1

Set uj = 0

MINFTj = max {FTi + dj | i ∈ Pj}

tbest = FTj

maxexcess = 0

∀t ∈ PFTj | MINFTj ≤ t < FTj

{ ∀r ∈ R : RKr = RKr + kjrmjrFTj
− kjrmjrt

If RKr ≥ 0,∀r ∈ R (possible move)

excess =
∑

r∈R

RKr

If maxexcess < excess

maxexcess = excess

tbest = t
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Recover previous RKr }

If tbest = FTj (no change)

Recover the original FTj ,∀j ∈ J and return false

Else, FTj = tbest

}

Step 2.

Return true and the modified solution

3. Double move

Step 0. Initialization

RKr, ∀r ∈ R, are the resources not used in the current sequence

uj = 1, ∀j ∈ M (activity still to be moved)

possible = true (the move is still possible)

While( ∃j ∈ M | sj = 1)

{

Step 1. Selecting an activity j ∈ M to be moved

Take the minimum j ∈ M , with uj = 1

Set uj = 0

MINFTj = max {FTi + dj | i ∈ Pj}

Step 2. Considering a new finishing time for j

∀t ∈ PFTj | MINFTj ≤ t < FTj

{

repaired = true

∀r ∈ R : RKr = RKr + kjrmjrFTj
− kjrmjrt

If RKr ≥ 0, ∀r ∈ R

FTj = t

Go to Step 1, to move another critical activity

Else

Step 3. Moving other activities i ∈ J

LC = ∅ , list of possible changes

∀i ∈ J | i 6= j

{

MINFTi = max {FTl + di | l ∈ Pi}
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MAXFTi = min {FTk − dk | i ∈ Pk}

tbest = FTi

bestviol = 0

Step 4. New finishing times for activity i

∀u ∈ PFTi | MINFTi ≤ u ≤ MAXFTi

{

newviol = 0

{ ∀r ∈ R : changer = kirmiru − kirmirFTi

If RKr > 0 and RKr − changer < 0

newviol = newviol + (changer − RKr)

repaired = false

If RKr < 0

If changer < 0

newviol = newviol − min{−RKr,−changer}

Else, newviol = newviol + changer

If RKr < changer

repaired = false }

If repaired = true

tbest = u

Go to Step 5

If bestviol > newviol

bestviol = newviol

tbest = u

} (end of Step 4)

Step 5. Add to the list of possible changes

If tbest 6= FTi

LC = LC ∪ {(i, tbest)}

Update RKr and FTi

If repaired = true

Go to Step 6

} (end of Step 3)

Step 6. Make changes associated to activity j

If repaired = true
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FTj = t

Make changes in LC and update FTi, RKr

Else, return false

} (end of Step 2)

} (end of main While)

Step 7.

Return true and the modified solution

In Step 2, the new finishing time which is being considered for activity j ∈ M
may be resource-feasible and no other activity needs to be moved. If this is not the
case, in Step 3 other activities are considered for moving. An activity i is moved to
a new provisional finishing time if this move offsets the resource violation provoked
by moving j or, at least, reduces the deficit. Therefore, throughout the search in
J , a provisional list of changes LC is built until the solution is repaired or J is
exhausted. If the solution is repaired with the list of changes in LC, those moves
are made and a new j ∈ M is considered. Otherwise, the procedure stops without
improving the solution.

The double move can be enhanced in the following way. If we arrive at Step
6 without completely covering the deficit created by moving j, but this deficit is
partially reduced, we can go back to Step 3 and search J again from the beginning,
trying to further reduce or eliminate the remaining deficit. The procedure is more
complex but sometimes offers feasible moves for critical activities.

The three procedures of the improvement phase are run iteratively:

S= current solution

improve = false

do{

Build set M of critical activities

improve=SimpleMove(S, M)

if improve = false

improve=DoubleMove(S, M)

} while (improve = true)

4.3 An aggressive procedure

The standard version of our heuristic algorithm starts by applying the preprocessing
procedure of Section 3. The reduced problem then goes through the iterative GRASP
algorithm described above, combining a constructive phase and an improvement phase
at each iteration, until the stopping criterion, here a fixed number of iterations, is met.
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An enhanced version of the heuristic algorithm combines preprocessing and GRASP
procedures in a more aggressive way. After a given number of iterations (stopping
criterion), we check if the best known solution has improved. If this is the case, we run
the preprocessing procedures again, setting the planning horizon T to the makespan of
the best known solution and running the filters for variable reduction. The GRASP
algorithm is then applied on the reduced problem. Obtaining feasible solutions is now
harder, but if the procedure succeeds we will get high quality solutions. A scheme of
the modified algorithm appears in Figure 2.

Pre-processing

Constructive phase

(Randomized)

Improvement phase

(Local search)

Stopping condition? NOYESBest solution
improved?

NO

Return best solution found

Pre-processing

YES

Figure 2: Scheme of Aggressive GRASP

4.4 Path Relinking

If throughout the iterative procedures described above we keep a set of the best
solutions, usually denoted as elite solutions, we can perform a Path Relinking procedure.
Starting from one of these elite solutions, called the initiating solution, we build a path
towards another elite solution, called the guiding solution. To the intermediate solutions
in the path we progressively impose the attributes of the guiding solution, so these
intermediate solutions evolve from the initiating solution until they reach the guiding
solution. Hopefully, along these paths we will find solutions which are better than both
extremes, the initiating and the guiding solutions.

We keep the 10 best solutions obtained in the GRASP procedure. We consider
one of them in turn as the initiating solution and another as the guiding solution. We
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build a path from the initiating to the final solution with n − 1 intermediate solutions.
The jth solution will have the finishing times of the first j activities taken from the
guiding solution, while the remaining n− j finishing times will still correspond to those
of the initiating solution. Therefore, along the path, the intermediate solutions will be
progressively more similar to the guiding solution and more different from the initiating
one. In some cases these intermediate solutions will not be feasible. If this is the case, a
repairing mechanism similar to that described in Section 4 is applied. We proceed from
activity 1 to activity n, checking for each activity j if the partial solution from 1 to j is
feasible. If it is not, we first try to find a feasible finishing time for activity j, keeping
previous activities unchanged. If that is not possible, we try to re-assign some of the
previous activities to other finishing times in order to obtain some resources which are
necessary for processing activity j at one of its possible finishing times. If this procedure
succeeds, we consider activity j+1. Otherwise, the solution is discarded and we proceed
to the next intermediate solution. If we obtain a complete intermediate solution which
is feasible, we apply to it the improvement phase described in the GRASP algorithm.

5 Computational results

5.1 Test instances

Böttcher et al.[1] generated a first set of test instances. Taking as their starting point
PROGEN 2 [8], an instance generator for the classical RCPSP with renewable resources,
they modified and enlarged the set of parameters and generated a set of 2160 instances
with 10 non-dummy activities, 10 replications for each one of the 216 combinations
of parameter values. As most of the problems were unfeasible, they restricted the
parameter values to the 25 most promising combinations and generated 250 instances
of sizes 15, 20, 25, 30 and 60 of non-dummy activities, always keeping the number of
resources to 30.

More recently, Schirmer[13] has developed PROGEN 3, an extension of PROGEN 2,
and has generated some new test instances. He has generated 960 instances of sizes 10,
20 30 and 40, with 30 resources. Most of them have a feasible solution, while a few of
them are unfeasible and some of them are labelled as undecided because a time-limited
run of the branch and bound algorithm by Böttcher et al.[1] failed to obtain a feasible
solution. Table 1 shows the status of Schirmer’s problems as reported in [13]

5.2 Preprocessing results

The preprocessing procedures in Section 3 have been applied to the Böttcher et
al.[1] problems of 10, 15, 20, 25 and 30 which are available upon request from the
authors. Different aspects of the results appear in Tables 2, 3 and 4. Table 2 shows the
performance of preprocessing in determining problem status.

The last line of Table 2 shows the status we have been able to determine for the prob-
lems left undecided by the preprocessing procedures. We have tried to solve these in-
stances with CPLEX, using an integer programming formulation of the problem adapted
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Instance Non-optimally Optimally Feasibly Undecided Proven Total
Set solved solved solved infeasible

J10 39 901 940 11 9 960
J20 203 734 937 23 0 960
J30 181 757 938 22 0 960
J40 183 743 926 34 0 960

Total 606 3135 3741 90 9 3840

Table 1: Test problems generated by Schirmer

n=10 n=15 n=20 n=25 n=30

Problems 2160 250 250 250 250
Detected as impossible 1205 16 17 12 8
Detected as possible 879 233 231 236 239
Undecided 76 1 2 2 3

Actual status Impossible Possible Undecided Impossible Undecided

Table 2: Böttcher et al. problems - Determining the status

from that appearing in Section 2, though for 2 instances of size 20 and 3 instances of
size 30 long time runs of this powerful code failed to obtain even a feasible integer so-
lution. In summary, we can say that our preprocessing procedures are very efficient in
determining the actual status of a given instance.

Table 3 shows the optimal solutions that the preprocessing obtains either by proving
that the initial feasible solution is optimal, or by building a trial solution in which each
activity is assigned to its minimum finishing time after the reduction filters have been
applied. For more than 70 % of the instances the optimal solutions are found.

n=10 n=15 n=20 n=25 n=30
Problems 2160 250 250 250 250
Feasible problems 879 234 233 236 242
Solved to optimality by pre-processing 646 165 177 190 193
Remaining problems 233 67 56 46 49

Table 3: Böttcher et al. problems - Optimal solutions identified in the preprocessing

Table 4 presents the reduction in the number of resources and variables for the
problems not solved in preprocessing, for which some other algorithm has to be applied.
The fast preprocessing techniques significatively reduce the number of resources to be
taken into account and, more importantly, the number of possible values of the decision
variables.

Similar results have been obtained for the test problems generated by Schirmer[13].
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n=10 n=15 n=20 n=25 n=30
Problems 233 67 56 46 49
Initial resources 30 30 30 30 30
Remaining resources (on average) 18 18 23 25 25
Initial variables (on average) 90 268 565 874 1314
Remaining variables (on average) 51 130 348 611 906

Table 4: Böttcher et al. problems - Reductions of resources and variables

Table 5 shows the performance of preprocessing, first determining the status of the all
of the problems and then providing optimal solutions for many of them. Note that the
status of all problems left undecided in Schirmer’s book[13] have been determined. In
fact, all of them have been proven to be feasible, except for five instances of size 10
which are impossible. For more than 75 % of the feasible problems, the preprocessing
procedures are able to provide a proven optimal solution.

n=10 n=20 n=30 n=40
Problems 951 960 960 960
Feasible problems 946 960 960 960
Solved to optimality by pre-processing 609 727 796 793
Remaining problems 337 233 164 137

Table 5: Schirmer problems - Optimal solutions identified in the preprocessing

A characteristic of PROGEN 3 is that it tends to produce large values of the planning
horizon T . On the one hand, that favors the existence of feasible solutions. On the other
hand, as the number of possible finishing times of activities depends directly on T , a very
large number of variables are initially defined. Therefore, for this set of problems the
reduction of T described in Section 3 is especially useful . Table 6 shows the reduction
of T obtained by that procedure on the non-optimally solved problems.

n=10 n=20 n=30 n=40
337 problems 233 problems 164 problems 137 problems

Average initial T 43 82 120 158
Average reduction 9 (21%) 31 (38%) 52 (43%) 80 (50%)
Maximal reduction 30 (70%) 61 (76%) 100 (84%) 134 (85%)

Table 6: Schirmer problems - Reductions of planning horizon T

The reductions of the planning horizon T , together with the procedures for reducing
possible finishing times for the activities, produce dramatic decreases in the final number
of variables to be used by solution procedures. Table 7 presents the reductions in the
number of resources and variables obtained by the preprocessing strategies.
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n=10 n=20 n=30 n=40
337 problems 233 problems 164 problems 137 problems

Initial resources 30 30 30 30
Remaining resources (average) 15 (50%) 15 (50%) 18 (60%) 16 (53%)
Initial variables (average) 210 965 2287 4255
Remaining variables (average) 101 (48%) 332 (34%) 720 (31%) 1062 (25%)

Table 7: Schirmer problems - Reductions of resources and variables

5.3 Computational results of constructive algorithms

The 32 priority rules described by Schirmer[13] were coded and embedded in the
constructive algorithm of Section 4.1. These rules were tested on the 879 feasible in-
stances of size 10 generated by Böttcher et al.[1]. Table 8 shows the results obtained
by the 6 best performing rules. The first 3 rules are based on the network structure
of the problems. The last 3 rules are based on resource consumption. In them, ES
indicates that the rules require the use of only scarce resources, indexed by r. Rkrs is
the remaining capacity of resource r at stage s, as defined in Section 4.1. RDjrt is the
relevant demand, defined as RDjrt = kjr|Qjt ∩ Πr|. MDEjrt is the minimum relevant
demand entailed for resource r by all successors of activity j when started at period t.
The most important feature of Table 8 is that even the best rules fail to produce a feasi-
ble solution for 20% of these small instances of size 10. Therefore, we need randomizing
strategies and repairing mechanisms to significantly increase the probability of finding
feasible solutions in the constructive phase of the GRASP algorithm.

Rule Definition Feasible solutions (%) Optimal solutions (%)
LFT Min{LFTj} 80.09 64.28

MTS Max{|{i|j ∈ P
′

i }|} 79.64 69.98
SLK Min{LSTj − EFTj} 76.22 61.66
DRC/ES Max{

∑

r(RKrs − RDjrt)} 81.57 27.08
DRS/ES Min{

∑

r(RKrs/RDjrt)} 79.29 27.53
TRS/ES Min{

∑

r(RDjrt + MDEjrt)} 79.41 28.56

Table 8: Results of priority rules

Table 9 presents the improvement in the number of feasible and optimal solutions
obtained by the constructive algorithm when one of the randomizing strategies are
included in Step 2. As in Table 8, the test problems are the size 10 instances of Böttcher
et al.[1]. Only two rules have been kept for this second test, LFT , which is the best rule
among those based on network structure and DRC/ES, the best rule based on resource
usage. Table 9 shows that the randomization procedures allow us to get an important
increase in the number of feasible solutions. However, not all these small problems can
be solved. That is the reason for the development of a repairing mechanism to help
the constructive algorithm to find feasible solutions for the more tightly constrained

19



problems.

Rule Randomizing strategy Feasible solutions (%) Optimal solutions (%)
LFT Deterministic 80.09 64.28

Random 1 97.95 61.89
Random 2 97.61 93.83
Random 3 98.41 61.66

DRC/ES Deterministic 81.57 27.08
Random 1 96.25 72.81
Random 2 95.56 76.11
Random 3 98.41 54.38

Table 9: Results of randomizing strategies

Table 10 shows the final results of the complete constructive algorithm, including
the repairing mechanism. From Table 9 we have kept Random 3 because it obtains
the highest number of feasible solutions and Random 2 because it obtains the highest
number of optimal solutions. The results show that the constructive algorithm now
seems to be well-prepared for solving larger problems. The priority rule LFT produces
many more optimal solutions than DRC/ES. This rule, based on the use of resources, is
more orientated to attaining feasibility by choosing times with low resource requirements
than to get optimality by processing activities as early as possible. However, as the
feasibility of the solutions is guaranteed by the joint effort of a randomizing strategy
and the repairing mechanism, rule LFT will be chosen for the GRASP algorithm.

Rule Strategy Iterations Feasible solutions (%) Optimal solutions (%)
LFT Random 2 1000 99.89 99.09

Random 2 2000 100 99.43
Random 3 1000 100 93.63
Random 3 2000 100 96.36

DRC/ES Random 2 1000 99.66 89.31
Random 2 2000 99.66 89.31
Random 3 1000 100 81.91
Random 3 2000 100 84.41

Table 10: Results of the complete constructive algorithm

5.4 Computational results of GRASP algorithms

Tables 11 and 12 show the results of the GRASP algorithms on the problems of
Böttcher et al.[1] and Schirmer[13] respectively. Four versions of the algorithm have
been tested: GRASP, the basic GRASP algorithm, GR+PR, in which the best solutions
obtained in the GRASP iterations go through the Path Relinking phase described in
Section 4.4, AG-GR, the modified GRASP procedure described in Section 4.3, and AG-
GR+PR, combining modified GRASP and Path Relinking. The GRASP algorithms
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use priority rule LFT and the second randomization procedure with δ = 0.85. For
each problem size the Tables show the number of non-optimal solutions, the average
distance to optimum and the maximal distance to optimum. However, not all the
optimal solutions are known. In fact, in Table 11 for 1 instance of size 20, 7 instances of
size 25 and 7 instances of size 30 the optimal solution is unknown. Analogously, in Table
12 the optimal solution is not known for 1 instance of size 30 and 5 instances of size
40. In these cases, which are marked (*), the comparison is made with the best-known
solution, obtained by a time-limited run of the CPLEX integer code or by heuristic
methods.

Problem Feasible
size instances GRASP GR + PR AG − GR AG − GR + PR
10 879 Non-optimal 1 1 2 2

Mean dist. (%) 0.006 0.006 0.15 0.15
Max dist. (%) 5.6 5.6 7.7 7.7

15 234 Non-optimal 4 4 3 3
Mean dist. (%) 0.13 0.13 0.09 0.09
Max dist. (%) 17.9 17.9 17.9 17.9

20 231 Non-optimal* 8 8 8 8
Mean dist. (%) 0.41 0.41 0.33 0.33
Max dist. (%) 24.2 24.2 27.3 27.3

25 236 Non-optimal* 7 6 8 7
Mean dist. (%) 0.20 0.19 0.24 0.23
Max dist. (%) 21.7 21.7 21.7 21.7

30 239 Non-optimal* 5 5 5 4
Mean dist. (%) 0.10 0.10 0.06 0.05
Max dist. (%) 11.5 5.8 3.9 3.9

Table 11: Results of GRASP algorithms on Böttcher et al. problems

The results in Table 11 show that only a few very difficult problems of every size
are not optimally solved. However, these problems are so hard that almost no differ-
ence between algorithms can be observed. The maximum distance to optimum can be
relatively very high. For instance, problem P2408 of size 15 has an optimal solution
of 28 while the heuristic solution is 33. However, due to the special type of resources
involved, it is possible that no feasible solutions of length 29, 30, 31 and 32 exist. If
that were the case, only one possibility of improving is left, though the high value of
the maximum distance would seem to suggest the opposite.

The results in Table 12 allow us to observe the different performance of the four
algorithms more clearly. The aggressive GRASP procedure does not guarantee a better
solution than the basic GRASP algorithm, as can be seen in the first row of the Table,
but for larger problems it tends to produce better results. The Path Relinking algorithm
adds little improvement to the good results obtained by GRASP procedures.

Tables 13 and 14 complement the information in previous Tables by providing the
running times of the algorithms on both sets of problems. In all cases preprocessing is
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Problem Feasible
size instances GRASP GR + PR AG − GR AG − GR + PR
10 946 Non-optimal 1 1 2 2

Mean dist. (%) 0.003 0.003 0.007 0.007
Max dist. (%) 2.9 2.9 3.4 3.4

20 960 Non-optimal 33 22 20 19
Mean dist. (%) 0.12 0.08 0.07 0.06
Max dist. (%) 13.0 13.0 13.0 13.0

30 960 Non-optimal* 58 55 34 34
Mean dist. (%) 0.22 0.20 0.12 0.11
Max dist. (%) 12.1 12.1 13.6 13.6

40 960 Non-optimal* 79 76 56 50
Mean dist. (%) 0.48 0.42 0.25 0.22
Max dist. (%) 32.0 32.0 20.5 20.5

Table 12: Results of GRASP algorithms on Schirmer problems

included as a part of the solution procedure. The algorithms have been coded in C++
and run on a Pentium IV at 2.8 Ghz. The basic GRASP algorithm stops after 2000
iterations, while the stopping criterion of the aggressive GRASP is set to 500 iterations.
The average running times are very short, though some problems would require quite
long times. Adding the Path Relinking procedure increases the running times very
slightly and therefore it seems convenient to keep it in the final implementation. If we
compare the running times of the basic and the aggressive GRASP procedures, we do
not see large differences, except in the last line of Table 14. However, that is the case
in which the results of the aggressive GRASP are more clearly superior to the basic
algorithm and the larger computing time is efficiently used to obtain better results.
Therefore, the aggressive GRASP algorithm with Path Relinking seems to be the best
option for an efficient heuristic algorithm.

Problem
size GRASP GR + PR AG − GR AG − GR + PR
10 Average time 0.41 0.41 0.21 0.21

Maximum time 30.4 30.5 45.8 45.9
15 Average time 1.34 1.35 1.25 1.25

Maximum time 51.0 51.1 93.0 93.1
20 Average time 4.91 4.97 2.98 3.02

Maximum time 180.8 186.6 154.9 155.2
25 Average time 8.85 8.91 6.73 6.76

Maximum time 316.5 316.6 299.2 299.5
30 Average time 8.11 8.12 8.99 9.00

Maximum time 455.6 455.6 457.7 457.8

Table 13: Running times of GRASP algorithms on Böttcher et al. problems
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Problem
size GRASP GR + PR AG − GR AG − GR + PR
10 Average time 0.89 0.90 1.05 1.05

Maximum time 41.9 42.2 33.1 33.3
20 Average time 0.95 0.97 0.70 0.71

Maximum time 162.4 163.0 53.0 53.1
30 Average time 2.03 2.10 2.04 2.11

Maximum time 135.0 143.7 144.5 144.7
40 Average time 3.96 4.05 4.32 4.40

Maximum time 155.6 155.8 507.5 519.8

Table 14: Running times of GRASP algorithms on Schirmer problems

6 Conclusions

We have studied a generalization of the classical resource constrained project schedul-
ing problem. A new type of resource is considered, the partially renewable resource in
which the availability of the resource is associated to a given set of periods and the ac-
tivities only consume it when they are processed in these periods. These resources can
be seen as a generalization of renewable and non-renewable resources, but their main in-
terest comes from their usefulness to model complex situations appearing in timetabling
and labor scheduling problems, which can be approached as project scheduling prob-
lems.

We have developed several preprocessing techniques which help to determine the
existence of feasible solutions and to reduce the number of variables and constraints.
We have also designed and implemented heuristic algorithms based on GRASP and
Path Relinking. Preprocessing procedures and heuristic algorithms have been tested
on two sets of instances previously proposed in the literature. They have been able to
determine the feasibility status of many instances which up to now were undecided and
to solve most of the feasible instances optimally.

We are convinced that the preprocessing techniques developed here should be used
by any solution procedure, exact or heuristic, applied to this problem. Our heuristic
algorithms are also very efficient and can be considered a useful tool for obtaining high
quality solutions for the problem.

Future lines of research will be the development of an exact algorithm and the
design of new heuristic algorithms for problems in which partially renewable resources
are combined with classical renewable resources, as happens in real situations.
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