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P-values are not Error Probabilities

Abstract

Confusion surrounding the reporting and interpretation of results of classical statistical tests is widespread

among applied researchers. The confusion stems from the fact that most of these researchers are unaware

of the historical development of classical statistical testing methods, and the mathematical and

philosophical principles underlying them. Moreover, researchers erroneously believe that the

interpretation of such tests is prescribed by a single coherent theory of statistical inference. This is not the

case: Classical statistical testing is an anonymous hybrid of the competing and frequently contradictory

approaches formulated by R.A. Fisher on the one hand, and Jerzy Neyman and Egon Pearson on the

other. In particular, there is a widespread failure to appreciate the incompatibility of Fisher’s evidential

p value with the Type I error rate, α, of Neyman–Pearson statistical orthodoxy. The distinction between

evidence (p’s) and error (α’s) is not trivial. Instead, it reflects the fundamental differences between

Fisher’s ideas on significance testing and inductive inference, and Neyman–Pearson views of hypothesis

testing and inductive behavior. Unfortunately, statistics textbooks tend to inadvertently cobble together

elements from both of these schools of thought, thereby perpetuating the confusion. So complete is this

misunderstanding over measures of evidence versus error that is not viewed as even being a problem

among the vast majority of researchers. The upshot is that despite supplanting Fisher’s significance

testing paradigm some fifty years or so ago, recognizable applications of Neyman–Pearson theory are few

and far between in empirical work. In contrast, Fisher’s influence remains pervasive. Professional

statisticians must adopt a leading role in lowering confusion levels by encouraging textbook authors to

explicitly address the differences between Fisherian and Neyman–Pearson statistical testing frameworks.

KEY WORDS: Conditional Error Probabilities; Fisher Approach; Hypothesis Test; Inductive Behavior;

Inductive Inference; Neyman–Pearson Approach; Significance Test; Teaching Statistics.
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 1. INTRODUCTION

Many users of statistical tests in the management, social, and medical sciences routinely invest them

with properties they do not possess. (Use of the expression “statistical tests” rather than the more popular

“significance tests” will become apparent shortly.) Thus, it has been pointed out, often by nonstatisticians

(e.g., Carver 1978; Cohen 1994; Hubbard and Ryan 2000; Lindsay 1995; Nickerson 2000; Sawyer and

Peter 1983), that the outcomes of these tests are mistakenly believed to yield the following information:

the probability that the null hypothesis is true; the probability that the alternative hypothesis is true; the

probability that an initial finding will replicate; whether a result is important; and whether a result will

generalize to other contexts. These common misconceptions about the capabilities of statistical tests point

to problems in classroom instruction.

Unfortunately, matters get worse: The extent of the confusion surrounding the reporting and

interpretation of the results of statistical tests is far more pervasive than even the above

misunderstandings suggest. It stems from the fact that most applied researchers are unfamiliar with the

nature and historical origins of the classical theories of statistical testing. This, it should be added, is

through no fault of their own. Rather, it reflects the way in which researchers are usually taught

“statistics.”

Modern textbooks on statistical analysis in the business, social, and biomedical sciences, whether at

the undergraduate or graduate levels, typically present the subject matter as if it were gospel: a single,

unified, uncontroversial means of statistical inference. Rarely do these texts mention, much less discuss,

that classical statistical inference as it is commonly presented is essentially an anonymous hybrid

consisting of the marriage of the ideas developed by Ronald Fisher on the one hand, and Jerzy Neyman

and Egon Pearson on the other (Gigerenzer 1993; Goodman 1993, 1999; Royall 1997). It is a marriage of

convenience that neither party would have condoned, for there are important philosophical and

methodological differences between them, Lehmann’s (1993) attempt at partial reconciliation

notwithstanding.

Most applied researchers are unmindful of the historical development of methods of statistical

inference, and of the conflation of Fisherian and Neyman–Pearson ideas. Of critical importance, as

Goodman (1993) has pointed out, is the extensive failure to recognize the incompatibility of Fisher’s

evidential p value with the Type I error rate, α, of Neyman–Pearson statistical orthodoxy. (Actually, it

was Karl Pearson, and not Fisher, who introduced the p value in his chi-squared test—see Inman

(1994)—but there is no doubt that Fisher was responsible for popularizing its use.) The distinction

between evidence (p’s) and errors (α’s) is no semantic quibble. Instead it illustrates the fundamental



2

differences between Fisher’s ideas on significance testing and inductive inference, and Neyman–Pearson

views on hypothesis testing and inductive behavior. Because statistics textbooks tend to anonymously

cobble together elements from both schools of thought, however, confusion over the reporting and

interpretation of statistical tests is inevitable. Paradoxically, this misunderstanding over measures of

evidence versus error is so deeply entrenched that it is not even seen as being a problem by the vast

majority of researchers. In particular, the misinterpretation of p values results in an overstatement of the

evidence against the null hypothesis. A consequence of this is the number of “statistically significant

effects” later found to be negligible, to the embarrassment of the statistical community.

Given the above concerns, this paper has three objectives. First, we outline the marked differences in

the conceptual foundations of the Fisherian and Neyman–Pearson statistical testing approaches.

Whenever possible, we let the protagonists speak for themselves. This is vitally important in view of the

manner in which their own voices have been muted over the years, and their competing ideas unwittingly

merged and distorted in many statistics textbooks. Because of the widespread practice of textbook

authors’ failing to credit Fisher and Neyman–Pearson for their respective methodologies, it is small

wonder that present researchers remain unaware of them.

Second, we show how the rival ideas from the two schools of thought have been unintentionally

mixed together. Curiously, this has taken place despite the fact that Neyman–Pearson, and not Fisherian,

theory is regarded as classical statistical orthodoxy (Hogben 1957; Royall 1997; Spielman 1974). In

particular, we illustrate how this mixing of statistical testing methodologies has resulted in widespread

confusion over the interpretation of p values (evidential measures) and α levels (measures of error). We

demonstrate that this confusion was a problem between the Fisherian and Neyman–Pearson camps, is not

uncommon among statisticians, is prevalent in statistics textbooks, and is well nigh universal in the pages

of leading (marketing) journals. This mass confusion, in turn, has rendered applications of classical

statistical testing all but meaningless among applied researchers. And this points to the need for changes

in the way in which such testing is approached in the classroom.

Third, we suggest how the confusion between p’s and α’s may be resolved. This is achieved by

reporting conditional (on p-values) error probabilities.

 2. FISHER’S SIGNIFICANCE TESTING AND INDUCTIVE INFERENCE

Fisher’s views on significance testing, presented in his research papers and in various editions of his

enormously influential texts, Statistical Methods for Research Workers (1925) and The Design of

Experiments (1935a), took root among applied researchers. Central to his conception of inductive

inference is what he called the null hypothesis, H0. Despite beginning life as a Bayesian (Zabell 1992),
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Fisher soon grew disenchanted with the subjectivism involved, and sought to provide a more “objective”

approach to inductive inference. Therefore, he rejected the methods of inverse probability, that is, the

probability of a hypothesis (H) given the data (x), or Pr(H | x), in favor of the direct probability, or

Pr(x | H). This transition was facilitated by his conviction that: “it is possible to argue from consequences

to causes, from observations to hypotheses” (Fisher 1996, p.3). More specifically, Fisher used

discrepancies in the data to reject the null hypothesis, that is, the probability of the data given the truth of

the null hypothesis, or Pr(x | H0). As intuitive as this might be, it is not useful for continuous variables.

Thus, a significance test is defined as a procedure for establishing the probability of an outcome, as well

as more extreme ones, on a null hypothesis of no effect or relationship. The distinction between the

“probability” of the observed data given the null and the probability of the observed and more extreme

data given the null is crucial: not only it has contributed to the confusion between p’s and α’s, but also

results in an exaggeration of the evidence against the null provided by the observed data.

In Fisher’s approach the researcher sets up a null hypothesis that a sample comes from a hypothetical

infinite population with a known sampling distribution. The null hypothesis is said to be “disproved,” as

Fisher called it, or rejected if the sample estimate deviates from the mean of the sampling distribution by

more than a specified criterion, the level of significance. According to Fisher (1966, p. 13), “It is usual

and convenient for experimenters to take 5 per cent. as a standard level of significance, in the sense that

they are prepared to ignore all results which fail to reach this standard….” Consequently, the Fisherian

scheme of significance testing centers on the rejection of the null hypothesis at the p ≤ .05 level. Or as he

(Fisher 1966, p. 16) declared: “Every experiment may be said to exist only in order to give the facts a

chance of disproving the null hypothesis.”

For Fisher (1926, p. 504), then, a phenomenon was considered to be demonstrable when we know

how to conduct experiments that will typically yield statistically significant (p ≤ .05) results: “A scientific

fact should be regarded as experimentally established only if a properly designed experiment rarely fails

to give this level of significance.” (Original emphasis). But it would be wrong, contrary to popular

opinion, to conclude that although Fisher (1926, p. 504) endorsed the 5% level, that he was wedded to it:

“If one in twenty does not seem high enough odds, we may, if we prefer it, draw the line at one in fifty

(the 2 per cent point), or one in a hundred (the 1 per cent point).”

Fisher regarded p values as constituting inductive evidence against the null hypothesis; the smaller the

p value, the greater the weight of said evidence (Johnstone 1986, 1987b; Spielman 1974). In terms of his

famous disjunction, a p value ≤ .05 on the null hypothesis indicates that “Either an exceptionally rare

chance has occurred or the theory is not true” (Fisher 1959, p. 39). Accordingly, a p value for Fisher

represented an “objective” way for researchers to assess the plausibility of the null hypothesis:
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“…the feeling induced by a test of significance has an objective basis in that the probability
statement on which it is based is a fact communicable to and verifiable by other rational minds.
The level of significance in such cases fulfils the conditions of a measure of the rational grounds
for the disbelief [in the null hypothesis] it engenders” (Fisher 1959, p. 43).

In other words, Fisher considered the use of probability values to be more reliable than, say, “eyeballing”

results.

Fisher believed that statistics could play an important part in promoting inductive inference, that is

drawing inferences from the particular to the general, from samples to populations. For him, the p value

assumes an epistemological role. As he put it, “The conclusions drawn from such [significance] tests

constitute the steps by which the research worker gains a better understanding of his experimental

material, and of the problems it presents” (Fisher 1959, p. 76). He proclaimed that “The study of

inductive reasoning is the study of the embryology of knowledge” (Fisher 1935b, p. 54), and that

“Inductive inference is the only process known to us by which essentially new knowledge comes into the

world" (Fisher 1966, p. 7). In announcing this, however, he was keenly aware that not everyone shared

his inductivist approach, especially “mathematicians [like Neyman] who have been trained, as most

mathematicians are, almost exclusively in the technique of deductive reasoning [and who as a result

would] … deny at first sight that rigorous inferences from the particular to the general were even

possible” (Fisher 1935b, p. 39). This concession aside, Fisher steadfastly argued that inductive reasoning

is the primary means of knowledge acquisition, and he saw the p values from significance tests as being

evidential.

 3. NEYMAN–PEARSON HYPOTHESIS TESTING AND INDUCTIVE BEHAVIOR

Neyman–Pearson (1928a; 1928b, 1933) statistical methodology, originally viewed as an attempt to

“improve” on Fisher’s approach, gained in popularity after World War II. It is widely thought of as

constituting the basis of classical statistical testing (Carlson 1976; Hogben 1957; LeCam and Lehmann

1974; Nester 1996; Royall 1997; Spielman 1974). Their work on hypothesis testing, terminology they

employed to contrast with Fisher’s “significance testing,” differed markedly, however, from the latter’s

paradigm of inductive inference (Fisher 1955). (We keep the traditional name “Neyman–Pearson” to

denote this school of thought, although Lehmann [1993] mentions that Pearson apparently did not

participate in the confrontations with Fisher.) The Neyman–Pearson approach formulates two competing

hypotheses, the null hypothesis (H0) and the alternative hypothesis (HA). In a not so oblique reference to

Fisher, Neyman commented on the rationale for an alternative hypothesis:

“…when selecting a criterion to test a particular hypothesis H, should we consider only the
hypothesis H, or something more? It is known that some statisticians are of the opinion that good
tests can be devised by taking into consideration only the [null] hypothesis tested. But my opinion
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is that this is impossible and that, if satisfactory tests are actually devised without explicit
consideration of anything beyond the hypothesis tested, it is because the respective authors
subconsciously take into consideration certain relevant circumstances, namely, the alternative
hypothesis that may be true if the hypothesis tested is wrong” (Neyman 1952, p. 44; original
emphasis).

Or as Pearson (1990, p. 82) put it: “The rational human mind did not discard a hypothesis unless it could

conceive at least one plausible alternative hypothesis.” (Original emphasis). Specification of an

alternative hypothesis critically distinguishes between the Fisherian and Neyman–Pearson methodologies,

and this was one of the topics that both camps vehemently disagreed about over the years.

In a sense, Fisher used some kind of casual, generic, unspecified, alternative when computing

p values, somehow implicit when identifying the test statistic and “more extreme outcomes” to compute

p values, or when talking about the “sensitivity” of an experiment. But he never explicitly defined nor

used specific alternative hypotheses. In the merging of the two schools of thought, it is often taken that

Fisher’s significance testing implies an alternative hypothesis which is simply the complement of the null,

but this is difficult to formalize in general. For example, what is the complement of a N(0,1) model? Is it

the mean differing from 0, the variance differing from 1, the model not being Normal? Formally, Fisher

only had the null model in mind and wanted to check if the data were compatible with it.

In Neyman–Pearson theory, therefore, the researcher chooses a (usually) point null hypothesis and

tests it against the alternative hypothesis. Their framework introduced the probabilities of committing two

kinds of errors based on considerations regarding the decision criterion, sample size, and effect size.

These errors were false rejection (Type I error) and false acceptance (Type II error) of the null hypothesis.

The former probability is called α, while the latter probability is designated β.

In contradistinction to Fisher’s ideas about hypothetical infinite populations, Neyman–Pearson results

are predicated on the assumption of repeated random sampling from a defined population. Consequently,

Neyman–Pearson theory is best suited to situations in which repeated random sampling has meaning, as

in the case of quality control experiments. In such restricted circumstances, the Neyman–Pearson

frequentist interpretation of probability makes sense: α is the long-run frequency of Type I errors and β is

the counterpart for Type II errors.

The Neyman–Pearson theory of hypothesis testing introduced the completely new concept of the

power of a statistical test. The power of a test, defined as (1–β), is the probability of rejecting a false null

hypothesis. The power of a test to detect a particular effect size in the population can be calculated before

conducting the research, and is therefore considered to be useful in the design of experiments. Because

Fisher’s statistical testing procedure admits of no alternative hypothesis (HA), the concepts of Type II
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error and the power of the test are not relevant. Fisher made this clear when chastising Neyman and

Pearson without naming them: “In fact … ‘errors of the second kind’ are committed only by those who

misunderstand the nature and application of tests of significance” (Fisher 1935c, p. 474). And he

subsequently added that “The notion of an error of the so-called ‘second kind,’ due to accepting the null

hypothesis ‘when it is false’… has no meaning with respect to simple tests of significance, in which the

only available expectations are those which flow from the null hypothesis being true” (Fisher 1966,

p. 17). Fisher never saw the need for an alternative hypothesis (but see our comments above), and in fact

vigorously opposed its incorporation by Neyman–Pearson (Hacking 1965).

Fisher nevertheless hints at the idea of the power of a test when he refers to the “sensitiveness” of an

experiment:

“By increasing the size of the experiment we can render it more sensitive, meaning by this that it
will allow of the detection of a lower degree of sensory discrimination, or, in other words, of a
quantitatively smaller departure from the null hypothesis. Since in every case the experiment is
capable of disproving, but never of proving this hypothesis, we may say that the value of the
experiment is increased whenever it permits the null hypothesis to be more readily disproved”
(Fisher 1966, pp. 21-22).

As Neyman (1967, p. 1459) later expressed, “The consideration of power is occasionally implicit in

Fisher’s writings, but I would have liked to see it treated explicitly.” Essentially, however, Fisher’s

“sensitivity” and Neyman–Pearson’s “power” refer to the same concept. But here ends the, purely

conceptual, agreement: power has no methodological role in Fisher’s approach whereas it has a crucial

one in Neyman-Pearson’s.

Whereas Fisher’s view of inductive inference focused on the rejection of the null hypothesis, Neyman

and Pearson dismissed the entire idea of inductive reasoning out of hand. Instead, their concept of

inductive behavior sought to establish rules for making decisions between two hypotheses, irrespective of

the researcher’s belief in either one. Neyman explained:

“Thus, to accept a hypothesis H means only to decide to take action A rather than action B. This
does not mean that we necessarily believe that the hypothesis H is true… [while rejecting H] …
means only that the rule prescribes action B and does not imply that we believe that H is false”
(Neyman 1950, pp. 259–260).

Neyman–Pearson theory, then, replaces the idea of inductive reasoning with that of inductive behavior.

According to Neyman:

“The description of the theory of statistics involving a reference to behavior, for example,
behavioristic statistics, has been introduced to contrast with what has been termed inductive
reasoning. Rather than speak of inductive reasoning I prefer to speak of inductive behavior”
(Neyman 1971, p. 1; original emphasis).
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And “The term ‘inductive behavior’ means simply the habit of humans and other animals (Pavlov’s

dog, etc.) to adjust their actions to noticed frequencies of events, so as to avoid undesirable

consequences” (Neyman 1961, p. 48). In defending his preference for inductive behavior over

inductive inference, Neyman wrote:

“…the term ‘inductive reasoning’ remains obscure and it is uncertain whether or not the term can
be conveniently used to denote any clearly defined concept. On the other hand…there seems to be
room for the term ‘inductive behavior.’ This may be used to denote the adjustment of our
behavior to limited amounts of information. The adjustment is partly conscious and partly
subconscious. The conscious part is based on certain rules (if I see this happening, then I do that)
which we call rules of inductive behavior. In establishing these rules, the theory of probability
and statistics both play an important role, and there is a considerable amount of reasoning
involved. As usual, however, the reasoning is all deductive” (Neyman 1950, p. 1; our emphasis).

The Neyman–Pearson approach is deductive in nature and argues from the general to the particular. They

formulated a “rule of behavior” for choosing between two alternative courses of action, accepting or

rejecting the null hypothesis, such that “… in the long run of experience, we shall not be too often wrong”

(Neyman and Pearson 1933, p. 291).

The decision to accept or reject the hypothesis in their framework depends on the costs associated

with committing a Type I or Type II error. These costs have nothing to do with statistical theory, but are

based instead on context-dependent pragmatic considerations where informed personal judgment plays a

vital role. As they indicated:

“… in some cases it will be more important to avoid the first [type of error], in others the second
[type of error]… From the point of view of mathematical theory all we can do is to show how the
risk of errors may be controlled or minimised. The use of these statistical tools in any given case,
in determining just how the balance should be struck, must be left to the investigator” (Neyman
and Pearson 1933, p. 296).

After taking such advice into account, the researcher would design an experiment to control the

probabilities of the α and β error rates. The “best” test is one that minimizes β subject to a bound on α

(Lehmann 1993). In determining what this bound on α should be, Neyman later stated that the control of

Type I errors was more important than that of Type II errors:

“The problem of testing statistical hypotheses is the problem of selecting critical regions. When
attempting to solve this problem, one must remember that the purpose of testing hypotheses is to
avoid errors insofar as possible. Because an error of the first kind is more important to avoid than
an error of the second kind, our first requirement is that the test should reject the hypothesis tested
when it is true very infrequently… To put it differently, when selecting tests, we begin by making
an effort to control the frequency of the errors of the first kind (the more important errors to
avoid), and then think of errors of the second kind. The ordinary procedure is to fix arbitrarily a
small number α … and to require that the probability of committing an error of the first kind does
not exceed α (Neyman 1950 p. 265).
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And in an act that Fisher, as we shall see, could never countenance, Neyman referred to α as the

significance level of a test:

“The error that a practicing statistician would consider the more important to avoid (which is a
subjective judgment) is called the error of the first kind. The first demand of the mathematical
theory is to deduce such test criteria as would ensure that the probability of committing an error
of the first kind would equal (or approximately equal, or not exceed) a preassigned number α,
such as α = 0.05 or 0.01, etc. This number is called the level of significance” (Neyman 1976,
p. 161; our emphasis).

Since α is specified or fixed prior to the collection of the data, the Neyman–Pearson procedure is

sometimes referred to as the fixed α/fixed level (Lehmann 1993), or fixed size (Seidenfeld 1979)

approach. This is in sharp contrast to the data-based p value, which is a random variable whose

distribution is uniform over the interval [0, 1] under the null hypothesis. Thus, the α and β error rates

define a “critical or “rejection” region for the test statistic, say z or t > 1.96. If the test statistic falls in the

critical region H0 is rejected in favor of HA, otherwise H0 is retained.

Moreover, while Fisher claimed that his significance tests were applicable to single experiments

(Johnstone 1987a; Kyburg 1974; Seidenfeld 1979), Neyman–Pearson hypothesis tests do not allow an

inference to be made about the outcome of any specific hypothesis that the researcher happens to be

investigating. The latter were quite specific about this: “We are inclined to think that as far as a particular

hypothesis is concerned, no test based upon the theory of probability can by itself provide any valuable

evidence of the truth or falsehood of that hypothesis (Neyman and Pearson 1933, pp. 290-291). But since

scientists are in the business of gleaning evidence from individual studies, this limitation of Neyman–

Pearson theory is severe.

Neyman–Pearson theory is non-evidential. Fisher recognized this deficiency, commenting that their

“procedure is devised for a whole class of cases. No particular thought is given to each case as it arises,

nor is the tester’s capacity for learning exercised” (Fisher 1959, p. 100). Instead, the researcher can only

make a decision about the likely outcome of a hypothesis as if it had been subjected to numerous and

identical repetitions, a condition that Fisher (1956, p. 99) charged “will never take place” in normal

scientific research. In most applied work, repeated random sampling is a myth because empirical results

tend to be based on a single sample.

Fisher did agree that what he called the Neyman–Pearson “acceptance procedures” approach could

play a part in quality control decisions: “I am casting no contempt on acceptance procedures, and I am

thankful, whenever I travel by air, that the high level of precision and reliability required can really be

achieved by such means” (Fisher 1955, pp. 69-70). This admission notwithstanding, Fisher was adamant
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that Neyman–Pearson’s cost-benefit, decision making, orientation to statistics was an inappropriate model

for the conduct of science:

“The ‘Theory of Testing Hypotheses’ was a later attempt, by authors who had taken no part in the
development of [significance] tests, or in their scientific application, to reinterpret them in terms
of an imagined process of acceptance sampling, such as was beginning to be used in commerce;
although such processes have a logical basis very different from those of a scientist engaged in
gaining from his observations an improved understanding of reality” (Fisher 1959, pp. 4–5).

And in drawing further distinctions between the Fisherian and Neyman–Pearson paradigms, Fisher

reminds us that there exists a:

“…deep-seated difference in point of view which arises when Tests of Significance are
reinterpreted on the analogy of Acceptance Decisions. It is indeed not only numerically erroneous
conclusions, serious as these are, that are to be feared from an uncritical acceptance of this
analogy.

An important difference is that decisions are final, while the state of opinion derived from a
test of significance is provisional, and capable, not only of confirmation, but of revision” (Fisher
1959, p. 100).

Clearly, Fisher and Neyman–Pearson were at odds over the role played by statistical testing in

scientific investigations, and over the nature of the scientific enterprise itself. In fact, the dogged

insistence on the correctness of their respective conceptions of statistical testing and the scientific method

resulted in ongoing acrimonious exchanges, at both the professional and personal levels, between them.

 4. CONFUSION OVER THE INTERPRETATION OF P’s AND α’s

The rank and files of users of statistical tests in the management, social, and medical sciences are

unaware of the above distinctions between the Fisherian and Neyman–Pearson camps (Gigerenzer 1993;

Goodman 1993; Royall 1997). As previously acknowledged, this is not their fault; after all, they have

been taught from numerous well-regarded textbooks on statistical analysis. Unfortunately, many of these

same textbooks combine (sometimes incongruous) ideas from both schools of thought, usually without

acknowledging, or worse yet, recognizing, this. That is, although the Neyman–Pearson approach has long

since attained the status of orthodoxy in classical statistics, Fisher’s methods continue to permeate the

literature (Hogben 1957; Spielman 1974).

Johnstone (1986) remarks that statistical testing usually follows Neyman–Pearson formally, but

Fisher philosophically. For instance, Fisher’s idea of disproving the null hypothesis is taught in tandem

with the Neyman–Pearson concepts of alternative hypotheses, Type II errors, and the power of a

statistical test. In addition, textbooks descriptions of Neyman–Pearson theory often refer to the Type I

error probability as the “significance level” (Goodman 1999; Kempthorne 1976; Royall 1997).



10

As a prime example of the bewilderment arising from the mixing of Fisher’s views on inductive

inference with the Neyman–Pearson principle of inductive behavior, consider the widely unappreciated

fact that the former’s p value is incompatible with the Neyman–Pearson hypothesis test in which it has

become embedded (Goodman 1993). Despite this incompatibility, the upshot of this merger is that the

p value is now inextricably entangled with the Type I error rate, α. As a result, most empirical work in the

applied sciences is conducted along the following approximate lines: The researcher states the null (H0)

and alternative (HA) hypotheses, the Type I error rate/significance level, α, and supposedly—but very

rarely—calculates the statistical power of the test (e.g., t). These procedural steps are entirely consistent

with Neyman–Pearson convention. Next, the test statistic is computed for the sample data, and in an

attempt to have one’s cake and eat it too, an associated p value (significance probability) is determined.

The p value is then mistakenly interpreted as a frequency-based Type I error rate, and simultaneously as

an incorrect (i.e., p < α) measure of evidence against H0.

The confusion surrounding researchers over the meaning and interpretation of p’s and α’s is close to

total. It is almost guaranteed by the fact that, Fisher’s efforts to distinguish between them to the contrary,

this same confusion exists among some statisticians and is also prevalent in textbooks. These themes are

addressed below.

4.1 Fisher— The Significance Level (p) of a Test is Not a Type I

Error Rate (α)

Fisher was insistent that the significance level of a test had no ongoing sampling interpretation. With

respect to the .05 level, for example, he emphasized that this does not indicate that the researcher “allows

himself to be deceived once in every twenty experiments. The test of significance only tells him what to

ignore, namely all experiments in which significant results are not obtained” (Fisher 1929, p. 191). For

Fisher, the significance level provided a measure of evidence for the “objective” disbelief in the null

hypothesis; it had no long-run frequentist characteristics.

Indeed, interpreting the significance level of a test in terms of a Neyman–Pearson Type I error rate, α,

rather than via a p value, infuriated Fisher who complained:

“In recent times one often-repeated exposition of the tests of significance, by J. Neyman, a
writer not closely associated with the development of these tests, seems liable to lead
mathematical readers astray, through laying down axiomatically, what is not agreed or generally
true, that the level of significance must be equal to the frequency with which the hypothesis is
rejected in repeated sampling of any fixed population allowed by hypothesis. This intrusive
axiom, which is foreign to the reasoning on which the tests of significance were in fact based
seems to be a real bar to progress….” (Fisher 1945, p. 130).
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And he periodically reinforced these sentiments: “The attempts that have been made to explain the

cogency of tests of significance in scientific research, by reference to supposed frequencies of possible

statements, based on them, being right or wrong, thus seem to miss the essential nature of such tests”

(Fisher 1959, p. 41). Here, Fisher is categorically denying the equivalence of p values and Neyman–

Pearson α levels, i.e., long-run frequencies of rejecting H0 when it is true. Fisher captured a major

distinction between his and Neyman–Pearson’s notions of statistical tests when he pronounced:

“This [Neyman–Pearson] doctrine, which has been very dogmatically asserted, makes a truly
marvellous mystery of the tests of significance. On the earlier view, held by all those to whom we
owe the first examples of these tests, such a test was logically elementary. It presented the logical
disjunction: Either the hypothesis is not true, or an exceptionally rare outcome has occurred”
(Fisher 1960, p. 8).

Seidenfeld (1979) and Rao (1992) agree that the correct reading of a Fisherian significance test is through

this disjunction, as opposed to some long-run frequency interpretation. In direct opposition, however, “the

essential point [of Neyman–Pearson theory] is that the solution reached is always unambiguously

interpretable in terms of long range relative frequencies” (Neyman 1955, p. 19). Hence the impasse.

4.2 Confusion over p’s and α’s Among Some Statisticians

Misinterpreting the p value as a Type I Error Rate. Despite the admonitions about the p value not

being an error rate, Casella and Berger (1987, p. 133) voiced their concern that “there are a great many

statistically naïve users who are interpreting p values as probabilities of Type I error….” Unfortunately,

such misinterpretations are confined not only to the naïve users of statistical tests. On the contrary,

Kalbfleisch and Sprott (1976) allege that statisticians commonly make the mistake of equating p values

with Type I error rates. And their allegations find ready support in the literature. For example, Gibbons

and Pratt (1975, p. 21), in an article titled “P Values: Interpretation and Methodology,” erroneously state:

“Reporting a P-value, whether exact or within an interval, in effect permits each individual to choose his

own level of significance as the maximum tolerable probability of a Type I error.” Barnard (1985, p. 7) is

similarly at fault when he remarks, “For those who need to interpret probabilities as [long run]

frequencies, a P-value ‘measures’ the possibility of an ‘error of the first kind,’ arising from rejection of

H0 when it is in fact true.” Again, Hung, O’Neill, Bauer, and Köhne (1997, p. 12) note that the p value is

a measure of evidence against the null hypothesis, but then go on to confuse p values with Type I error

rates: “The α level is a preexperiment Type I error rate used to control the probability that the observed

P value in the experiment of making an error rejection of H0 when in fact H0 is true is α or less.”

Or consider Berger and Sellke’s response to Hinkley’s (1987) comments on their paper:
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“Hinkley defends the P value as an ‘unambiguously objective error rate.’ The use of the term
‘error rate’ suggests that the [Neyman–Pearson] frequentist justifications … for confidence
intervals and fixed α-level hypothesis tests carry over to P values. This is not true. Hinkley’s
interpretation of the P value as an error rate is presumably as follows: the P value is the Type I
error rate that would result if this observed P value were used as the critical significance level in a
long sequence of hypothesis tests… This hypothetical error rate does not conform to the usual
classical notion of ‘repeated-use’ error rate, since the P value is determined only once in this
sequence of tests. The frequentist justifications of significance tests and confidence intervals are
in terms of how these procedures perform when used repeatedly.

Can P values be justified on the basis of how they perform in repeated use? We doubt it. For
one thing, how would one measure the performance of P values?” (Berger and Sellke 1987,
p. 136; our emphasis).

Berger (1986) and Berger and Delampady (1987, p. 329) correctly insist that the interpretation of the

p value as an error rate is strictly prohibited: “P values are not a repetitive error rate… A Neyman–

Pearson error probability, α, has the actual frequentist interpretation that a long series of α level tests will

reject no more than 100α% of the true H0, but the data-dependent-P-values have no such interpretation.”

(Original emphasis). Lindsey (1999) agrees that the p value has no clear long-run meaning in classical

frequentist inference. In sum, although p’s and α’s have very different meanings, Bayarri and Berger

(2000) nevertheless contend that among statisticians there is a near ubiquitous misinterpretation of

p values as frequentist error probabilities. And inevitably, this fallacy shows up in statistics textbooks, as

when Canavos and Miller (1999, p. 255) stipulate: “If the null hypothesis is true, then a type I error occurs

if (due to sampling error) the P-value is less than or equal to α.”

Indeed, in his effort to partially resolve differences between the Fisherian and Neyman–Pearson

viewpoints, Lehmann (1993) also fails to distinguish between measures of evidence versus error. He calls

the Type I error rate the significance level of the test, when for Fisher this was determined by p values

and not α’s. And we have seen that misconstruing the evidential p value as a Neyman–Pearson Type I

error rate was anathema to Fisher.

Using the p < α Criterion as a Measure of Evidence against H0. At the same time that the

p value is being incorrectly reported as a Neyman–Pearson Type I error rate, it will also be incorrectly

interpreted in a quasi-Fisherian sense as evidence against H0. This is accomplished in an unusual manner

by examining the inequality between a measure of evidence and a long-term error rate, or p < α. If p < α,

a statistically significant finding is reported, and the null hypothesis is disproved, or at least discredited.

Statisticians also commit this mistake. In a paper published in the Encyclopedia of Statistical Sciences

intended to clarify the meaning of p values, for example, Gibbons (1986, p. 367) falsely concludes that:

“Hence the relationship between P values and the classical [Neyman–Pearson] method is that if p ≤ α, we

should reject H0 , and if p > α, we should accept H0.” But Gibbons is by no means alone among
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statisticians regarding this confusion over the evidential content (and mixing) of p’s and α’s. For instance,

Donahue (1999, p. 305) states: “Obviously, with respect to rejecting the null hypothesis and small values

of P, we proceed as tradition dictates by rejecting H if p < α.” (Our emphasis). Sackrowitz and Samuel-

Cahn (1999) also subscribe to this approach, as do Lehmann (1978), and Bhattachayra and Habtzhi

(2002).

Given the above, it is easy to see how similar misinterpretations are perpetuated in statistics

textbooks. Canavos and Miller (1999, p. 254), for example, who earlier confused both p values and

α levels with the Type I error rate, do likewise with regard to the significance level: “When a specific

cutoff level for the p value is agreed upon in advance as the basis for a formal conclusion, it is called the

level of significance and is denoted by α.” (Original emphasis). Berenson and Levine’s (1996, p. 394)

textbook does the same:

“• If the p value is greater than or equal to α, the null hypothesis is not rejected.
  • If the p value is smaller than α, the null hypothesis is rejected.”

A few remarks from Keller and Warrack (1997) further demonstrate the widespread nature of the

anonymous mixing of Fisherian with Neyman–Pearson ideas in some statistics textbooks, and the

conceptual headaches this is likely to create for students and researchers. In a section titled “The p Value

of a Hypothesis Test,” they state:

“What is really needed [in a study] is a measure of how much statistical evidence exists…. In this
section we present such a measure: the p-value of a test…. The p-value of a test of hypothesis is
the smallest value of α that would lead to rejection of the null hypothesis…. It is important to
understand that the calculation of the p value depends on, among other things, the alternative
hypothesis…. The p-value is an important number because it measures the amount of statistical
evidence that supports the alternative hypothesis (Keller and Warrack 1997, p. 346, 347, 349).

These points are incorrect. It has already been shown that interpreting p values in single (or ongoing)

experiments is not permissible in a Neyman–Pearson hypothesis testing context. Their model is

behavioral, not evidential. Next, Keller and Warrack (1997), like Berenson and Levine (1996), falsely

equate p’s with α’s when recommending the p < α statistical significance result strategy. They then

compound their misconceptions about statistical testing when claiming that both the calculation and

interpretation of a p value depend on the alternative hypothesis. This is not so. The calculation of a

p value depends only on the truth of the null hypothesis. Fisher, as we have seen, had no time for the

alternative hypothesis introduced by Neyman–Pearson. What is more, the p value does not measure the

amount of evidence supporting HA; it is a measure of inductive evidence against H0. Moreover, Neyman

and Pearson would not endorse this evidential interpretation of p values espoused by Keller and Warrack
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(1997). In the first place, the p value plays no role in their theory. Secondly, and to reiterate, Neyman–

Pearson theory is non-evidential.

Instead, the Neyman–Pearson framework focuses on decision rules with a priori stated error

rates, α and β, which are limiting frequencies based on long-run repeated sampling. If a result falls

into the critical region H0 is rejected and HA is accepted, otherwise H0 is accepted and HA is rejected.

Interestingly, this last assertion contradicts Fisher’s (1966, p. 16) adage that “the null hypothesis is

never proved or established, but is possibly disproved, in the course of experimentation.” Otherwise

expressed, the familiar claim that “one can never accept the null hypothesis, only fail to reject it” is a

characteristic of Fisher’s significance test, and not the Neyman–Pearson hypothesis test. In the latter’s

paradigm one can indeed “accept” the null hypothesis.

Of course, for a fixed, prespecified α, the Neyman-Pearson decision rule is fully determined by the

critical region of the sample, which in turn can be characterized in terms of many different statistics (in

particular, of any one to one transformation of the original test statistic). Therefore, it could be defined

equivalently in terms of the p value, and stated as saying that the null hypothesis should be rejected if the

observed p < α, and accepted otherwise. But in this manner, only the Neyman-Pearson interpretation is

valid, and no matter how small the p value is, the appropriate report is that the procedure guarantees a

100α% false rejections of the null on repeated use. Otherwise stated, only the fact that p < α is of any

interest, not the specific value of p itself.

A related issue is whether one can carry out both testing procedures in parallel. We have seen from a

philosophical perspective that this is extremely problematical. From a pragmatic point of view we do not

recommend it either, since the danger in interpreting the p value as a data-dependent adjustable Type I

error is too great, no matter the warnings to the contrary. Indeed, if a researcher is interested in the

“measure of evidence” provided by the p value, we see no use in also reporting the error probabilities,

since they do not refer to any property that the p value has. (In addition, the appropriate interpretation of

p values as a measure of evidence against the null is not clear. We delay this discussion until Sections 5

and 6.) Likewise, if the researcher is concerned with error probabilities the specific p value is irrelevant.

Despite the above statements, Goodman (1993, 1999) and Royall (1997) note that because of its

superficial resemblance to the Neyman–Pearson Type I error rate, α, Fisher’s p value has been absorbed

into the former’s hypothesis testing method. In doing so, the p value has been interpreted as both a

measure of evidence and an “observed” error rate. This has led to widespread confusion over the meaning

of p values and α levels. Unfortunately, as Goodman points out:

“…because p-values and the critical regions of hypothesis tests are both tail area probabilities,
they are easy to confuse. This confusion blurs the division between concepts of evidence and
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error for the statistician, and obscures it completely for nearly everyone else” (Goodman 1992,
p. 879).

Devore and Peck’s (1993, p. 451) statistics textbook illustrates Goodman’s point: “The smallest α for

which H0 could be rejected is determined by the tail area captured by the computed value of the test

statistic. This smallest α is the P-value.” Or consider in this context another erroneous passage from a

statistics textbook:

“We sometimes take one final step to assess the evidence against H0. We can compare the
P-value with a fixed value that we regard as decisive. This amounts to announcing in advance
how much evidence against H0 we will insist on. The decisive value of P is called the
significance level. We write it as α, the Greek letter alpha” (Moore 2000, p. 326; original
emphasis).

1.3 p’s, α’s and the .05 Level

It is ironic that the confusion surrounding the distinction between p’s and α’s was unwittingly

exacerbated by Neyman and Pearson themselves. This occurred when, despite their insistence on

flexibility over the balancing of α and β errors, they adopted as a matter of expediency Fisher’s 5% and

1% significance levels to help define their Type I error rates (Pearson 1962).

That Fisher popularized such nominal levels of statistical significance is itself an interesting, not to

say extremely influential, historical quirk. While working on Statistical Methods for Research Workers

Fisher was denied permission by Karl Pearson to reproduce W.P. Elderton’s table of χ² from the first

volume of Biometrika, and therefore prepared his own version. In doing so, Egon Pearson (1990, p. 52)

informs us: “[Fisher] gave the values of [Karl Pearson’s] χ² [and Student’s t] for selected values of P …

instead of P for arbitrary χ², and thus introduced the concept of nominal levels of significance.” (Our

emphasis). As noted, Fisher’s use of 5% and 1% levels was similarly adopted, and ultimately

institutionalized, by Neyman–Pearson. And Fisher (1959, p. 42) rebuked them for doing so, explaining:

“…no scientific worker has a fixed level of significance at which from year to year, and in all

circumstances, he rejects hypotheses; he rather gives his mind to each particular case in the light of his

evidence and his ideas.” Despite this rebuke, it is small wonder that many researchers confuse Fisher’s

evidential p values with Neyman–Pearson behavioral error rates when both concepts are commonly

employed at the 5% and the 1% levels.

Many researchers will not doubt be surprised by the statisticians’ confusion over the correct meaning

and interpretation of p values and α levels. After all, one might anticipate that the properties of these

widely used statistical measures would be completely understood. But this is not the case. To underscore
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this point, in commenting on various issues surrounding the interpretation of p values, Berger and Sellke

(1987, p. 135) unequivocally spelled out that: “These are not dead issues, in the sense of being well

known and thoroughly aired long ago; although the issues are not new, we have found the vast majority of

statisticians to be largely unaware of them.” (Our emphasis). Schervish’s (1996) article almost a decade

later, tellingly entitled “P values: What They Are and What They Are Not,” suggests that confusion

remains in this regard within the statistics community. Because some statisticians and textbooks on the

subject are unclear about the differences between p’s and α’s, it is anticipated that confusion levels in

journal articles will be high.

1.4 Confusion Over p’s and α’s in Marketing Journals

The manner in which the results of statistical tests are reported in marketing journals is used as an

empirical barometer for practices in other applied disciplines. We doubt whether the findings reported

here would differ substantially from those in other fields.

More specifically, two randomly selected issues of each of three leading marketing journals—the

Journal of Consumer Research, Journal of Marketing, and Journal of Marketing Research—were

analyzed for the eleven-year period 1990 through 2000 in order to assess the number of empirical articles

and notes published therein. This procedure yielded a sample of 478 empirical papers. These papers were

then examined to see whether classical statistical tests had been used in the data analysis. Some 435, or

91.0%, employed such testing.

Although the evidential p value from a significance test violates the orthodox Neyman–Pearson

behavioral hypothesis testing schema, Table 1 shows that p values are commonplace in marketing’s

empirical literature. Conversely, α levels are in short supply.

Of the 435 papers using statistical tests, fully 312, or 71.7%, employed what Goodman (1993) calls

“roving alphas,” i.e., a discrete, graduated number of p values masquerading variously as Type I error

rates and/or measures of evidence against H0, usually at the p < .05, p < .01, p < .001 values, etc. In other

words, these p values may sometimes constitute an “observed” Type I error rate in the sense that they are

not even pre-assigned, or fixed, p’s/α’s; rather, they are variable, de facto, “error rates” determined solely

by the data. In addition, these same p values will be interpreted simultaneously in a quasi-evidential

manner as a basis for rejecting H0 if p < α. This includes, in many cases, erroneously using the p value as

a proxy measure for effect sizes (e.g., p < .05 is “significant,” p < .01 is “very significant,” p < .001 is

“extremely significant,” and so on). In sum, these “roving alphas” are habitually misinterpreted by

applied researchers.
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A further 19 (4.4%) chose to report “exact” p values, while an additional 61 (14.0%) opted to present

various combinations of exact p’s with either “roving alphas” or fixed p values. Conservatively, therefore,

392, or 90.1%, of empirical articles in a sample of marketing journals report the results of statistical tests

in a manner that is incompatible with Neyman–Pearson orthodoxy. Another 4 (0.9%) studies were not

sufficiently clear about the disposition of a finding (beyond statements such as “this result was

statistically significant at conventional levels”) in their accounts.

This leaves 39 (9.0%) studies as eligible for the reporting of “fixed” level α values in the fashion

intended by Neyman–Pearson. Unfortunately, 21 of these 39 studies reported “fixed p” rather than fixed

α levels. After subtracting this group, only 18 (4.1%) studies remain eligible. Of these 18, some 13

simply refer to their published results as being “significant” at the .05, .01 levels, etc. No information

about p values or α levels is provided. Finally, only 5 of 435 empirical papers using statistical tests, or

1.1%, explicitly used fixed α levels.

_____________________

Insert Table 1 about here

_____________________

 2. DISCUSSION

Confusion over the interpretation of classical statistical tests is so complete as to render their

application almost meaningless. As we have seen, this chaos extends throughout the scholarly hierarchy

from the originators of the test themselves—Fisher and Neyman–Pearson—to some fellow professional

statisticians to textbook authors to applied researchers.

The near-universal confusion among researchers over the meaning of p values and α levels becomes

easier to appreciate when it is formally acknowledged that both expressions are used to indicate the

“significance level” of a test. But note their completely different interpretations. The level of significance

shown by a p value in a Fisherian significance test refers to the probability of observing data this extreme

(or more so) under a null hypothesis. This data-dependent p value plays an epistemic role by providing a

measure of inductive evidence against H0 in single experiments. This is very different from the

significance level denoted by α in a Neyman–Pearson hypothesis test. With Neyman–Pearson, the focus

is on minimizing Type II, or β, errors (i.e., false acceptance of a null hypothesis) subject to a bound on

Type I, or α, errors (i.e., false rejections of a null hypothesis). Moreover, this error minimization applies

only to long-run repeated sampling situations, not to individual experiments, and is a prescription for
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behaviors, not a means of collecting evidence. When seen from this vantage—and the synopsis provided

in Table 2—the two concepts of statistical significance could scarcely be further apart in meaning.

_____________________

Insert Table 2 about here

_____________________

The problem is that these distinctions between p’s and α’s are seldom made explicit in the literature.

Instead, they tend to be used interchangeably, especially in statistics textbooks aimed at practitioners.

Usually, in such texts, an anonymous account of standard Neyman–Pearson doctrine is put forward

initially, and is often followed by an equally anonymous discussion of “the p value approach.” This

transition from (and mixing of) α levels to p values is typically seamless, as if it constitutes a natural

progression through different parts of the same coherent statistical whole. It is revealed in the following

passage from one such textbook: “In the next subsection we illustrate testing a hypothesis by using

various values of α, and we see that this leads to defining the p value….” (Bowerman et al., 2001, p. 300;

original emphasis).

Unfortunately, this nameless amalgamation of the Fisherian and Neyman–Pearson paradigms, with

the p value serving as the conduct, has indeed created the potent illusion of a uniform statistical

methodology somehow capable of generating evidence from single experiments, while at the same time

minimizing the occurrence of errors in both the short and long hauls. It is now ensconced in college

curricula, textbooks, and journals.

 3. WHERE DO WE GO FROM HERE?

If researchers are confused over the meaning of p values and Type I error probabilities,  and the

Fisher and Neyman–Pearson theories seemingly cannot be combined, what should we do? The answer is

not obvious since both schools have important merits and drawbacks. In the following account we no

longer address the philosophical issues concerning the distinctions between p’s and α’s that have been the

main themes of previous sections, in the hope that these are clear enough. Instead, we concentrate on the

implications for statistical practice: Is it better to report p values or error probabilities from a test of

hypothesis? We follow this with a discussion of how we can, in fact, reconcile the Fisherian and

Neyman–Pearsonian statistical testing frameworks.
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3.1 Some Practical Problems with p’s and α’s

Neyman–Pearson theory has the advantage of its clear interpretation: Of all the tests being carried out

around the world at the .05 level, at most 5% of them result in a false rejection of the null. (The

frequentist argument does not require repetition of the exact same experiment. See, for instance, Berger

1985, p. 23, and references there). Its main drawback is that the performance of the procedure is always

the prespecified level. Reporting the same “error,” .05 say, no matter how incompatible the data seem to

be with the null hypothesis is clearly worrisome in applied situations, and hence the appeal of the data-

dependent p values in research papers. On the other hand, for quality control problems, a strict Neyman–

Pearson analysis is appropriate.

The chief methodological advantage of the p value is that it may be taken as a quantitative measure of

the “strength of evidence” against the null. However, while p values are very good as relative measures of

evidence, they are extremely difficult to interpret as absolute measures. What exactly “evidence” of

around, say, .05 (as measured by a p value) means is not clear. Moreover, the various misinterpretations

of p values all result, as we shall see, in an exaggeration of the actual evidence against the null. This is

very disconcerting on practical grounds. Indeed, many “effects” found in statistical analyses have later

been shown to be mere flukes. For examples of these, visit the web pages mentioned in

www.stat.duke.edu/~berger under “p values.” Such results undermine the credibility of the profession.

A common mistake by users of statistical tests is to misinterpret the p value as the probability of the

null hypothesis being true. This is not only wrong, but p values and posterior probabilities of the null can

differ by several orders of magnitude, the posterior probability always being larger (see Berger 1985;

Berger and Delampady 1987; Berger and Sellke 1987). Most books, even at the elementary level, are

aware of this misinterpretation and warn about it. It is rare, however, for these books to emphasize the

practical consequences of falsely equating p values with posterior probabilities, namely, the conspicuous

exaggeration of evidence against the null.

As we have shown throughout this paper, researchers routinely confuse p values with error

probabilities. This is not only wrong philosophically, but also has far-reaching practical implications. To

see this we urge those teaching statistics to simulate the frequentist performance of p values in order to

demonstrate the serious conflict between the student’s intuition and reality. This can be done trivially on

the web, even at the undergraduate level, with an applet available at www.stat.duke.edu/~berger. The

applet simulates repeated normal testing, retains the tests providing p values in a given range, and counts

the proportion of those for which the null is true. The exercise is revealing. For example, if in a long

series of tests on, say, no effect of new drugs (against AIDS, baldness, obesity, common cold, cavities,

http://www.stat.duke.edu/~berger
http://www.stat.duke.edu/~berger
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etc.) we assume that about half the drugs are effective (quite a generous assumption), then of all the tests

resulting in a p value around .05 it is fairly typical to find that about 50% of them come, in fact, from the

null (no effect) and 50% from the alternative. These percentages depend, of course, on the way the

alternatives behave, but an absolute lower bound, for any way the alternatives could arise in the situation

above, is about 22%. The upshot for applied work is clear. Most notably, about half (or at the very least

over 1/5 ) of the times we see a p value around .05, it is actually coming from the null. That is, a p value

of .05 provides, at most, very mild evidence against the null. When practitioners (and students) are not

aware of this, they very likely interpret a .05 p value as much greater evidence against the null (like 1 in

20).

Finally, sophisticated statisticians (but very few students) might offer the argument that p values are

just a measure of evidence in the sense that “either the null is false, or a rare event has occurred.” The

main flaw in this viewpoint is that the “rare event,” whose probability (under the null) the p value

computes, is not based on observed data, as the previous argument implies. Instead, the probability of the

set of all data more extreme than the actual data is computed. It is obvious that in this set there can be data

far more incompatible with the null than the data at hand, and hence this set provides much more

“evidence” against the null than does the actual data. This conditional fallacy, therefore, also results in an

exaggeration of the evidence against the null provided by the observed data. Our informal argument is

made in a rigorous way in Berger and Sellke (1987) and Berger and Delampady (1987).

3.2 Reconciling Fisher’s and Neyman–Pearson’s Methods of

Statistical Testing

So, what should we do? One possible course of action is to use Bayesian measures of evidence

(Bayes factors and posterior probabilities for hypothesis). Space constraints preclude debating this

possibility here. Suffice it to say that there is a longstanding misconception that Bayesian methods are

necessarily “subjective.” In fact, objective Bayesian analyses can be carried out without incorporating any

external information (see Berger 2000), and in recent years the objective Bayesian methodology for

hypothesis testing and model selection has experienced rapid development (Berger and Pericchi 2001).

The interesting question, however, is not whether another methodology can be adopted, but rather can

the ideas from the Neyman–Pearson and Fisher schools somehow be reconciled, thereby retaining the best

of both worlds? This is what Lehmann (1993, p. 1248) had in mind, but he recognized that “A

fundamental gap in the theory is the lack of clear principles for selecting the appropriate framework.”

There is, however, such a unifying theory which provides the “appropriate framework” Lehmann (1993)
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sought. This is clearly presented in Berger (2002). The intuitive notion behind it is that one should report

conditional error probabilities. That is, reports that retain the unambiguous frequency interpretation, but

that are allowed to vary with the observed data. The specific proposal is to condition on data that have the

same “strength of evidence” as measured by p values. We see this as the ultimate reconciliation between

the two opposing camps. Moreover, it has an added bonus: the conditional error probabilities can be

interpreted as posterior probabilities of the hypotheses, thus guaranteeing easy computation as well as

marked simplifications in sequential scenarios. A very easy, approximate, calibration of p values is given

in Sellke, Bayarri, and Berger (2001). It consists of computing, for an observed p value, the quantity (1 +

[- e p log(p)] –1) -1 and interpreting this as a lower bound on the conditional Type I error probability. For

example, a p value of .05 results in a conditional α of at least .289. This is an extremely simple formula,

and it provides the correct order of magnitude for interpreting a p value. (The calibration – e p log(p) can

be interpreted as a lower bound on the Bayes factor.)

 4. CONCLUSIONS

It is disturbing that the ubiquitous p value cannot be correctly interpreted by the majority of

researchers. As a result, the p value is viewed simultaneously in Neyman–Pearson terms as a deductive

assessment of error in long-run repeated sampling situations, and in a Fisherian sense as a measure of

inductive evidence in a single study. In fact, a p value from a significance test has no place in the

Neyman–Pearson hypothesis testing framework. Contrary to popular misconception, p’s and α’s are not

the same thing; they measure different concepts.

We have, nevertheless, indicated how the confusion over the meaning of p’s and α’s may be resolved

by calibrating p values as conditional error probabilities. In the broader picture, we believe that it would

be especially informative if those teaching statistics courses in the applied disciplines addressed the

historical development of statistical testing in their classes and their textbooks. It is hoped that the present

paper will help to stimulate discussions along these lines.
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Table 1. The Reporting of Results of Statistical Tests in Three Leading Marketing Journals

“ Fixed”  level values“ Roving
alphas”
(R)

Exact P
values
(Ep)

Combination of Ep’s with
fixed P values and
“ roving alphas” Level P’s

“ Signific
ant” α ’s

Unspecifie
d Total

19

.10

   1 — — 4

Ep + .05

   2

.05

   9 13 4

.01

   7 —  1

.001

   2 — —

Ep + R

59

Other

   2 — —

Total

312 19 61 21 13  5 4 435

Percentage

71.7 4.4 14.0  4.8 3.0 1.1 0.9 99.9



Table 2. Contrasting P’s and α’s

P–Value α–Level

Fisherian Significance Level Neyman–Pearson Significance Level

Significance Test Hypothesis Test

Evidence Against H0 Type I Error— Erroneous Rejection of H0

Inductive Philosophy— From Particular
to General

Deductive Philosophy— From General to
Particular

Inductive Inference— Guidelines for
Interpreting Strength of Evidence in
Data

Inductive Behavior— Guidelines for
Making Decisions Based on Data

Data-based Random Variable Pre-Assigned Fixed Value

Property of Data Property of Test

Short-Run— Applies to any Single
Experiment/Study

Long-Run— Applies only to Ongoing
Repetitions of Original
Experiment/Study— Not to any Given
Study

Hypothetical Infinite Population Clearly Defined Population
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