An integrative analytical approach for phylogeographic studies

Isaac Garrido-Benavent

Dept. of Mycology, Real Jardín Botánico (RJB-CSIC), Madrid, SPAIN e-mails: **igbenavent@rjb.csic.es; igb4tonda@gmail.com** Personal webpage: **https://igarrido-benavent.weebly.com** "...a field of study concerned with the principles and processes governing the geographical distributions of genealogical lineages, especially those within and among closely related species..." (Avise 2000)

Phylogenetics

2

Population genetics

Phylogeography (Avise et al. 1987)

Photo: Sal, Cape Verde, IGB

Phylogeography

Patterns & Processes

- Genetic structure of populations
- Role of dispersal vs vicariance
- To localize refugia
- To identify migration routes
- Informing conservation strategies for endangered species

The term 'genetic structure' refers to the quantity and distribution of genetic variation within and among populations and is an important property of natural populations as it might reflect the history of populations as well as their evolutionary potential (Excoffier 2007). Genetic structure results from four processes: mutation, drift, selection, and gene flow.

Guidelines for conducting a phylogeographic study

Brief introduction to RevBayes software

Brief tutorials for particular analyses

Delineating the scope of a phylogeographic study

Taxonomic complexity

1 species (e.g. *Lobaria pulmonaria*, Widmer et al. 2012)

Two or a few closely related species

(e.g. *Mastodia tessellata s.l.*, Garrido-Benavent et al. 2018)

Several to many species within a genus (e.g. *Sticta*, Simon et al. 2018)

Biogeographic hypotheses construction

(Beast, *Beast, BioGeoBears, Migrate-n)

Sampling design

The first topic we must care about is sampling. Its design should be consciously prepared according to the hypotheses we want to test and taking advantage of our experience in previous phylogeographic works.

The robustness of biogeographic inferences depends on the original sampling design

The higher number of **localities**, the better.

The higher number of **specimens**, the better.

62 localities of *Parmelina tiliacea* 39 localities from sev representing different altitudes and *aculeata* (Adapted from Fern habitats (Adapted from Núñez-Zapata et al. 2015)

364 specimens (1-14 spec. /locality)

39 localities from seven regions in *Cetraria aculeata* (Adapted from Fernández-Mendoza & Printzen 2013)

356 specimens (to 12 spec./locality)

4323 specimens in 142 localities from Europe in Lobaria pulmonaria (Widmer et al. 2012)

The reproductive mode of the study species must be taken into account when sampling

Take samples at different places within a sampling locality

Photo: Davos, Switzerland-2018, I. Garrido-Benavent

Important!!! Just collect the necessary number of samples. Among 10-15 per locality. Lichens or whichever our study species are are living organisms and therefore they provide services to ecosystems. Keep always in mind that field collecting for scientific research is one threat for the survival of local populations.

A) DNA sequences from one to X genomic regions

B) Simple sequence repeat (SSR) markers (e.g. microsatellites)

C) Restriction associated DNA sequencing (RADseq) or other type of data obtained through high-throughput sequencing methods

DNA sequences are appropriate for assessing historical biogeography in lichens

Adapted from Leavitt et al. (2018)

Phylogeographic approach

Obtention of molecular data

Alignment, substitution models and recombination (Geneious, BioEdit, JModelTest, PartitionFinder, Rdp)

Preliminary analyses

Species delimitation Species discovery (ABGD, GMYC, MULTILOCUS NETWORKS) Model comparison and Validation of species hypotheses (BFD, BPP, Stacey, Migrate-N)

Population structure, genetic diversity and demography

(Structure, Baps, Dapc, DNA Polymorphism, Haplotype Networks, clonality, Dxy, Fst, Ibd)

Biogeographic hypotheses construction

(Beast, *Beast, BioGeoBears, Migrate-n)

Once we assemble a DNA sequence dataset, the next step is to produce an alignment. This is one of the most crucial steps in the phylogeographic approach because all our next analyses will depend upon the accuracy of the alignment. There is a number of available tools to align DNA sequences, and a very rich literature discussing the pros and cons of each method. It has been found that MAFFT is both computationally efficient and has relatively high performance on both simulated and empirical data sets. The different options available in MAFFT work well for fungal and algal DNA sequences. It can be installed on your personal computers, run online or is available within other software such as Geneious.

Katoh & Standley (2013)

DOC

Alignment with

GUIDANCE2 – to identify unreliable alignment regions

1 1 1 1	The G Server for align HOME OVERVIEW		e score	Server credits contact us	
Type your sequences (FASTA format only) * large strings should be uploaded as files					
		.::	formatio	in: ess of indel	
OR Upload your sequences file (FAST Sequences Type: O Amino Acids	A format only) Examination O Nucleotides O Code			solutions in the	
Select the MSA algorithmMAFFT (default) \checkmark Warning: PRANK is significantly more time consuming. MAFFT is the fastest.					
Please enter your email add	ress (Optional)			Sela et al. (2015)	

GBlocks – to automatically deal with gappy regions in complicated alignments (e.g. ITS)

Biogeographic hypotheses construction

(Beast, *Beast, BioGeoBears, Migrate-n)

For a particular dataset, inference of substitution models should be carried out using **the same** framework (ML or Bayesian) under which phylogenetic trees will be estimated

Next, it is important to estimate a substitution model for each DNA alignment. This information will feed further analyses in phylogeography.

G

E

Molecular Evolutionary Genetics Analysis

Molecular Evolutionary

Genetics Analysis

Preliminary phylogenies in MEGA (Kumar et al. 2018)

- DNA sequences alignment
- Estimation of the best substitution model 📢
- Inference of phylogenies under a ML framework
- Calculating Transition/Transversion rates 📢
- Molecular clock tests (

features publications

s manual

migration feedback analyses

Important for

species delimitation,

dating and

home

Sophisticated and user-friendly software suite for analyzing DNA and protein sequence data from species and populations.

Estimation of best substitution models and phylogenies under a ML framework

PhyML now includes Smart Model Selection. SMS can also be used on its own.					
If you use SMS, please cite: "SMS: Smart Model Selection in PhyML." Vincent Lefort, Jean-Emmanuel Longueville, Olivie Molecular Biology and Evolution, 34(9):2422-2424, 2017. FICOOPrime RECOMMENDED	r Gascuel.				
PhyML online execution					
Input Data					
Sequences (PHYLIP format)	Examinar No se ha seleccionado ningún archivo.	File File			
Data Type		DNA 🖲 🔿 Amino-Acids			
Substitution Model					
Automatic model selection by SMS					
Selection criterion	AIC (Akaike Information Criterion) O BIC (Bayesian Information Criterion)				
O Set by user					
Substitution model	HKY85 ~				
Equilibrium frequencies		optimized 🔘 🖲 empirical			
Transition / transversion ratio (DNA models)		fixed 🔘 🖲 estimated			
Proportion of invariable sites		fixed 🔘 🖲 estimated			
Number of substitution rate categories					
Gamma shape parameter		fixed 🔘 🖲 estimated			
Tree Searching					

Darriba et al. (2012)

RAxML

Our standard tool for Maximum-likelihood based phylogenetic inference.

Stamatakis (2006); Stamatakis et al. (2008)

Estimation of best substitution models and phylogenies under a Bayesian framework

Congruence among distance matrices (CADM) test (Legendre & Lapointe 2004, Campbell et al. 2011)

CADM.global function implemented in the library "ape" (Paradis et al. 2004) in

To assess species boundaries in our study spp.

The next step in any phylogeographic study in which we include a huge number of specimens from widely distant localities is to detect whether there are evidences of cryptic speciation. This is, whether we have more than one species in our dataset. It is especially important to treat each putative species separately because equivocal concepts of species limits could confound an extrinsic barrier to dispersal with intrinsic reproductive barriers (Pante et al., 2015).

Phylogeographic studies may contribute to unravel new species

Phylogeny of the *Sphaerophorus globosus* species complex using 5 genes and inferred under a parsimony framework in PAUP* (Högnabba & Wedin 2003)

In fact, phylogeographic studies have been pivotal for the discovery of many new taxa for science. In this study by Hognabba and Wedin (2003) on the *Sphaerophorus globosus* species complex, they revealed two phylogenetic species, one restricted to hyperoceanic areas along the North American Pacific Northwest, subsequently described as *S. venerabilis* (Wedin et al., 2009), and the second displaying a wide distribution in both hemispheres.

Holotype of S. venerabilis. Scale = 1 cm (Wedin et al. 2009)

22

Calculation of DNA polymorphism indices with DnaSP

- Input Data Files:
- A single MSA (one genomic region) in a number of file formats such as FASTA, NEXUS, MEGA, NBRF, PHYLIP, etc. [from version 1]
- A single MSA storing DNA sequence information (haplotype) along with their frequency, in ARP format (Excoffier and Lischer 2010) [version 6 and newer]
- A multi-MSA File in *.alleles, *.loci and *.fa file formats (generated by PyRAD and STACKS softwares; -Eaton et al. 2014; Catchen et al. 2013), as well as VCF formats (Danecek et al. 2011) [version 6 and newer]

New features in DnaSP in v6 DnaSP User-Interface Running DnaSP under Windows, Linux and MacIntosh Known Bugs in v6 Source Code

Go To DnaSP version 5 (version 5.10.1 -March 2009)

Comparison of Hutchinsonian niche hypervolumes

Niche hypervolumes for L. pustulata mycobionts (adapted from Rolshausen et al. 2018)

hypervolume R package

Niche overlap between species

Adapted from http://allthiswasfield.blogspot.com/2017/

To discuss which environmental variables may have promoted divergence between two (or more) species

Phylogenetic PCAs: visualize the distribution of candidate species or lineages in multidimensional niche space

Associated algae inform species delimitation in the fungal partner and viceversa

Turgidusculum ulvae & Blidingia minima

There are few clear examples where the associated algae clearly point to a specific fungal host because these associations are in principle very strict. This is the case of the *Ulva*-like *Blidingia minima* which associates with the verrucarioid *Turgidusculum ulvae*.

Phylogram based on *rbcL* data and inferred with RAxML (adapted from Pérez-Ortega et al. 2017)

Associated algae inform species delimitation in the fungal partner and viceversa?

However, the usefulness of the taxonomic identity of associated algae for informing species delimitation in fungi becomes more complicated when the associated algae are microscopic and there are thousands of microalgae in the same thallus. In fact, it has been shown that more than one lineage is found in each thallus and that some microalgae are shared between phylogenetically related and unrelated mycobionts.

Ramalina farinacea

Adapted from Casano et al. (2011)

Adapted from Català et al. (2016)

The composition of the photobiont community may also characterize certain fungal spp.

In these cases, it is interesting to look at the overall composition of the photobiont community taking advantage of current techniques of DNA metabarcoding. In the following example, although some algal OTUs are shared across species, and that the composition within species varies according to environmental variables, there are still some OTUs that tend to be specific to certain species and also the overall community differs in general between both species.

Adapted from Dal Grande et al. (2018)

Algal OTUs inferred from Illumina DNA metabarcoding data

Analysis of Illumina metabarcoding data for lichenized fungi and algae

Microbiome Helper is a framework which I found useful when working with DNA metabarcoding data of bacteria, fungi and algae. To install it, you have to download and install first a linux virtual machine, and then install Microbiome Helper on it. The github webpage has tutorials and lots of information. Some time ago Microbiome Helper was devoted to the inference of OTUs with QIIME version 1, but now it offers a more sophisticated way to infer Amplicon Sequence Variants in QIIME2 and dada2 which allow studying metabarcoding data at a finer scale.

Biogeographic hypotheses construction

(Beast, *Beast, BioGeoBears, Migrate-n)

Other approaches to illustrate the existence of divergent lineages are the construction of multilocus networks using the software POFAD and SplitsTree.

Species discovery: multi-locus networks

POFAD

Phylogeny of Organisms From Allelic Data © Simon Joly, 2006-2014 Montreal Botanical Garden Joly & Bruneau (2006)

Using multi-locus networks to illustrate species boundaries

Adapted from Garrido-Benavent et al. (2018)

(Beast, *Beast, BioGeoBears, Migrate-n)

All of the previous analyses (ABGD, Multi-locus networks) and also the information from the integrative taxonomy steps are used to generate hypotheses that should be tested using multi-locus data and more sophisticated biological and statistical frameworks. For example, using software that operate under the coalescence theory and that may account for incomplete lineage sorting and migration. One of such approaches is the Bayes Factor Delimitation which is implemented in the software StarBEAST.

> Species validation: Bayes Factor Delimitation (BFD) Grummer et al. (2014)

StarBEAST: Heled & Drummond (2010)

TABLE 1 Marginal likelihood and Bayes factor values for two alternative species delimitation hypotheses in the fungal partner of *Mastodia tessellata* and their motivation. Best model highlighted in bold

			Path Sampling		Stepping-Stone	
Model	Distinct species	Motivation	ln (Marginal likelihood)	2In (Bayes Factor)	ln (Marginal likelihood)	2ln (Bayes Factor)
Model 1 (1 spp.)	n/a	Fungus with a wide distribution	-4455.7	23.6	-4455.7	23.4
Model 2 (2 spp.)	sp1: N. America ^a , T. Fuego ^b , Antarctica ^c sp2: Antarctica ^d	STRUCTURE multi-locus clustering, ABGD of <i>nrITS</i> , multi-locus network	-4443.9	n/a	-4444	n/a

^aIndividuals with nrITS haplotypes: hap1, hap2, hap3, hap4, hap5.

^bIndividuals with *nrITS* haplotypes: *hap6*, *hap7*, *hap8*, *hap9*, *hap10* and *hap11*.

^cIndividuals with nrITS haplotypes: hap11 and hap12.

^dIndividuals with nrITS haplotypes: hap13, hap14, hap15 and hap16.

Adapted from Garrido-Benavent et al. (2018)

Other methods for species validation using the coalescent theory framework

BP&P: Bayesian analysis of genomic sequence data under the multispecies coalescent model Yang & Rannala (2010, 2014; Rannala

& Yang (2013)

- estimation of population size (theta's)
- estimation of species divergence times (tau's)
- species tree estimation

STACEY

<u>Iournal of Mathematical Biology</u> January 2017, Volume 74, <u>Issue 1–2,</u> pp 447–467 | <u>Cite as</u>

Authors and affiliations

Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent

Authors Graham Jones 🖂

Jones (2017)

Migrate-n is useful to test models of species divergence as well

Version 4.x allows for specifying models with divergence

DOC

How many analyses do we carry out???

- Species discovery: ABGD (distance), data from integrative taxonomy
- Species validation: BFD, BP&P OR MIGRATE-N

Estimating phylogenies or species networks under ILS and gene flow

Several methods have been recently developed to estimate phylogenies and species networks under Incomplete Lineage Sorting and gene flow. The analyses are applicable to multiple species and/or multiple populations per species.

Coestimating Reticulate Phylogenies and Gene Trees from Multilocus Sequence Data 🚥

Dingqiao Wen, Luay Nakhleh 🐱

Inferring Phylogenetic Networks Using PhyloNet

Dingqiao Wen, Yun Yu, Jiafan Zhu, Luay Nakhleh 🐱

Divergence Estimation in the Presence of Incomplete Lineage Sorting and Migration Graham R Jones

Phylogeny Estimation by Integration over Isolation with Migration Models 👌

Jody Hey ➡, Yujin Chung, Arun Sethuraman, Joseph Lachance, Sarah Tishkoff, Vitor C Sousa, Yong Wang

Volume 67, Issue 3 May 2018

Volume 67, Issue 4 July 2018

Volume 35, Issue 11 November 2018

After having carefully assessed species boundaries in our phylogeographic dataset, the next step is more related with population genetics. Here, we conduct a series of analyses devoted to characterize population structure, genetic diversity in general and for each geographic region, and to detect demographic changes through time.

Population assignment and structure

Alternative methods for population assignment and structure

Bayesian & computationally-intensive

Computationally much less intensive

Huelsenbeck, John P., Peter Andolfatto, and Edna T. Huelsenbeck. "Structurama: Bayesian inference of population structure." *Evolutionary Bioinformatics* 7 (2011): EBO-S6761.

snapclust: a new approach combining model- and distance-based methods

DNA polymorphism

Estimating clonal reproduction

I_A method (Avise & Wollenberg 1997)

rBarD (unbiased index of association, Agapow & Burt 2001)

Quantifying genetic divergence and differentiation

Arlequin(Excoffier & Lischer 2010)

Genetic divergence

Dxy (Nei 1987): average number of nucleotide substitutions per site between sampling localities

Genetic differentiation

Fst (Weir & Cockerham 1984): estimator H for Wright's fixation index based on allele frequencies

R-lequin: collection of R functions to parse Arlequin output files and produce high quality graphics (http://heidi.chnebu.ch/doku.php?id=r-lequin)

Testing for Isolation by Distance (IBD)

Parmelina carporrhizans and P. tiliacea in the Mediterranean and Macaronesian regions

- Clear IBD pattern (r = 0.472, P = 0.005)
- Single cloud of points indicates a continuous cline of genetic differentiation (Adapted from Alors et al. 2017)

Weak IBD pattern (r = 0.111, p = 0.003)
Incipient patchy pattern of points indicates the existence of distant and differentiated populations (Adapted from Núñez-Zapata et al. 2015)

mantel.randtest (Mantel test, package *adegenet* in R) Measuring local densities of distances (function *kde2d*) and plotting in function *image* in the R package *MASS*) Take also a look at the R package *MEMGENE* (Galpern et al. 2014) to describe the geographic distribution of genetic variability at landscape scale (see Rolshausen et al. 2018 for a example in lichenized algae)

55

Demography and deviations from neutrality

Tajima's D and Fu's Fs statistics.

- number of segregating sites
- significance based on 10^x coalescent simulations

D and Fs values: diversifying selection or a recent bottleneck

D and Fs values: purifying selection or a recent expansion

of

Dating

BEAST v. 1.8: Drummond et al. (2012) **StarBEAST:** Heled & Drummond (2010)

Ancestral range reconstruction

BioGeoBEARS (Matzke 2013)

Migration

Beerli (2006); Beerli & Palczewski (2010)

BEAST v. 1.8: Drummond et al. (2012) StarBEAST: Heled & Drummond (2010)

DOC

BEAST v. 1.8: Drummond et al. (2012) StarBEAST: Heled & Drummond (2010)

	ML estimate				MrBayes conse	ensus	EG/	40
nrITS GTR+Γ+I (Dataset A)	ln <i>L</i>	Param	(+T)	(+I)	lnL	Param	(11)	(11)
With clock	-7095.856	79	1.115	0.36	-7099.121	79	1.191	0.3
Without clock	-6960.321	147	1.15	0.32	-6960.203	147	1.2	0.3
P(Ho: = rates)	5.2e ⁻¹¹ *				8.96e ⁻¹² *			
nrITS TN93+F+I (Dataset B)	lnL	Param	(+F)	(+I)	ln <i>L</i>	Param	(+Γ)	(+I)
With Clock	-5444.788	40	0.977	0.28	-5452.139	40	0.913	0.32
Without clock	-5388.285	75	0.96	0.32	-5363.874	75	0.89	0.3
P(Ho: = rates)	8.65e ⁻⁴ *				3.63e ⁻¹¹ *			
nuLSU GTR+F+I (Dataset B)	ln <i>L</i>	Param	(+T)	(+I)	ln <i>L</i>	Param	(+Γ)	(+I)
With clock	-2753.380	42	0.778	0.63	-2746.279	42	0.793	0.6
Without clock	-2722.074	73	0.76	0.64	-2718.789	73	0.78	0.6
P (Ho: = rates)	0.45				0.72			
mtSSU HKY+Γ+I (Dataset B)	lnL	Param	(+F)	(+I)	ln <i>L</i>	Param	(+Γ)	(+I)
With clock	-3006.041	42	0.706	0.59	-3025.628	42	0.789	0.6
Without clock	-2948.207	77	0.81	0.64	-2946.274	77	0.82	0.6
P(Ho: = rates)	4.9e ⁻⁴ *				7.73e ⁻⁹ *			

under two different topologies (ML and Bayesian). *denotes rejection of the null hypothesis (i.e., equal rates)

Adapted from Garrido-Benavent et al. (2016)

Strict vs uncorrelated relaxed lognormal molecular clock

Prior settings There is no general rule. Literature review.

Run settings Depending on the amount and complexity of data, run at least one analysis with chains 1–5×10⁷generations long

Test for a strict molecular clock for EACH locus

BEAST v. 1.8: Drummond et al. (2012) StarBEAST: Heled & Drummond (2010)

Check for convergence of chains

The effective sample sizes (ESS) of each parameter must be at least 200

Tracer software

Fossil data

5 Ascomycete fossils and 4 markers

(Adapted from Beimforde et al. 2014)

7 fossil evidences and 5 markers (7867 bp)

(Adapted from Garrido-Benavent et al. 2018)

Drawing an age estimate for a secondary calibration

Using that age estimate

The dataset comprised three markers (ITS, nuLSU, mtSSU)

From the primary calibration we draw **substitution rates** for secondary calibrations

FigTree

7 fossil evidences and 5 markers (7867 bp) (Adapted from Garrido-Benavent et al. 2018)

From the primary calibration we draw **substitution rates** for secondary calibrations

Chronogram inferred in BEAST from *tufA* data of selected *Prasiolaceae* members, including most *Prasiola* species

The estimated substitution rate for the *tufA* marker was used as a secondary calibration in an extended phylogeny of *Prasiolaceae*.

Adapted from Garrido-Benavent et al. (2018)

Comparing results of dating analyses

The dataset comprised three markers (ITS, nuLSU, mtSSU)

Substitution rates for ITS: - 3.41×10^{-9} s/s/y (*Melanohalea*, Leavitt et al. 2012) - 2.43×10^{-9} s/s/y (*Montanelia*, Leavitt et al. 2015)

Age estimates are known to be quite biased or inexact because of many reasons. In my opinion, the best approach is to apply two or three different calibrations to the same dataset, and report and discuss all the results at the same time. For example, I used here an age estimate for this clade as well as two different substitution rates for the ITS.

Comparing results of dating analyses

Table 4 Divergence time estimates (Ma) of selected nodes obtained using different secondary calibration approaches with BEAST							
	Calibrated node approach	<i>Melanohalea</i> nrITS substitution rate ^a	<i>Montanelia</i> nrITS substitution rate ^b	Gaya et al. (2015)	Geological period		
Shackletonia and remaining Xanthorioideae lineages split	70.5 (54.8-86.2)	64 (51.4–77.9)	89.3 (70.9–107.7)	-	Late Cretaceous-Paleogene		
Shackletonia crown group	42.8 (30.3–56.7)	38.7 (28.1–50.1)	54.2 (39.4–71)	-	Late Paleocene-Early Oligocene		
Shackletonia cryodesertorum origin	20.4 (11.5-30.2)	18.5 (10.7-27.4)	25.9 (14.7-37.6)	-	Late Oligocene-Early Miocene		
Xanthocarpia crown group	14.79 (9-21.1)	13.5 (8.7-18.9)	18.8 (12.1-25.9)	c. 14 (5.5-25.5)	Early/Middle Miocene		
Xanthomendoza crown group	40.12 (28.9-52.5)	36.4 (26.9-46.9)	50.9 (37-64.8)	c. 43 (31–56)	Eocene-Early Oligocene		
Caloplaca-Xanthoria and Xanthomendoza split	60.15 (48.8–71)	54.2 (43–65.8)	76 (60–91.8)	62.61 (74.03-51.85)	Late Cretaceous-Paleogene		

Proposed geological periods take into account estimated ages within 95 % HPD obtained from the first two analyses. Results of Gaya et al. (2015) are provided for comparison

^a 3.41×10^{-9} s/s/y (Leavitt et al. 2012); ^b 2.43×10^{-9} s/s/y (Leavitt et al. 2015)

Substitution rates for the fungal *ITS*:

 $-2.52 \times 10^{-9} \text{ s/s/y}$ (Erysiphales,

Adapted from Garrido-Benavent et al. (2016)

Leavitt et al. 2012)

 $-3.41 \times 10^{-9} \text{ s/s/y}$ (Melanohalea,

Leavitt et al. 2015)

Substitution rates for the algal *tufA*: - 1.28×10^{-9} s/s/y (*Prasiolaceae*, Garrido-Benavent et al. 2018)

Adapted from Garrido-Benavent et al. (2018)

Reconstructing the ancestral range of species has become popular in many studies of lichens in the last years. There are several methods and programs that account for different anagenetic and cladogenetic processes that can alter the geographic range of a species such as dispersal, extinction or range switching, vicariance, founder event, and so on. Programs such as DIVA, Lagrange, BayArea, Biogeobears account for some of these processes.

function *make.simmap*

Historical biogeography of *Hypotrachyna* (Parmeliaceae)

				And	estral	range	probal	oilities		
Node	Chat		Е	G	CD	DE	DG	EG	CDF	DEG
a	Hypotrachyna	0.20	0.02	0.03	0.00	0.05	0.05	0.01	0.00	0.01
b	subgen. Longilobae/H. fissicarpa	0.04	0.12	0.04	0.00	0.22	0.01	0.29	0.00	0.16
с	subgen. Longilobae	0.01	0.00	0.19	0.00	0.00	0.58	0.05	0.00	0.13
d	all species except subgen. Longilobae/H. fissicarpa	0.28	0.00	0.00	0.01	0.01	0.02	0.00	0.00	0.00
e		0.72	0.00	0.00	0.02	0.01	0.01	0.00	0.00	0.00
f	subgen. Hypotrachyna + Parmelinopsis	0.47	0.00	0.00	0.02	0.02	0.01	0.00	0.00	0.00
g	Hypotrachyna s. str.	0.77	0.00	0.00	0.02	0.01	0.01	0.00	0.00	0.00
h		0.77	0.00	0.00	0.02	0.02	0.02	0.00	0.00	0.00
i		0.86	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00
i	subgen. Parmelinopsis	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
k		0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	subgen. Cetrariastrum + Everniastrum	0.84	0.00	0.00	0.07	0.01	0.00	0.00	0.00	0.00
m	subgen. Everniastrum	0.11	0.00	0.00	0.26	0.01	0.00	0.00	0.14	0.00
n	subgen. Cetrariastrum	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	H. laevigata group + subgen. Sinuosae	0.28	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00
р	H. laevigata group	0.85	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00
q		0.58	0.00	0.00	0.03	0.01	0.04	0.00	0.01	0.00
r	subgen. Sinuosae	0.09	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00

Historical biogeography of *Xanthoparmelia* (*Parmeliaceae*)

		Parameter estimates			tes	
Model	LnL	Number of parameters	d	е	j	AIC
DEC DEC+J	-391·1326 -386·7134	2 3	0.009079 0.007892	3·313e-03 1·0 e-12	0·0 0·011631	786·2652 779·4268

Parameters: the rate of range expansion ("dispersal"), parameter *d*; range contraction ("extinction"), parameter *e*; weight of each jump dispersal event in the cladogenesis matrix, parameter *j*. Akaike Information Criterion, AIC.

	Model	Ln L	AICc	P-value (LRT)	Most likely ancestral range
Three geographic regions (Madagascar, Mauritius, Réunion)	DEC	-66.46	137.1	2.5 10 ⁻⁹	Madagascar+Réunion
	DEC + J	-48.69	103.7		Madagascar+Réunion
	DIVA	-66.04	136.3	2.6 10 ⁻⁹	Madagascar+Réunion
	DIVA+J	-48.31	103		Madagascar+Réunion
	BAYAREALIKE	-114.2	232.7	$7.8 \ 10^{-30}$	Madagascar+Réunion
	BAYAREALIKE + J	-49.88	106.1		Réunion
5 on 116539 also.					

Historical biogeography of *Sticta* (*Lobariaceae*) in Madagascar and the Mascarenes

Adapted from Simon et al. (2018)
Ancestral range reconstruction

WILEY

Journal of Biogeography

DOI: 10.1111/jbi.13173

PERSPECTIVE

Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection Ree & Sanmartín (2018)

	Model	Ln L	AICc	P-value (LRT)	Most likely ancestral range
Three geographic regions (Madagascar, Mauritius, Réunion)	DEC	-66.46	137.1	2.5 10 ⁻⁹	Madagascar+Réunion
	DEC + J	- 8.0	103.7		Madagascar+Réunion
	DIVA	<u>-6 4</u>	136.3	2.6 10 ⁻⁹	Madagascar+Réunion
	DIVA+J	- 3.	103		Madagascar+Réunion
	BAYAREALIKE	- 3. -114.2	232.7	7.8 10 ⁻³⁰	Madagascar + Réunion
	BAYAREALIKE + J	-49.88	106.1		Réunion

Likelihoods from DEC and DEC+J are not statistically comparable

"...For simple inference of ancestral ranges on a fixed phylogeny, a DEC-based model may be defensible if statistical model selection is not used to justify the choice..."

"...If different models confidently yield conflicting reconstructions that are meaningful to the study, it seems entirely reasonable to favour one over another by making arguments based on empirical (biological, geographic) considerations—in other words, to allow non-statistical judgements guide model choice..."

SOLUTION: select any model [DEC(+J), DIVALIKE(+J), BAYAREALIKE(+J)] or more than one model, and discuss results under the prism of our study group (discuss which is more biologically realistic). BUT NEVER COMPARE THE LIKELIHOODS OF THESE MODELS!!!!!

What if...

...we are dealing with only

1 species

BioGeoBEARS: treat each distinct lineage as a separate species

SIMMAP

BEAST: discrete phylogeography analysis (Lemey et al.)

...we are dealing with only

≥ 2 species

BioGeoBEARS: if there is strong population substructure within nominal species, or there are non-monophyletic species, treat each lineage as a separate putative species

SIMMAP

To obtain mutation-scaled immigration rate (*M*) and effective population size (*O*) estimates

Beerli (2006) Beerli & Palczewski (2010)

The last interesting biogeographic analysis is migration, which can be conducted with a coalescent-based method in MIGRATE. First, this software can be used to estimate mutation-scaled immigration rates and effective population sizes.

To assess the direction and intensity of gene flow

Adapted from Alors et al. (2017)

For example, in a phylogeographic study of Alors et al. about *Parmelina carporrhizans*, they inferred higher effective population sizes in the Mediterranean populations than in the Macaronesian. The intensity of gene flow was also higher from the Mediterranean towards the Canary Islands than viceversa.

To obtain mutation-scaled immigration rate (*M*) and effective population size (*O*) estimates

To simulate and compare different models of population structure and gene flow

Model name	Structure and number of parameters ($\theta + M$)		Description	Bezier Lml	Model probability	2 ln BF Bezier
NULL models						
NULL	No connections	1 + 0	Single admixed population	-5784.19	1.89×10^{-937}	4312.48
FULL	All connections	13 + 156	Full 13 populations model	-4214.73	7.67×10^{-256}	1173.56
Burst dispersal	from the Arctic		* *			
1.1	Arc→[Med,Can,NAm,	7 + 6	Full N-S directionality	-3685.91	3.54×10^{-26}	115.92
	Bol,Pat]→Ant					
1.2	Arc→[Med,Can,NAm,	7 + 6	Radiation from the arctic	-3693.91	1.19×10^{-29}	131.92
	Bol,Pat]; Pat→Ant					
1.3	$Arc \leftrightarrow Med$, $NAm \rightarrow Arc$;	7 + 7	Temperate refuge, Burst from	-3688.27	3.34×10^{-27}	120.64
	$Arc \rightarrow [Can, Bol, Pat]; Pat \rightarrow Ant$		the Arctic, Exchange with the			
			Mediterranean			
A (1.4)	$((Med \leftrightarrow Can) \leftrightarrow Arc); [Med,$	7 + 13	Radiation from the Arctic,	-3627.95	0.525	0.00
	$Can] \rightarrow NAm; Arc \rightarrow Pat \rightarrow Ant;$		High Northern Hemisphere connectivity.			
	Arc→Bol; Arc→NAm					

Adapted from Fernández-Mendoza & Printzen (2013)

Biont	Directionality	Model	Description and number of estimated parameters $(\Theta + M)$	Bézier Lml	Model Probability	2ln BF Bézier
Mycobionts (Mastodia	n/a	Null	No connections (single population) (1 + 0)	-5076.57	~0	2541.08
sp. 1 & sp. 2)		Null	All possible connections among the 4 populations (4 + 12)	-4656.34	~0	1700.62
Bipolar mycobiont	S→N	5	TF migration into NA. ANT migration into TF. (4 + 2)	-3829.29	$7.897 imes 10^{-11}$	46.52
(Mastodia sp. 1)	>	6	TF migration into NA and ANT. (4 + 2)	-3806.03	0.998	0
		7	TF migration into NA and ANT. ANT migration into TF. (4 + 3)	-3817.84	7.416×10^{-6}	23.62
	N→S	8	NA migration into TF. TF migration into ANT. (4 + 2)	-3821.82	1.386×10^{-7}	31.58
		9	NA migration into TF. ANT migration into TF. (4 + 2)	-3960.56	7.72×10^{-68}	309.06
		10	NA migration into TF. TF migration into ANT and vice versa (4 + 3)	-3832.12	4.66×10^{-12}	52.18
Photobionts (Prasiola	n/a	Null	No connections (single population) $(1 + 0)$	-4424.57	~0	845.62
borealis & Prasiola sp.)		Null	All possible connections among the 4 populations (4 + 12)	-4287.1	~0	570.68
Bipolar photobiont	S→N	5	TF migration into NA. ANT migration into TF. (4 + 2)	-4021.24	3.467×10^{-9}	38.96
(Prasiola borealis)		6	TF migration into NA and ANT. (4 + 2)	-4014.01	4.785×10^{-6}	24.5
	>	7	TF migration into NA and ANT. ANT migration into TF. (4 + 3)	-4001.76	9.999 × 10 ⁻¹	0
	N→S	8	NA migration into TF. TF migration into ANT. (4 + 2)	-4012.32	2.593×10^{-5}	21.12
		9	NA migration into TF. ANT migration into TF. (4 + 2)	-4103.53	6.336×10^{-45}	203.54
		10	NA migration into TF. TF migration into ANT and vice versa (4 + 3)	-4017.45	1.534×10^{-7}	31.38

Adapted from Garrido-Benavent et al. (2018)

NULL MODEL	(all connection	s/populations=	regions)	Full 4 populations model			
NULL_full	Namerica	Chile	AntChil	Antart			
NAmerica	Onam	*	*	*	nº calculat	ted parameters	
Chile	*	Θc	*	*	Θ=	4	(************
AntChil	*	*	Oanch	*	M=	12	
Antartida	*	*	*	Θan			
1.1. Chile toge	ther with AntC	hil gives to Na	mer. Antarctica i	solated.			
MOD1.1	Namerica	Chil	le-AntChil	Antart	nº calculat	ted parameters	
Namerica	Θnam		*	0	Θ=	3	(**00*c0c*)
Chile-AntChil	0	e	Əchant	с	M=	1	
Antartida	0		с	Oan			
1.2. Chile toge	ther with AntC	hil gives to Na	mer. Antarctica	gives to Chile.			
MOD1.2	Namerica	Chil	le-AntChil	Antart	nº calculat	ted parameters	
Namerica	Onam		*	0	Θ=	3	(********
Chile-AntChil	0	e	Əchant	*	M=	2	(**00**00*)
Antartida	0		0	Oan			

*: parameter that varies freely c: a parameter with a fixed value

To obtain mutation-scaled immigration rate (*M*) and effective population size (*O*) estimates

85

FaBox is useful for building input files

Welcome to FaBox (1.41) - an online fasta seque

HTTP://www.birc.au.dk/software/fabox

Sequence 2 fasta converters (external tools) HCV Sequence Conversion Interface - ReadSeq at EBI

Working with fasta datasets/alignments

Working with fasta headers Fasta header extractor (and header splitter)

Fasta header editor

Fasta header replacer

line fasta	sequence toolbox [F	AQ] FABOX
fabox tools) eq at EBI	28.08.2006 Fasta header editor added 28.08.2006 Added file upload to all services 25.08.2006 Added file upload to some services, rest will follow. 21.08.2006 RastaZmigrate added, only produces an infile. 16.08.2006 Reinstalled local physerver, we're back. 13.08.2006 FaBox is online again, but all log data disappeared 11.08.2006 FaBox is down due to upgrade problems. 10.08.2006 Alignment cropper fixed.	• •
	d fast way of extraction the headers from fasta files - and optionally split each header into fields based on a chosen character/word. d fast way of extracting headers, edit them and reapplying them without worrying about the sequence itself.	
Some prog	o fast way of extracting neaders, edit them and reappying them without worying about the sequence itself. grams do not like the fancy headers in fasta files and you have to live with short, unique names - that are really non-descriptive. Here you can replace headers back and forth by submitting old and new headers - wi eep in a excel spreadsheet.	hich you'll
]		

froming min rusta addisets/anglinents	
Fasta sequence extractor	Simple and fast way of extracting some sequences from a large sequence set, based on a list of headers or fuzzy matching.
Fasta sequence subtractor	Simple and fast way of removing some sequences from a large sequence set, based on a list of headers or fuzzy matching.
Fasta sequence joiner	Simple and fast way of joining a set of fasta sequences into one sequence
Fasta dataset splitter/divider	Simple and fast way of dividing your dataset into two sets by a header keyword. It will split into sets WITH and WITHOUT the given header keyword (like 'females/males', 'population1/population2')
Fasta alignment joiner	Simple and fast way of joining two alignments, sequence by sequence. It will join alignment 1, sequence 1 with alignment 2, sequence 1 and so on (see example)
Alignment trimmer	Trims an alignment to the shortest sequence. It simply removes the boundary areas that are full of gaps.
Show variable sites only	Extracts all the variable sites from an alignment
DNA to haplotype collapser and converter	Will collapse a set of sequences into haplotypes and output som simple statistics and formatted input files for Arlequin

Data conversion

Strip branch lengths and bootstrap values from Will take a newick tree and create three versions: the original, branch lengths only and topology only (for ASR in paml). newick trees (newick parser) Create formatted sequence file for PAML

analysis (fasta2paml)

Fasta2excel converter

Create TCS input file from fasta (fasta2tcs)

Create Migrate input file from fasta (fasta2migrate)

Will format your fasta sequences and create a correct input file for PAML (it's a phylip format with some modifications). Will explode a sequence set into tabular format. It's possible to explode sequences base-by-base and to transpose (flip) the resulting table Will format your fasta sequences and create a correct input file for the TCS software (TCS: Phylogenetic network estimation using statistical parsimony, Clement et al. 2000)

Will format your DNA sequences and create a migrate file called 'infile'. The produced file will be correctly formatted to be analysed by migrate.

http://users-birc.au.dk/biopv/php/fabox/

Many analyses can be run online in CIPRES

	Cyberinfrastructure for Phylogenetic Research XSEDE 	g 			
Home A	bout Help Links News				
lome »					
All submissions are	BAli-Phy on XSEDE (3.2) () - BAli-Phy estimates multiple sequence alignments and evolutionary trees.				
working normally.	BEAST2 on XSEDE (2.1 - 2.5.0) Bayesian Evolutionary Analysis by Sampling Trees - run on XSEDE	in place			
	BEAST on XSEDE (1.8.0 - 1.10) 1 - Bayesian Evolutionary Analysis by Sampling Trees - run on XSEDE	in place.			
	BlastN (2.2.1) () - Search DBs for Nucleotide Sequence similarity				
> Codes	Clearcut (1.0.9) 👔 - Fast Implementation of Relaxed Neighbor Joining	duction			
Requirements	ClustalW (2.1) - Create Multiple Alignments from Sequences				
• 1 imitation -	Consense (Phylip 3.66) 1 - Find A Consensus Tree				
Limitations	DPPDIV on XSEDE (1.0) () - Estimating species divergence times and lineage-specific substitution rates on a fixed topology run on XSEDE				
> Architecture	ExaBayes on XSEDE (1.5) () - Bayesian Evolutionary Analysis by Sampling Trees - run on XSEDE				
> Known Issues	FastML on XSEDE (3.1) Fast (Approximate) Maximum Likelihood tree construction - run on XSEDE				
/ Kilowii 155065	FastTreeMP on XSEDE (2.1.10) () - Fast (Approximate) Maximum Likelihood tree construction - run on XSEDE				
> Usage Statistics	GARLI 2.01 on XSEDE (2.01) () - Genetic Algorithm for Rapid Likelihood Inference - run on XSEDE.				
User Locations	GARLI.conf Creator (2.0) G- Creates a Garli.conf file for up to five partitions				
	G-PhoCS on XSEDE (1.3) A Generalized Phylogenetic Coalescent Sampler				
Survey Results	IQ-Tree on XSEDE (1.6.6) () - Efficient phylogenomic software by maximum likelihood, run on XSEDE				
> Publications	jModelTest2 on XSEDE (2.1.6) () - Statistical selection of best-fit models of nucleotide substitution, run on XSEDE				
	LogCombiner on XSEDE (1.8.4) () - Bayesian Evolutionary Analysis by Sampling Trees - run on XSEDE				
	MAFFT on XSEDE (7.402) () - Multiple alignment program for amino acid or nucleotide sequences; parallel version				
	Migrate-N on XSEDE (3.6.11; 4.2.14) () - Estimation of Population Sizes and Gene Flow using the Coalescent				
	ModelTest-NG on XSEDE (0.1.5) Statistical selection of best-fit models of nucleotide and protein substitution, run on XSEDE				
	MrBayes Restart on XSEDE (3.2.x) () - Tree Inference Using Bayesian Analysis - run on XSEDE				
	MrBayes on XSEDE (3.2.6) 👔 - Tree Inference Using Bayesian Analysis - run on XSEDE				
	Muscle (3.7) - Create Multiple Alignments from Sequences or Profiles				
	NCLconverter (2.1) () - A file format transformation tool				
	ParallelStructure on XSEDE (2.3.4) - A program to investigate population structure using multi-locus genotype data				
	PartitionFinder2 on XSEDE (2.1.1) () - Selecting best-fit partitioning schemes and models of evolution				
	PAUPRat (Not specified)				
	PAUP on XSEDE (4.a164) 🔐 - Phylogenetic Analyses Using Parsimony*				

...

RevBayes

Höhna, Sebastian, et al. "RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language." *Systematic Biology* 65.4 (2016): 726-736.

Software

RevBayes

Bayesian phylogenetic inference using probabilistic graphical models and an interpreted language

About

RevBayes provides an interactive environment for statistical computation in phylogenetics. It is primarily intended for modeling, simulation, and Bayesian inference in evolutionary biology, particularly phylogenetics. However, the environment is quite general and can be useful for many complex modeling tasks.

RevBayes uses its own language, Rev, which is a probabilistic programming language like JAGS, STAN, Edward, PyMC3, and related software. However, phylogenetic models require inference machinery and distributions that are unavailable in these other tools.

The Rev language is similar to the language used in R. Like the R language, Rev is designed to support interactive analysis. It supports both functional and procedural programming models, and makes a clear distinction between the two. Rev is also more strongly typed than R.

Core Development Team

RevBayes was designed and developed by Sebastian Höhna, Fredrik Ronquist and John P. Huelsenbeck. The core development team additionally includes Michael J. Landis, Bastien Boussau, Tracy A. Heath, Nicolas Lartillot, Walker Pett, and William A. Freyman.

GitHub | License | Citation | Users Forum

https://revbayes.github.io/

D	ownload and Install	RevBayes		
	Mac OS X Download Executable (10.6+)	Windows Download Executable (7+)	Source of GitHub Repos	
	🖄 libpng16-16.dll	01/08/2018 14:54	Extensión de la apl	227 KE
	🗟 libstdc++-6.dll	01/08/2018 14:54	Extensión de la apl	1.403 KE
	libwinpthread-1.dll	01/08/2018 14:54	Extensión de la apl	56 KE
	📧 rb	01/08/2018 15:05	Aplicación	46.005 KE
	🔀 RevBayes_remarks	09/08/2018 14:35	Archivo TXT	2 KE
	📧 RevStudio 🛑	07/08/2018 11:29	Aplicación	45.996 KE
	🗟 zlib1.dll	01/08/2018 14:54	Extensión de la apl	92 KE

Developer

3

Software

C:\Users\phyloramalina_post\Desktop\RevBayes_Win_v1.0.9\RevStudio.exe

 $\Box \times$

		C:\Users\pnyid	oramalina_post\Desktop\RevBaye	s_win_vi.o.9/KevStudio.exe				- u x
		Iter	Posterior	Likelihood	Prior	TL	elapsed	ETA
		0 100 200	-1807.28 -1801.14 -1803.49	-1848.17 -1842.29 -1844.14	40.8925 41.1458 40.6537	0.4907113 0.5054103 0.4899564	00:00:01 00:00:03	: : 00:37:27
		300 400 500	-1794.14 -1792.88 -1798.49	-1834.66 -1833.45 -1839.41	40.5259 40.5695 40.9271	0.4923078 0.4873752 0.4940593	00:00:05 00:00:06	00:33:16 00:31:10 00:29:53
RevBayes		600 700 800 900	-1790.08 -1796.43 -1794.27 -1793.68	-1831.38 -1837.07 -1835.09 -1834.75	41.3005 40.636 40.8179 41.0738	0.4704443 0.4819976 0.4648802 0.4752191	00:00:08 00:00:09	00:29:03 00:28:26 00:27:58 00:30:22
🖗 Open File		1000 1100 1200	-1789.57 -1809.34 -1782.56	-1839.22 -1849.7 -1823.87	40.6481 40.3551 41.3125	0.4697837 0.5091835 0.4548652	00:00:12 00:00:13	00:29:47 00:29:19 00:28:56
Recently Used	[1300 1400 1500	-1801.44 -1785.93 -1800.6	-1842.62 -1827.4 -1842.12	41.1747 41.4716 41.5128	0.4919927 0.4411026 0.483937	00:00:15 00:00:16 00:00:18	00:28:35 00:28:18 00:29:42
Places	Name RevBayes_Win_v1.0.9	1600 1700 1800	-1799.06 -1795.85 -1797.03	-1839.85 -1836.99 -1837.66	40.7934 41.1465 40.6311	0.4763792 0.4555147 0.4715982	00:00:20 00:00:21	00:29:22 00:29:04 00:28:49
RevBayes_Win_v1	cortinarius_script_HKY.Rev	1900	-1794.45	-1835.01	40.5609	0.458829		00:28:34
 phyloramalina_post Desktop Disco local (C:) 		Iter 2000 2100	Posterior -1790.67 -1794.5	Likelihood -1831.48 -1835.32	Prior 40.8097 40.8295	TL 0.5058452 0.4747515	00:00:24	ETA 00:28:22 00:28:10
🥃 Unidad de DVD R		2200	-1788.37	-1829.69	41.3177	0.444267 28/08/2018 14:31	Carpeta de archivos	
				LAB		28/08/2018 14:31 28/08/2018 14:32 14/11/2018 12:28		;
					afft_gb_ITS_58S_nex.nex	23/11/2018 13:23 09/08/2018 17:42	Archivo NEX	14 KB
					arius_script_HKY s comunes RevBayes /	10/08/2018 13:10 07/08/2018 15:10 06/08/2018 16:57	Archivo TXT	4 KB 2 KB 1 KB
			💝 Dropbox 🍊 OneDrive	ibatk-	1.0-0.dll -1.dll	01/08/2018 14:54 01/08/2018 14:54	Extensión de la apl	. 73 KB
ulla uun			Este equipo	انه	at-1.dll	01/08/2018 14:54 01/08/2018 14:54 01/08/2018 14:54	Extensión de la apl	. 215 KB
		💥 <u>C</u> ancel	Descargas		tconfig-1.dll	01/08/2018 14:54		

The data (alignment in nexus format) and the RevBayes script should be in the same directory together with the application "RevStudio". Then, just click "source script"!! An output folder will be automatically created containing the analysis results.

Jobs

Developer

RevBayes Tutorials						
model specification and analys	is set-up for different phylogene	tic methods. These tutorials ha	ve been written for new users to	ach one explicitly walks you throug b learn RevBayes at home, at rent between tutorials and that son		
Please see the Tutorial Format	guide for details about how to r	ead the tutorials.				
Please see Recommended So	ftware for links to various softwa	ire programs you may need to o	download in order to follow the t	utorials.		
Contribute!	E	ach tutorial inc	ludes a theoret	ical explanation,		
Introduction to RevB	ayes and MCMC	lata files and scri	pts, results and k	oibliography		
Getting Started with RevBayes A very basic overview on	Rev Language Syntax A very short introduction to the Rev language	Introduction to Graphical Models A gentle introduction to	Introduction to MCMC using RevBayes	Introduction to MCMC using RevBayes A simple Archery example		
how to use RevBayes		graphical models, probabilistic programming, and MCMC using a simple linear regression example.	Simulation using a simple Binomial Model	for building a hierarchical model and sampling under Markov Chain Monte Carlo		
Basic introduction to	Understanding	Diagnosing MCMC				

performance

simulations

How to assess the

performance of MCMC

Introduction to RevBayes and MCMC Model Selection and Testing Standard tree inference

Rev & MCMC

General Rev language

features and simple

Poisson regression

example

Complex hierarchical model for phylogenetic inference

Continuous-Time

Simulating DNA sequence

Markov Models

evolution with a die

Diversification Rate Estimation

Comparative methods **Biogeography**

Phylogeographic approach

Obtention of molecular data

Alignment, substitution models and recombination (Geneious, BioEdit, JModelTest, PartitionFinder, Rdp, <u>RevBayes</u>)

Preliminary analyses

(RevBayes)

Species delimitation

Species discovery (ABGD, GMYC, MULTILOCUS NETWORKS) Model comparison and Validation of species hypotheses (BFD, BPP, Stacey, MIGRATE-N)

Population structure, genetic diversity and demography

(Structure, Baps, Dapc, DNA Polymorphism, Haplotype Networks, clonality, Dxy, Fst, Ibd)

Biogeographic hypotheses construction

(Beast, *Beast, BioGeoBears, Migrate-n, **RevBayes**)

RevBayes offers an unique analytical framework into which many popular analyses in phylogeography can be conducted

RevBayes Workshops

Throughout the year, the members of the RevBayes development team and our collaborators teach workshops on molecular evolution, phylogenetics, and Bayesian inference using RevBayes. Additionally, we have occasional hackathons which bring together developers to work on the software and methods for phylogenetic analysis.

Future Workshops

Date	Course Title	Location	Instructors
May 25, 2019	Bodega Applied Phylogenetics Workshop	Bodega Bay, California, USA	Brian Moore, Cécile Ané, John Huelsenbeck, Sebastian Höhna, Michael Landis, Mike May, Bruce Rannala, Bob Thomson, Peter Wainwright
December 11, 2018	Analysing Macroevolutionary Processes using RevBayes	Université de Montpellier, Montpellier, France	Sebastian Höhna, Rachel Warnock, Fabien Condamine, Thomas Couvreur

Past Workshops

Date	Course Title	Location	Instructors
October 5, 2018	Bayesian Phylogenetics in RevBayes	The Field Museum, Chicago, IL USA	Tracy Heath
August 2, 2018	MadPhylo: Madrid Workshop on Phylogenetics	Royal Botanical Garden, Madrid, Spain	Sebastian Höhna, John Huelsenbeck, Brian Moore, Fredrik Ronquist, Isabel

Google Scholar: 67 citations in 2 years

Major advantage: RevBayes constitutes a unique Bayesian framework that integrates analyses ranging from estimation of the best substitution model to biogeography and trait evolution.

In my opinion, two major drawbacks:

- "Proficiency" in statistical phylogenetics and modelling (if you are already proficient, the Rev language offers you the possibility to tune many parameters of any analysis)
- Analyses are quite time-consuming because the program is still not available in online platforms such as CIPRES

And remember: not all analyses are necessary, just use the ones that help answering the main questions posed in your study

> "*There's nothing more romantic than biogeography*" Ed. Wilson