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Abstract

Land surface emissivity retrieval over agricultural regions is important for energy balance estimations, land cover assessment and other related
environmental studies. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) produces images of sufficient spatial
resolution (from 15 m to 90 m) to be of use in agricultural studies, in which fields of crops are too small to be well-resolved by low resolution
sensors. The ASTER project generates land surface emissivity images as a Standard Product (AST05) using the Temperature/Emissivity
Separation (TES) algorithm. However, the TES algorithm is prone to scaling errors in estimating emissivities for surfaces with low spectral
contrast if the atmospheric correction is inaccurate. This paper shows a comparison between the land surface emissivity estimated with the TES
algorithm and from a simple approach using the Normalized Difference Vegetation Index (NDVI) for five ASTER images (28 June 2000, 15
August 2000, 31 August 2000, 28 April 2001 and 02 August 2001) of the agricultural area of Barrax (Albacete, Spain). The results indicate that
differences are b1% for ASTER band 13 (10.7 μm) and b1.5% for band 14 (11.3 μm), but N2% for bands 10 (8.3 μm), 11 (8.6 μm) and 12
(9.1 μm). The emissivities for the five ASTER bands were tested against in situ measurements carried out with the CIMEL CE 312-2 field
radiometer, the NDVI method giving root mean square errors (RMSE) b0.005 over vegetated areas and RMSE b0.015 over bare soil, and the TES
algorithm giving RMSE ∼0.01 for vegetated areas but RMSE N0.03 over bare soil. The errors and inconsistencies for ASTER bands 13 and 14
are within those anticipated for TES, but the greater errors for bands 10–12 suggest the presence of problems related to atmospheric compensation
and model assumptions about soil spectra. The NDVI method uses visible/near-infrared data co-acquired with the thermal images to estimate
vegetation cover and, hence, provides an independent constraint on emissivity. The success of this approach suggests that it may be useful for
daytime images of agricultural or other heavily vegetated areas, in which the TES algorithm has occasional failures.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Land surface emissivity is a measure of the efficiency with
which surfaces convert kinetic into radiant energy. Hemispheric
emissivity varies with surface composition, including moisture,
roughness, and particle size. Remotely determined emissivities
also vary with observation conditions, wavelength, pixel reso-
lution and observation angle. Emissivities may be diagnostic of
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composition, especially for the silicate minerals that make up
much of the land surface (e.g., Lyon, 1965). Surface emissivities
are thus important for studies of soil development and erosion
and for estimating amounts and changes in sparse vegetation
cover for which the substrate is visible, in addition to bedrock
mapping and resource exploration.

Emissivity (ε) is a proportionality factor that scales black-
body radiance (Planck's law) to predict emitted radiance. Thus,
ε must be known in order to estimate land surface temperature
(T) accurately; this is important for global-change studies,
estimation of radiation budgets, heat-balance studies and con-
trol for climate models.
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Even under ideal conditions in which a land surface element
represented by a pixel is homogeneous and isotropic, estimating
ε from the measured radiance is underdetermined. This is
because, for every measured radiance, there is the unknown ε,
plus T. Therefore, for most real surfaces the number of un-
knowns is≥n+1, where n is the number of spectral channels or
bands.

Because of the indeterminacy in solving for T and ε, a num-
ber of methods have been explored in order to retrieve land
surface emissivity from satellite data (e.g., Becker & Li, 1990,
1995; Gillespie et al., 1998; Goïta & Royer, 1997; Kahle et al.,
1980; Kealy & Hook, 1993; Sobrino & Raissouni, 2000;
Watson, 1992). A summary of land surface temperature and
emissivity methods can be found in Sobrino et al. (2002a) and
Dash et al. (2002).

This paper deals with the problem of the land surface emis-
sivity retrieval over agricultural areas, which mostly include
surfaces with low spectral contrast. For this purpose, the
NASA's Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) has been used. The ASTER imager,
on board the Terra satellite (launched 19 December 1999),
contains a five-channel thermal infrared (TIR: 8–12 μm) scanner
that produces images of sufficient field of view (60 km), spatial
resolution (90m) and radiometric resolution (NEΔT300Kb0.3K)
to be of use in agricultural studies, in which fields of crops are
too small to be well-resolved by MODIS, AVHRR or AATSR.
The ASTER project generates Standard Products from these
images (T — AST08; ε — AST05) that are designed to work
over rock surfaces as well as vegetation and water, and during
the night as well as the day. ASTER also collects three 15 m
visible/near-infrared (VNIR) channels suitable for calculating
NDVI (Normalized Difference Vegetation Index).

In the present paper, we compare the performance of the
emissivity retrieval from NDVI values (referred as the NDVI
method) to the Temperature/Emissivity Separation (TES) al-
gorithm for daytime images of the Barrax site. In the TES
algorithm (Gillespie et al., 1998), surface emissivities are
calculated from TIR image data alone; in the NDVI method,
surface emissivities are predicted from visible and near in-
frared bands. Use of the NDVI method for agricultural stud-
ies is attractive because TES is prone to scaling errors in
estimating ε for vegetation if the atmospheric correction is
inaccurate, as will be explained in Section 2.4, whereas the
NDVI method identifies vegetated areas for which ε is known
a-priori. Because of the scaling problem, the TES algorithm
that created the Standard Products cannot be optimized for
agricultural applications.

The paper is organized as follows: Section 2 presents the
study area, the satellite and field data, the ASTER data pro-
cessing and a description of the TES and NDVI methods,
whereas Section 3 shows the results obtained with both
methods over different plots and the test using field measure-
ments collected in the study area in the framework of different
field campaigns. Use of VNIR and TIR data to discriminate
different crops is also discussed in Section 3. Finally, Section 4
includes a summary and the main conclusions drawn from this
study.
2. Methods

2.1. Study area

The study area is located at Barrax, in the La Mancha region
of Spain. It is on a plateau ∼700 m above sea level, with
elevation differences b2 m over the whole test area. The
10,000 ha Barrax site (39°3′ N, 2°6′W) is in the western part of
the province of Albacete, 28 km NE from the capital town of the
same name. The area was selected for its flat terrain, minimising
the complications introduced by variable lighting geometry, and
the presence of large, uniform land-use units suitable for valid-
ating the moderate-resolution satellite image products. The
Barrax test site has previously been used for remote-sensing
experiments such as the EFEDA (European International Project
on Climatic and Hydrological Interactions between Vegetation,
Atmosphere and Land Surface, Field Experiment in Desertifi-
cation Threatened Areas) experiment in 1991, the Digital Air-
borne Imaging Spectrometer Experiment (DAISEX) in 1998,
1999 and 2000, the SPECTRA Barrax Campaign (SPARC) in
2003 and 2004, and the Sentinel-2 Fluorescence Experiment
(SEN2FLEX) in 2005.

The climate at Barrax is of Mediterranean type, with heaviest
rainfalls in spring and autumn and lowest in summer; it presents
a high level of continentality, with quite sudden changes from
cold months to warm months and high thermal oscillations in all
seasons between the maximum and minimum daily tempera-
tures. The rainfall statistics show that the mean annual rainfall is
little more than 400 mm in most of the area, making La Mancha
one of the driest regions in Europe. Precipitation is seasonal,
with a minimum in summer (June–August) and a high year-to-
year variability.

The soils of the area have been poorly developed. In terms of
soil taxonomy they are Inceptisols. They are very finely textured
and have a high degree of compactness under drying conditions.
All soils show a calcic hard-pan layer at approximately N40 cm
below the surface. The main limitation offered by the soils with
regard to their productive capacity is their small depth, due to the
presence of the petrocalcic horizon with large amounts of lime-
stone. The stoniness is excessive in many cases due to the pres-
ence of remains of petrocalcic horizon on the surface. About
65% of cultivated lands at Barrax are dryland (67% winter
cereals; 33% fallow) and 35% irrigated land (75% corn; 15%
barley/sunflower; 5% alfalfa; 5% onions and vegetables). The
University of Castilla-La Mancha, through the “Escuela Técnica
Superior de Ingenieros Agrónomos,” operates three agro-mete-
orological stations in the study area. More details about the test
site are presented in Moreno et al. (2001).

2.2. Satellite and field data

Five daytime ASTER images acquired over the Barrax site
for two consecutive years were used: 28 June, 15 August and 31
August in 2000; and 28 April and 2 August in 2001. Overpass
time was close to 11:20 GMT. ASTER provides images in Vis-
ible/Near-Infrared (VNIR) with a spatial resolution of 15 m, in
Shortwave-Infrared (SWIR) with a spatial resolution of 30 m,



Fig. 1. The study area of Barrax. Location over the Iberian Peninsula and index
map using ASTER band 2 (pixel size: 15 m). The ASTER image was acquired
on 28 June 2000. The plots considered in the study are also shown: P1=alfalfa,
P2= irrigated corn, P3=bare soil in 2000 and P3=non-irrigated barley in 2001.
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and in TIR with a spatial resolution of 90 m (Abrams, 2000). We
used VNIR bands 2 (0.63–0.69 μm) and 3 (0.76–0.86 μm) to
predict ε with the NDVI approach, whereas TIR bands 10
(8.125–8.475 μm), 11 (8.475–8.825 μm), 12 (8.925–
9.275 μm), 13 (10.25–10.95 μm) and 14 (10.95–11.65 μm)
are used to estimate ε with TES.

Field measurements were carried out over the Barrax test site
in the framework of the SPARC (2004) and SEN2FLEX (2005)
campaigns. The TES method applied to ground-based measure-
ments collected with the CIMEL CE 312-2 field TIR radiometer
was used to obtain in situ ε measurements for crops and soils.
The CIMEL CE 312-2 has five spectral bands in coincidence
with the ASTER TIR bands, and also one broad band (8–
13 μm). It has a field of view (FOV) of 10° and a NEΔT293K of
0.008 K for the broad band and 0.050 K for the five spectral
bands. An analysis of the TES as a simple method to retrieve
surface emissivities from ground-based measurements is
presented in Payan and Royer (2004). In order to test the
emissivity spectra provided by the NDVI and TES methods
over the different crops, the field measurements have been
complemented with the laboratory spectra included in the
ASTER spectral library (ASTERlib) (available on-line at http://
speclib.jpl.nasa.gov). In addition, one sample of soil was
collected in the field and sent to the Jet Propulsion Laboratory
(JPL). The emissivity spectrum of the soil was measured in the
JPL with the Nicolet spectrometer (http://speclib.jpl.nasa.gov/
documents/jpl_desc.htm).

Fig. 1 shows the study area and the plots where emissivity
spectra have been extracted from the image. Three different
plots have been considered during the study period: P1 was
alfalfa and P2 was irrigated corn, whereas P3 was bare soil in
2000 and non-irrigated barley in 2001. In order to extract values
from the mentioned images, boxes of 3×3 pixels at the TIR
resolution (90 m) belonging to the different crops analyzed have
been considered. These boxes selected have an approximate
total size of 7 ha and will provide values statistically reliable.
The standard deviation value of the pixels included in the
different boxes will provide information about the surface
homogeneity in terms of emissivity. Because the ASTERVNIR
bands have a resolution of 15 m, the boxes of 3×3 pixels at the
TIR resolution were overlapped to the VNIR images using the
geographic coordinates included in the ASTER images
(geometric correction), leading to boxes of 18×18 pixels at
the VNIR scale. Problems related with the up-scaling problem
are not discussed in this paper, but these problems are expected
to be negligible over agricultural areas with low variability on
emissivity values.

2.3. ASTER data processing

ASTER provides the user community with Standard Data
Products processed to different Levels. Level-1 products con-
tain the radiance at sensor, whereas Level-2 products have been
compensated for atmospheric absorption and emission (land-
leaving radiance), and include surface T and ε data. In the
present study we used two Level-2 Standard Products: at-sur-
face VNIR reflectivities (AST-07) to predict ε with the NDVI
method (Section 2.5), and TIR emissivities (AST-05) estimated
with the TES method. Fig. 2 shows some examples of these
products.

At-surface reflectivities are obtained from land-leaving
radiances corrected for solar irradiance. Atmospheric correction
for the VNIR data is based upon a look-up table (LUT) ap-
proach summarizing results from a Gauss–Seidel iteration ra-
diative transfer code (Herman & Browing, 1965). The method
has its basis in the reflectance-based, vicarious-calibration ap-
proach of Slater et al. (1987). The method currently assumes
atmospheric scattering optical depths and aerosol parameters
are known independently of ASTER data. Using these
parameters and the LUT, piecewise-linear fits are determined
that relate the at-sensor radiances to surface radiance and sur-
face reflectance. The method has some constraints, and is only
applicable for clear-sky conditions. Details can be found in
Thome et al. (1999).

http://speclib.jpl.nasa.gov
http://speclib.jpl.nasa.gov
http://speclib.jpl.nasa.gov/documents/jpl_desc.htm
http://speclib.jpl.nasa.gov/documents/jpl_desc.htm


Fig. 2. ASTER Standard Data Products over Barrax for an image acquired on 28 June 2000: a) ASTER channel 2 VNIR land-leaving radiance (units in Wm−2 sr−1

μm−1); b) ASTER channel 12 TIR land-leaving radiance (units in Wm−2 sr−1 μm−1); c) ASTER channel 12 TIR emissivity; d) NDVI image calculated from ASTER
bands 3 and 2.
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TIR emissivities included in the Standard Product AST-05
are calculated by TES (Section 2.4) applied to land-leaving TIR
radiances. The method used for atmospheric correction of the
ASTER thermal data is a clear-sky method not applicable close
to clouds. It is based on the radiative transfer equation and uses
the MODTRAN radiative transfer code, Version 3.5 (Abreu &
Anderson, 1996). In order to perform the atmospheric cor-
rection, the method requires all the necessary atmospheric pa-
rameters, including temperature, water vapour, ozone, and
aerosol profiles at the time and location of the measurements to
be corrected. NASA's plan called for these characteristics to be
determined from other instruments aboard Terra. However,
currently NCEP GDAS (National Centers for Environmental
Prediction Global Data Assimilation System) atmospheric
profiles on 1-degree centres updated every 6 h from radiosonde
data are used instead, together with a 1-km DEM. More details
are presented in Palluconi et al. (1999).
2.4. Temperature and Emissivity Separation Method: TES

The TES (Temperature and Emissivity Separation) method
estimates land surface emissivity εi and temperature T from
ASTER land-leaving thermal data and down-welling atmo-
spheric irradiances (Gillespie et al., 1998). It is based on the
radiative transfer equation applied to thermal data, in which the
land-leaving radiance (Li

LLR) for band i is given by

LLLRi ¼ ei BiðTsÞ þ k−1ð1−eiÞLatmA
i ð1Þ

where Bi is Planck's function, Ts the land surface temperature
and Li

atm↓ the down-welling atmospheric irradiance.
In order to completely determine Eq. (1) from the five

ASTER bands (six unknowns) it is necessary to supply one
independent measurement. ASTER uses a semi-empirical rela-
tion determined from laboratory spectra, between the minimum
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emissivity and spectral contrast (maximum–minimum differ-
ence, MMD).

Taking into account that Li
LLR and Li

atm↓ are the input data,
from an initial value of emissivity it is possible to obtain a first
value for land surface temperature. In fact, five different values
will be obtained for Ts using Eq. (1) by inversion of Planck's law
for each ASTER thermal band. The final value for Ts is chosen as
the maximum value between the five different values. Then, Ts
can be introduced again in Eq. (1) and obtain the emissivity
values for ASTER thermal bands. This methodology can be
repeated again in order to obtain another value for Ts and other
emissivity values. The described iterative procedure is called as
NEM (Normalized Emissivity Method) module, and constitutes
itself a method for retrieving surface emissivities and temper-
ature (Gillespie, 1985). In order to obtain more accurate emis-
sivity values, another two modules are applied: the RATIO
and the MMD (Maximum–Minimum Difference) modules. The
RATIO module obtains relative emissivities (βi) by rationing the
NEM emissivities to their average value, whereas in the MMD
module final emissivity values are obtained according to the
following expression:

ei ¼ bi
emin

minðbiÞ
� �

ð2Þ

where εmin is the minimum emissivity obtained from the fol-
lowing empirical relationship:

emin ¼ 0:994−0:687 MMD0:737 ð3Þ
with MMD the spectral contrast calculated as

MMD ¼ maxðbiÞ−minðbiÞ ð4Þ
The TESmethod is capable of recovering surface emissivities

within about 0.015 and surface temperatures within about 1.5 K.
A detailed description of the algorithm is given in Gillespie et al.
(1998).

For surfaces with low spectral contrast (MMDb0.03), the
relationship between εmin and MMD given in Eq. (3) does not
provide satisfactory results, and the TES algorithm sets εmin to
0.983, a value appropriate for water and vegetation canopies
(Gillespie et al., 1998). The MMD thershold improves com-
putations of temperatures over targets with low MMD, but
necessarily leads to problemswhere targets emissivites lie close to
the threshold value (∼0.03). The problems related to the TES
thresholding are referred as the ‘scaling errors’, which necessarily
correspond to a jump in the scaling value which creates artifactual
contouring or step discontinuities in the image where there is a
transition from vegetation to soil. Persistent calibration problems
led to increasing the problem with the MMD threshold, which
increased the severity of the “jump.” Inaccuracies in atmospheric
compensation are amplified, especially by the iterative correction
for reflected downwelling sky irradiance, which jointly with the
calibration problems tend to add scatter to the spectrum falsely
increasing the spectral contrast. The atmospheric issues have led
to high errors in band 10 emissivities especially, well above
(∼0.08) the nominal accuracy of ∼0.015.
This serious, occasional failure is thought to occur at high
atmospheric temperatures, low elevations, and total column
water N1.7 g cm−2. Thorough documentation of these matters is
in preparation by A. R. Gillespie. It is a strong motivation for
exploring new techniques for agricultural and other uses.

2.5. Land surface emissivity from NDVI values

Because problems in TES arise in differently scaling high-
and low-MMD emissivity spectra, it makes sense to exploit the
co-acquired VNIR data of ASTER to estimate vegetation cover
and surface emissivity, independent of the TIR data.

Different approaches have been used to predict land surface
emissivity from NDVI values (e.g., Sobrino & Raissouni, 2000;
Valor & Caselles, 1996; Van de Griend & Owe, 1993). Most of
them are based on the following simplified equation for homog-
eneous and flat surfaces:

ei ¼ evi PV þ esið1−PVÞ ð5Þ
where εvi and εsi are band emissivity values for vegetation and
bare soil, respectively, and PV is the proportion of vegetation or
fractional vegetation cover. A cavity term should be added to Eq.
(5) over rough surfaces, which could be calculated from geo-
metrical models (Sobrino et al., 1990). The main constraint in
using geometrical models is that a priori knowledge of some
geometrical parameters as height, width and separation of the
crops is needed. According to Sobrino et al. (1990), the cavity
effect for a mixed area and near nadir view is given by (1−εs)εvF′
(1−PV), where F′ is a geometrical factor ranging between 0 and
1. Therefore, in areas with high soil emissivities the cavity term is
not important. For example, assuming a mean value F′=0.5, a
mean vegetation cover PV=0.5, and εv=0.99 and εs=0.96, the
cavity effect is less than 0.01. For these reasons, the cavity effect
has been neglected when Eq. (5) is applied to the Barrax area.
Cavity effects have been only accounted by adding a slightly
increase on the vegetation emissivity (εv=0.985+0.005), accord-
ing to Sobrino and Raissouni (2000).

PV can be obtained from NDVI values according to (Carlson
& Ripley, 1997):

PV ¼ NDVI−NDVIs
NDVIv−NDVIs

� �2

ð6Þ

where NDVIv and NDVIs are the NDVI values of full vegetation
cover (PV=1) and bare soil (PV=0), respectively, which can be
obtained from the NDVI histogram. Eq. (6) provides acceptable
results over agricultural areas, with an accuracy of around 15%,
which is a value accurate enough to retrieve surface emissivities
from Eq. (5) (Jiménez-Muñoz et al., submitted for publication).
TheNDVI values have been obtained using ASTER bands 2 (red)
and 3 (near-infrared) extracted from the ASTER product AST-07
(surface reflectance). For those pixels with NDVIbNDVIs the
proportion of vegetation has been set to zero, whereas for those
pixels with NDVINNDVIv it has been set to 1.

The critical issue in Eq. (5) is the selection of the soil
emissivities. The ASTERlib includes 49 soil emissivity spectra
classified in terms of soil taxonomy as Alfisol (9 samples),



Fig. 3. Average emissivity spectra for different soil samples included in the
ASTER spectral library (http://speclib.jpl.nasa.gov). ‘Inceptisol’ refers to the
mean value for all the soil samples included in the ASTER library and classified
as Inceptisol (7 samples). These values have been chosen a soil emissivities in
the NDVI method. ‘All soils’ referes to the mean value for all the soil samples
included in the ASTERlib (49 samples). Error bars refer to the standard
deviation of the mean values. The emissivity spectrum obtained from field
measurements (Field) and the one measured in the JPL are also given for
comparison.

Fig. 4. Values of a) NDVI calculated from ASTER bands 3 and 2, and b)
proportion of vegetation (PV) estimated from Eq. (6), extracted from ASTER
images acquired on different dates and for different plots. Standard deviation for
the boxes of 18×18 pixels (at VNIR scale) is also plotted.
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Aridisol (14 samples), Entisol (10 samples), Inceptisol (7 sam-
ples) and Mollisol (9 samples). Fig. 3 shows the mean soil
emissivity spectrum for all the soil samples and also the mean
spectrum only for the Inceptisol samples, which is the soil class
of the Barrax area. Emissivity spectra measured in the field and
in the Jet Propulsion Laboratory (JPL) are also graphed. The
mean values for all the soil samples show high standard devia-
tions (N0.04) in the 8–9.5 μm spectral range. Values measured in
the field or laboratory should be the most accurate, but a priori
knowledge of the site is required. For these reasons, a mean
value for the Inceptisol class has been finally chosen in order to
apply Eq. (5), despite that band 12 (9.1 μm) is expected to
provide the worst results due to its high standard deviation
(N0.02). Thus, surface emissivities can be estimated from NDVI
for each ASTER thermal band according to the following
expressions:

e10 ¼ 0:946þ 0:044 PV ð7aÞ
e11 ¼ 0:949þ 0:041 PV ð7bÞ
e12 ¼ 0:941þ 0:049 PV ð7cÞ
e13 ¼ 0:968þ 0:022 PV ð7dÞ
e14 ¼ 0:970þ 0:020 PV ð7eÞ

3. Results and discussion

In order to analyze the emissivity spectra obtained from TES
and NDVI methods, four different cases have been considered
according to different spectral signatures: fully vegetated areas
(Section 3.1), bare soil (non-vegetated areas) (Section 3.2),
mixed areas (Section 3.3) and senescent vegetation (Section
3.4). Fig. 4 shows the NDVI and PV values for the plots
considered in the study and described in Section 2.2. PV has
been calculated from Eq. (6), using the NDVIs and NDVIv
values presented in Table 1. The alfalfa plots (P1) on 15-Aug-
00, 31-Aug-00, 28-Apr-01 and 2-Aug-01, and the corn plots
(P2) on 15-Aug-00 and 31-Aug-00 show PVN90%, so they
were considered as fully vegetated areas. The corn plot on 28-
Apr-01 was not planted and the alfalfa plot on 28-Jun-00 was
cut, so they are not shown in the results. Corn plots on 28-Jun-
00 and 2-Aug-00 are not fully covered (PV∼65%), so they have

http://speclib.jpl.nasa.gov


Table 1
NDVI values of bare soil (NDVIs) and full vegetation cover (NDVIv) used to
estimate the proportion of vegetation from Eq. (6)

Date NDVIs NDVIv

28-Jun-2000 0.18 0.76
15-Aug-2000 0.18 0.75
31-Aug-2000 0.18 0.75
28-Apr-2001 0.20 0.79
2-Aug-2001 0.18 0.76

The values have been extracted from the NDVI histogram.
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been considered as mixed areas. P3 was bare soil on 28-Jun-00,
15-Aug-00 and 31-Aug-00, and non-irrigated barley (senescent
vegetation) on 28-Apr-01 and 2-Aug-01. The emissivity spectra
obtained with NDVI and TES methods are first compared to
Fig. 5. Emissivity spectra obtained with the NDVI and TES methods for the alfalfa
August 2000, b) 31 August 2000, c) 28 April 2001 and d) 2 August 2001. The coni
shown for comparison. The error bars refer to the standard deviation of sampled 3×3
because they are negligible (b0.005).
laboratory spectra included in the ASTERlib in order to analyze
the shape of the spectra, whereas in Section 3.5 the results are
compared to field measurements in order to test the accuracy
of the methods. Section 3.6 shows the NDVI and MMD val-
ues obtained with the two methods, and how to use them to
distinguish between bare soil, green vegetation and senescent
vegetation.

3.1. Fully vegetated areas

Fully vegetated areas are approximate blackbodies. The
emissivity spectrum is nearly constant and near unity. Therefore,
estimating the emissivity spectrum for these types of surface is
less important than for surfaces of soils or rock. In fact, the NDVI
approach assumes a constant value of 0.99 for these areas,
plot (fully vegetated area) and extracted from ASTER images acquired on a) 15
fer and grass emissivity spectra included in the ASTER spectral library are also
pixels at the TIR scale (90 m). Error bars for the NDVI method are not graphed



Fig. 6. Emissivity spectra obtained with the NDVI and TESmethods for the corn
plot (fully vegetated area) and extracted from ASTER images acquired on a) 15
August 2000 and b) 31 August 2000. The conifer and grass emissivity spectra
included in the ASTER spectral library are also shown for comparison. The error
bars refer to the standard deviation of sampled 3×3 pixels at the TIR scale
(90 m). Error bars for the NDVI method are not graphed because they are
negligible (b0.005).
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whereas the TES algorithm assumes a fixed value for the
minimum emissivity εmin=0.983. Fig. 5 shows for the alfalfa
plot (P1) the emissivity spectra obtained with the TES and NDVI
methods and extracted from the different ASTER images.
Laboratory conifer and grass vegetation spectra extracted from
the ASTERlib are graphed for reference. In general, the NDVI
method predicts emissivity spectra similar to the conifer spec-
trum, showing a high degree of homogeneity over the test areas.
However, the TES method provides an emissivity spectrum
similar to the grass one, although with higher standard deviation
values than the NDVI method. Fig. 6 shows the emissivity
spectra for the corn plot. Again, the emissivity spectra retrieved
from the NDVI is similar to the conifers spectrum, whereas the
spectra obtained with the TES is similar to the grass one, also
with high standard deviation values. Extremely high standard
deviation values (between 0.02 and 0.03) suggest that the TES
method classified some pixels as low MMD and other pixels as
high MMD, which show the problem related with the MMD
threshold and the ‘jump’ commented in Section 2.4.

3.2. Bare soil

A fallow, bare-soil plot (P3 in 2000), which belongs to the
Inceptisols in terms of soil taxonomy, was used to analyze the
results obtained over non-vegetated areas. Fig. 7 shows the
emissivity spectra obtained with the NDVI and TES method for
bare soil. The spectrum obtained from laboratory measurements
in the JPL is also shown. Both methods provide a similar shape
for the spectrum, with the NDVI method providing slightly
higher values than the TES method and also closer to the JPL
spectrum. Despite that the soil spectrum should provide an
increasing emissivity with increasing wavelength, a decrease is
observed in band 12 (∼9.1 μm) for the NDVI method and in
bands 12 and 14 (∼11.3 μm) for the TES method. The decrease
observed in the NDVI method for band 12 is due to the high
variability on the soil emissivities in this spectral region (see
Fig. 3). The standard deviation values for the pixels included in
the box selected over the image are zero for the NDVI method,
which means that all the pixels were classified as bare soil
(NDVIbNDVIs), and lower than 0.01 for the TES method,
which suggests that all the pixels were scaled as low spectral
contrast (MMD) and the scaling problem did not occur in this
particular case. Moreover, NDVI and TES methods provide
similar results for bands 13 and 14, located in the spectral range
10–12 μm.

3.3. Mixed areas

Mixed areas are composed of bare soil and vegetation, so
their emissivity spectra are expected to be formed by linear
mixing for a percentage of bare soil and a complementary per-
centage of vegetation, depending on the proportion of vegetation
(Eq. (5)). The emissivity spectra should be also elevated from
laboratory values by the cavity effect, despite it has been
neglected in Eq. (5) as has been commented in Section 2.5. The
emissivity spectra obtained from the TES and NDVI methods
are presented in Fig. 8 for corn with PV∼65%. The emissivity
spectrum provided by the NDVI approach shows a similar shape
than the soil spectrum (see Fig. 7), since the method assumes a
constant contribution for the vegetation. Emissivity values are
also closer to the vegetion ones than the values for bare soil,
since PVexceeds 50%. The standard deviation values are higher
than in the previous cases, due to the high heterogeneity over
mixed areas. The TES method provides a shape for the spectrum
similar to the grass one (see Fig. 5) with high standard deviation
values. In this case the high standard deviation values could be
due to the high heterogeneity of mixed areas instead of the
problems related with the MMD threshold, or may be to a
combination of both effects.



Fig. 8. Emissivity spectra obtained with the NDVI and TES methods for the corn
plot (mixed area, PV∼65%) and extracted from ASTER images acquired on a)
28 June 2000 and b) 2 August 2001. The error bars refer to the standard
deviation of sampled 3×3 pixels at the TIR scale (90 m) or 18×18 pixels at the
VNIR scale (15 m).
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3.4. Senescent vegetation

A non-irrigated barely plot (P3 in 2001) has been selected in
order to analyze the results obtained over senescent vegetation.
Fig. 9 shows the emissivity spectra obtained from NDVI and
TES methods, and also the laboratory spectrum of the dry grass.
The NDVI method classifies the pixels included in the non-
irrigated barley plot as bare soil (NDVIbNDVIs), so it provides
the same emissivity spectrum as for bare soil (see Fig. 7). The
Fig. 7. Emissivity spectra obtained with the NDVI and TES methods for the bare
soil plot and extracted from ASTER images acquired on a) 28 June 2000, b) 15
August 2000 and c) 31 August 2000. The emissivity spectrum measured in the
JPL is also shown for comparison. The errors bars refer to the standard deviation
of sampled 3×3 pixels at the TIR scale (90 m). Error bars for the NDVI method
are not graphed because they are negligible (b0.005).



Fig. 9. Emissivity spectra obtained with the NDVI and TES methods for the non-
irrigated barley plot and extracted from ASTER images acquired on a) 28 April
2001 and b) 2 August 2001. The dry grass emissivity spectrum included in the
ASTER spectral library is also shown for comparison. The errors bars refer to
the standard deviation of sampled 3×3 pixels at the TIR scale (90 m). Error bars
for the NDVI method are not graphed because they are negligible (b0.005).

Fig. 10. Comparison between the emissivity spectrum obtained from field
measurements over the corn plot (fully covered) and the emissivity spectra
obtained with the NDVI and TES methods and extracted from ASTER images
acquired on 15 and 31 August 2000. Error bars refer to the standard deviation of
the mean value calculated from 40 field measurements.

Fig. 11. Comparison between the emissivity spectrum obtained from field
measurements over the bare soil and the emissivity spectra obtained with the
NDVI and TES methods and extracted from ASTER images acquired on 28
June, 15 August and 31 August in 2000. Error bars refer to the standard
deviation of the mean value calculated from 9 field measurements. The NDVI
method provided the same emissivity spectra for the three different dates, so
only one spectrum has been graphed.
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TES method also provides a typical soil spectrum for the barley
plot on 28-Apr-01. However, the TES method provides a grass
spectrum for the barley plot on 2-Aug-01. High standard
deviation values have been also obtained. Neither of the
methods follows the decrease on emissivity with increasing
wavelength, as is shown by the dry grass spectrum, despite this
could be due to a cavity effect for the barley which is not
observed for the individual leaves of the dry grass spectrum
included in the ASTERlib. According to the spectra obtained, it
is difficult to draw a clear conclusion regarding to the per-
formance of the NDVI and TES methods over senescent
vegetation, since the NDVI classifies senescent vegetation as
bare soil and the TES method classifies senescent vegetation as
green vegetation (low MMD) in some cases.
3.5. Methods testing

Surface emissivities have been retrieved from ground-based
measurements (Section 2.2) collected over corn (fully covered)
and bare soil with the CIMEL instrument in 2004 and 2005. The
measured values are assumed to be comparable to the emissivity
spectra obtained in 2000 and 2001 from the ASTER images.
Fig. 10 shows the emissivity spectrum measured in situ and the
spectra obtained with the NDVI and TES methods for the corn



Table 2
Comparison between the surface emissivities estimated with the NDVI and TES
methods and the ones measured in situ over the corn (fully covered) and bare soil
plots

Date Plot Method Bias σ RMSE

15-Aug-00 Corn NDVI 0.004 0.002 0.004
15-Aug-00 Corn TES 0.000 0.007 0.007
31-Aug-00 Corn NDVI 0.003 0.002 0.004
31-Aug-00 Corn TES −0.007 0.009 0.011
28-Jun-00 Bare soil NDVI −0.008 0.010 0.013
28-Jun-00 Bare soil TES −0.026 0.016 0.030
15-Aug-00 Bare soil NDVI −0.008 0.010 0.013
15-Aug-00 Bare soil TES −0.036 0.021 0.041
31-Aug-00 Bare soil NDVI −0.008 0.010 0.013
31-Aug-00 Bare soil TES −0.034 0.020 0.039

Bias refers to the mean difference between the values provided by the methods
and the ones measured in situ for the five ASTER thermal bands,
bias ¼ 1

5

P14
i¼10ðemethod

i −ein�situ
i Þ. σ refers to the standard deviation of the mean

value given by the bias. The Root Mean Square Error (RMSE) is obtained as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 þ r2

p
.

Fig. 12. Plot of NDVI vs. MMD for different crops (alfalfa, bare soil, irrigated
corn and non-irrigated barley) corresponding to the five ASTER images
acquired in 2000 and 2001. MMD values have been obtained from Eq. (4) using
emissivity values recovered with a) TES algorithm (MMDTES) and b) NDVI
method (MMDNDVI).
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plot considered as fully vegetated (15-Aug-00 and 31-Aug-00).
The spectrum measured in situ is a mean value obtained from
the 40 measurements made over the corn. The spectra provided
by the NDVI method falls within the mean and the standard
deviation of the field measurements, whereas the TES method
shows a significant deviation for bands 10 (∼8.3 μm) and 12
(∼9.1 μm). Moreover, the NDVI method provides almost the
same spectrum for different dates, whereas the TES method
provides different values in different dates. In a similar way,
Fig. 11 shows the results obtained for the bare soil plot. In this
case, 9 field measurements were made. The emissivity spectra
obtained with the NDVI method is closer to the one measured in
situ, despite that bands 11 (∼8.6 μm) and 12 (∼9.1 μm) do not
fall within the mean and standard deviation values. Again, the
NDVI method provides the same spectrum for different dates
(for this reason only one soil spectrum obtained with the NDVI
method has been graphed). The TES method provides different
spectra at different dates, but in this case the differences are low.

In order to asses the accuracy of the methods, the mean
difference between the values estimated with the method and
the ones measured in situ for the five ASTER TIR bands (bias)
and the standard deviation of the mean (σ) have been calculated.
Then, the root mean square error (RMSE) has been obtained as
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 þ r2

p
. The values are shown in Table 2. The

NDVI method provides accurate values for corn and bare soil
plots, with RMSEb0.005 and a RMSEb0.015, respectively.
The TES method provides also accurate values for the corn plot,
with RSME∼0.01. However, the values provided over the bare
soil plot are not accurate enough, with RMSE ranging between
0.03 and 0.04. Despite that field measurements over the alfalfa
plot are not available, it is logical to assume that the emissivity
spectrum would be similar to the corn, i.e., values spectrally
constant and near to 0.99. Therefore, the emissivity spectra
obtained with the NDVI method over the alfalfa plot (see Fig. 5)
is more in accordance with field measurements that the ones
provided by the TES method. Due to the problems involved in
the emissivity estimation over senescent vegetation areas, it is
difficult to show a reliable test over these kinds of plots. Field
measurements over non-irrigated wheat and dry shrubs has
shown a decrease on emissivity with increasing wavelength (not
shown in this paper), also observed in the dry grass (see Fig. 9),
which confirms that NDVI and TES methods do not provides
good results for senescent vegetation.

3.6. Discrimination of different crops using NDVI and MMD
values

Distinguishing among green vegetation, senescent vegeta-
tion, and bare soil is important because ground cover strongly
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influences the surface thermal gradient, surface roughness and
surface heat flux. For this purpose, French et al. (2000) suggest
using the spectral emissivity contrast or MMD combined with a
vegetation index such as NDVI to distinguish these surface
types. Green and senescent vegetation both have similar MMD
values, but different NDVI values; senescent vegetation and bare
soil have similar NDVI values but different MMD values; and
green vegetation and soil have different NDVI values and,
generally, different MMD values. Thus, when NDVI values only
are used, it is difficult to distinguish between senescent vege-
tation and bare soil, and when MMD values only are used, it is
difficult to distinguish between green and senescent vegetation.

Fig. 12 shows the plot of NDVI versus MMD values ob-
tained from Eq. (4). MMD values have been obtained from the
emissivities estimated with the TES (Fig. 12a) and NDVI (Fig.
12b) methods. Green vegetation over fully covered or mixed
plots is well distinguished in both cases. Bare soil and senescent
vegetation are well distinguished from the MMD values
obtained with the TES method (Fig. 12a), but not from MMD
values obtained with the NDVI method (Fig. 12b). In fact, the
NDVI method always provides a MMDb0.03, because the soil
spectrum used in the method has a low spectral contrast and
non-irrigated barely is classified as a soil (NDVIbNDVIs).
According to the results obtained with the TES method, the
following thresholds could be considered in order to distinguish
between different crops:

i) fully covered area, NDVN0.7 and MMDb0.03,
ii) mixed area, 0.2≤NDV≤0.7 and MMDb0.03,
iii) senescent vegetation, 0.7≥NDVI≥0.2 and 0.3≤MMD≤

0.5,
iv) bare soil, NDVIb0.2 and MMDN0.5.

In this way, VNIR and TIR data could be combined in order
to classify the different pixels as green vegetation, senescent
vegetation and bare soil, and then using emissivity values esti-
mated from NDVI values when the TES fails, or vice versa,
although it is well to remember that the thresholds for the NDVI
andMMD have been obtained for the study area, so our findings
may not be representative of all cases. Moreover, an additional
solution is needed for senescent vegetation, in which NDVI and
TES methods do not provide satisfactory results.

4. Summary and conclusions

In this paper two different methods have been applied to high
spatial resolution and multispectral thermal data in order to
retrieve land surface emissivity over an agricultural area: the
NDVI method, which uses visible and near infrared data, and
the TES method, which uses thermal infrared data. A com-
parison between them over different plots (alfalfa, soil, corn and
barley) and using ASTER images acquired in different dates
shows similar values for ASTER bands 13 and 14, with dif-
ferences typically lower than 0.6% and 1.5%, respectively. The
NDVI and TES methods have been also compared to laboratory
spectra and surface emissivities measured in situ. The NDVI
method shows in general a better shape for the emissivity spec-
tra than the TES method, with values also closer to the ones
measured in situ. RMSE values lower than 0.005 for fully
vegetated areas and lower than 0.015 for bare soil have been
obtained with the NDVI method. The TES method provided a
RMSE∼0.01 over fully vegetated areas, but errors higher than
0.03 for bare soil. ASTER bands 12 and 13 located in the
spectral region 10–12 μm provided the best results, which can
be due to the low atmospheric absorption and the low variation
on the emissivity values in comparison with the other bands,
located in the spectral region 8–9.5 μm. It should be noted that
surface emissivities can be also retrieved using only the NEM
module, which also provides good results, as has been pointed
by Sobrino et al. (2002b) and Jiménez-Muñoz et al. (2003).

Different advantages and disadvantages can be found when
comparing the NDVI and TES methods. Hence, the TES meth-
od provides accurate results for surface emissivities, in general
within 0.015, overall for rocks surfaces. However, the accuracy
of the TES is expected to decrease for surfaces with low MMD
values, as is the case of agricultural areas. In this case, the NDVI
method is expected to provide slightly better results. However,
the NDVI method is not applicable over rocks surfaces, and also
surfaces with negative NDVI values, as water, snow and ice,
despite these surfaces have well-known emissivity spectra. The
performance of the TES method over surfaces with low MMD
values needs more analysis and validation, as well as the adap-
tation of the NDVI method to rocks surfaces. One advantage for
the TES method is the capability of recovering land surface
temperature jointly with surface emissivities, whereas the NDVI
method only retrieves land surface emissivity. Predicting sur-
face emissivities from visible and near-infrared data provides
two main advantages to the NDVI method: i) sensors onboard
satellites provide a higher spatial resolution for visible and near
infrared than thermal infrared bands, so higher spatial resolu-
tion emissivity maps can be obtained (in the case of ASTER,
emissivity maps with a spatial resolution of 15 m can be ob-
tained when the NDVI method is used, in comparison with the
spatial resolution of 90 m obtained with the TES method), and
ii) the NDVI method can be applied even to sensors with only
one thermal band, provided that these sensors have red and near
infrared bands, whereas TES method needs at least four thermal
bands.

It should be noted that in general cases a cavity term should
be added to the NDVI method (Sobrino & Raissouni, 2000;
Valor & Caselles, 1996), but some geometrical factors are
needed in order to calculate this term. If a priori knowledge of
the site is not available, a mean value for the geometrical factors
involved in the cavity term could be chosen. Over agricultural
areas with high emissivity values for the soils the cavity term
could be neglected, overall for surfaces with a high proportion
of vegetation. However, when the geometrical factors for the
crop are measured in situ, the cavity term can be particularized
and more accurate values will be expected with the NDVI
method. There is another point that should be taken into account
when analyzing the NDVI methodology, which refers to the
estimation of the proportion of vegetation or vegetation fraction
cover from NDVI values (Eq. (6)), according to Carlson and
Ripley (1997). This is a simple way of estimation proportion of
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vegetation and accurate enough in order to apply the NDVI
method. However, a multispectral analysis by endmembers could
lead to an improvement on the proportion of vegetation estima-
tion, despite that the main error source in the NDVI methodology
is the selection of the soil emissivity.

TES scales emissivity data with low and high MMD
values differently. Under some circumstances, it appears that
threshold test fails, causing “jumps” or step discontinuities
especially in the emissivity product. In our images of
Barrax, the high standard deviation values obtained with the
TES method for the boxes of 3×3 pixels selected in order
to extract the results from the ASTER images do suggest
that inappropriate scaling did occur in some cases. This
misclassification leads to the most serious failures of TES
that we have encountered. The success of the NDVI
method, at least for the plots considered in this study,
suggests that the ASTER Standard Product could be
modified to incorporate aspects of the NDVI approach,
with the goal of minimizing the “jumps” at least for daytime
data. In Sobrino et al. (2002b) a combination of methods
was proposed depending on NDVI values. In this paper, the
plot of NDVI versus MMD has been used in order to
discriminate different crops. Particular NDVI and MMD
thresholds have been proposed to classify the pixels into
bare soil, green grass and senescent vegetation. In this way,
the TIR data could be complemented with the VNIR data in
order to apply the NDVI method over surfaces in which the
TES method fails. Emissivity retrieval over senescent
vegetation needs further research, since the NDVI and the
TES methods do not classify these pixels properly.
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