
1

Introduction to the ETL

• ETL systems are highly time consuming and the great
amounts of data these systems must deal with are
increasing constantly.

• Nowadays hardware capabilities and parallel
techniques will provide us new ways to increase
performance.

• Our goal: To build a simplified DataWareHouse, by
feeding a DB2 UDB (DSS) from Operational data
located at DB2 Z/OS.

3

Extraction, Transformation
and Load (ETL)
• The Extraction, Transformation and Load (ETL) is a

common process in DataWareHouse systems.

• This process can involve huge amount of data which
makes it highly time consuming.

• The computing kernel is inherently sequential due to
its data dependencies and involves several devices
like I/O, network, memory and computing.

4

Goal

• Problem: To feed up DW (DB2/oracle
open) from operational data (DB2 z/os)
during batch window

DB2
390

Operational
Data

Expor
t

 &
Load

DB2 8.1
UDB

64 bits

IXF
DW

5

Goal II

6

Goal II

7

Script
#!/bin/bash

NODE=NP390
SERVER=p390.uv.es
PORT=446
ZOSDB="S390LOC"
DBALIAS=P390 # To be changed for each user.

echo "db2 uncatalog node $NODE"
db2 uncatalog node $NODE

echo "db2 catalog tcpip node $NODE remote $SERVER server $PORT ostype OS390"
db2 catalog tcpip node $NODE remote $SERVER server $PORT ostype OS390

echo "db2 uncatalog dcs database $ZOSDB"
db2 uncatalog database dcs $ZOSDB

echo "db2 uncatalog database $DBALIAS"
db2 uncatalog database $DBALIAS

echo "db2 catalog dcs database $ZOSDB as $ZOSDB"
db2 catalog dcs database $ZOSDB as $ZOSDB

echo "db2 catalog database $ZOSDB as $DBALIAS at node $NODE authentication dcs"
db2 catalog database $ZOSDB as $DBALIAS at node $NODE authentication dcs

db2 terminate

8

Script
#!/bin/bash

replica_db2zos_schema() {

 SCHEMA=DSN8710
 export SCHEMA
 connect $DATABASE $USER $PASSWORD
 init_db2zos_tables
 full_ixf_export
 disconnect
 connect $REPLICA
 full_ixf_import
 db2_runstats
 disconnect
}

init_db2zos_tables(){

 TABLES_LOG=$LOG/tables.log
db2 SELECT NAME FROM SYSIBM.SYSTABLES WHERE CREATOR=\'$SCHEMA\' and \(TYPE=\'T\'\) ORDER BY NAME | grep –v "^NAME" | grep -v "^\-\-\-" > $TABLES_LOG

 TABLES=`cat $TABLES_LOG | grep "^[A-Z].*" `
 export TABLES
 echo $TABLES
}

Export all tables to ixf
full_ixf_export(){
 for T in $TABLES ; do
 echo "Exporting table: $T to ixf format"
 # db2 code
db2 << EOF > $LOG/$T.ixf_export
export to $FILES/$T.ixf OF IXF MESSAGES $LOG/$T.log select * from $SCHEMA.$T
quit
EOF
 done
}

Import all tables from ixf
full_ixf_import(){
 for T in $TABLES ; do

 SCHEMA= # TO BE CHANGED FOR EACH USER
 echo "Importing table: "$T
 # db2 code
 db2 drop table $SCHEMA.$T
 db2 import from $FILES/$T.ixf OF IXF CREATE INTO $SCHEMA.$T

 done
}

DB2
390

Operational
Data

Export
 &

Load

DB2
8.1
UDB
64

bits
IXF

DW

9

Performance
Issues

#
FAST TABLE DROP

echo "db2 alter table sysadm.$i activate not logged initially with empty table " >> $LOG
db2 "load from /tmp/dummy.txt of del replace into sysadm.$i nonrecoverable " >> $LOG
drop table sysadm.$i
#
LOGGING

CREATE TABLE XXX IN ${DB2TBS} INDEX IN INDX NOT LOGGED INITIALLY"
#
TABLE CREATION

Delay table droping
echo "Renaming table $T to $AUX. Don't loose time dropping"
db2 "rename table $SCHEMA.$T to $AUX " >> $LOG/$T.db2_drop_table.log
#
LOCKING

#
for tables with n. rows < 100000 -> import (No catalog locking)
for tables with n. rows > 100000 -> load
#
FAST LOAD

LOADSQL=load from $FILES/$T.ixf OF IXF INSERT INTO $SCHEMA.$T NONRECOVERABLE CPU_PARALLELISM 2 DISK_PARALLELISM 2 ALLOW READ ACCESS
LOADSQL="import from $FILES/$T.ixf OF IXF INSERT INTO $SCHEMA.$T"
LOADLOG=$LOG/$T.import.log
if ["${tsize[$s]}"] && [${tsize[$s]} -gt 100000] ; then
LOADSQL="load from $FILES/$T.ixf OF IXF INSERT INTO $SCHEMA.$T NONRECOVERABLE DATA BUFFER 10000 ALLOW READ ACCESS"
#
TABLESPACE AVAILABILITY DURING LOAD

If a load operation is aborted, it remains at the same access level that was specified when the load operation was issued.
So, if a load operation in ALLOW NO ACCESS mode aborts, the table data is inaccessible until a load terminate or a load restart is issued.
If a load operation in ALLOW READ ACCESS mode aborts, the pre-loaded table data is still accessible for read access.

DB2
390

Operational
Data

Export
 &

Load

DB2
8.1
UDB
64

bits
IXF

DW

10

Sequential Version of ETL

Export
IXF

Load
IXF

Unload
TXT

Load
Target
 DB

INDX Stats

t0 t1

Time

• Only a process at a time
• Only 2 information bundles processed in this period of time
• Nevertheless, each stage only consumes a determinte type of resources:

• Export IXF -> Net , Load, Unload -> I/O, Index + Statistics -> CPU
• While the data is downloaded from operational systems (Export IXF),
mainly remote CPUs & network bandwidth is consumed

• So, we are wasting resources & time

Export
IXF

Load
IXF

Unload
TXT

Load
Target
 DB

INDX Stats

11

Applying Pipelining to ETL (III)

Export
IXF

Load
IXF

Unload
TXT

Load
Target DB

INDEX Statistics

Export
IXF

Load
IXF

Unload
TXT

Load
Target DB

INDEX Statistics

Export
IXF

Load
IXF

Unload
TXT

Load
Target DB

INDEX Statistics

Export
IXF

Load
IXF

Unload
TXT

Load
Target DB

INDEX Statistics

Export
IXF

Load
IXF

Unload
TXT

Load
Target DB

INDEX Statistics

Export
IXF

Load
IXF

Unload
TXT

Load
Target DB

INDEX Statistics

Export
IXF

Load
IXF

Unload
TXT

Load
Target DB

INDEX Statistics

Export
IXF

Load
IXF

Unload
TXT

Load
Target DB

INDEX Statistics

Export
IXF

Load
IXF

Unload
TXT

Load
Target DB

INDEX Statistics

Export
IXF

Load
IXF

Unload
TXT

Load
Target DB

INDEX Statistics

Time

T0

T1
T2

T3

T4

T5

	Introduction to the exercise I
	Extraction, Transformation and Load (ETL)
	Goal II‏
	Slide 5
	Slide 6
	Script
	Slide 8
	Performance Issues
	Slide 45
	Applying Pipelining to ETL (III)‏

