A Efficient, hot & automatic oracle database cloning

“Discover how to clone for your production database without disruption, in a

totally automated & efficient way”.
By Josep Vidal (josep.vidal@uv.es)

A database clone is a complete and separate copy of a database system that
includes the business data, applications and the DBMS software. Here I will
show you a script that automates the whole process without disrupting
production systems in an efficient and reliable manner. No special hardware nor

software 1s needed.

This procedure is especially useful for the DBA or system administrators who
wants to give his developers a full-sized TEST and DEV instance by cloning the
PROD instance into the development server system. The whole procedure can
be scheduled as a nightly batch crontab job and doesn't need any human
intervention. In fact, we use it, in a daily basis in our organization to
clone/update test instances from production systems in a wide range of platforms
(Linux/x86, Solaris/SPARC, AIX/Power). The script also can run in Windows
by installing CYGWIN Linux-like environment for Windows .

In order to reduce the amount of resource needed to clone/update the database,
only parts (blocks) of database physical objects (datafiles, redo & archived logs)
that change from source to target are updated using rsync open source tool. To
reduce the amount of time needed, parallel programing techniques are applied in
the script. The whole process is triggered by target system, which queries
source database catalog in order to issue a remote hotbackup and

automatically recover it on target system.

?Background / Overview

The full script can be downloaded from http://www.uv.es/vijo/pclone.sh. In

order to execute it, place it on your target (DEV) system and execute it using an oracle
user account by passing the remote database you want to clone and a user/password with

grants to access to catalog tables: pclone.sh ORACLE_SID user/password.

The main steps are automatized using bash scripting and are executed/triggered

from the target system. They consists off:

1 Querying source database catalog to determine physical database objects forming part of the

source database.

2 Move each database object from source to target systems while maintaining database

consistency.

3 Automatic recovery of the source database on the target system.

?Step 0: Requirements

Before you get started some system tuning is needed in order to easy the
database cloning procedure. Both source and target systems accomplish with some

system requirements.

A Both systems have the same operating system, oracle version and system

architecture.

A Both systems have ssh & rsync tools installed and configured so you can login

without password.

A To have both system date & time synchronized . One easy way to achieve multiple

server time synchronization is using NTP (Network Time protocol).

A Source database is running in archive log mode and can be reached from target

system with tnsping utility.

Most systems will accomplish requirements without additional system tuning.
For example to have both date and time synchronized is a good system administration

practice, that is used in nowadays systems. Similarly, rsync is installed in major part of

nowadays UNIX-like operating systems). Also, it is a good practice to use the same
system architecture, operating system and oracle version for both production and dev &

test systems.

e Step 1: Determine physical database objects forming part of the source
database

First step involves connecting to the source database with the
username/password supplied, and query the catalog tables to make a complete list of all
physical database objects forming part of the source database: tablespaces, datafiles, redo
logs, archive logs, init.ora, etc ... These will be the objects that will need to be

automatically moved/updated from the source to the target system.

Information provided by tnsping is used to automatically determine both the
source database HOST and the instance (SERVICE_NAME). In order to automatically
determine ORACLE_HOME, the database to be cloned should be cataloged at oratab
file.

Before physical objects can be copied, an underlying directory structure must be
created. Querying source database catalog, the underlying database filesystem
directory structure (mainly datafiles, dump, redo & archived log directories) is collected
on source system and replicated to the target system. In order to do so, for each physical
object file belonging to the source directory, the base directory is created with the

following command: mkdir -p “dirname $f°

?Step 2: Moving physical database objects between systems

The whole objective of this step is to move each type of database object from
the source to the target system maintaining database consistency. Among heaviest
database to be moved are datafiles, redo logs and archived logs. In order to move it we
use an open source tool called rsync which is capable off moving files between remote
computers by coping only file differences. The idea is to issue a remote hotbackup from

the target system. This means, physical database objects from the source database are

copied while maintaining database consistency to the target system, in the same location

they reside in the source system.

Next, the main code necessary to accomplish the remote hotbackup its listed:

Code Listing 2. Moving database physical objects.

remote_backup () {

STATUS="target_db_status”

if ["S$STATUS" == "OK"]; then

shutdown_db "IMMEDIATE"
fi
sync_dump_dirs

sync_initora

sync_temporary_datafiles

sync_db_datafiles

sync_db_ctrl_and_log_files

Let me comment very briefly the code. First of all, the status of the target
database is checked. If the database its running, it means that you are trying to update it.
So the first step, is to shut it down, to avoid copying database objects while the target
database is running. Then, each type of database file is synchronized between source and
target system. Source database catalog is queried to see the file location and files
belonging to database physical objects are moved to the same location at the target

system.

Efficient data movement with rsync

Database files movement is carried out efficiently by rsync synchronization
tool. Rsync does a block level comparison of 2 files and transfers only the parts that

have changed which is a huge benefit if you are transferring large files like dafafiles over

a network link. As rsync man pages states ” rsync is a program that behaves in much the
same way that rcp does, but has many more options and uses the rsync remote-update
protocol to greatly speed up file transfers when the destination file already exists. The
rsync remote-update protocol allows rsync to transfer just the differences between two

sets of files across the network link, using an efficient checksum-search .

In this step, rsync tool for remote transfer uses SSH for its communications.
Configuring SSH for public key authentication allows for passphrase-free logins.
Password free logins benefit remote access and automation. This is very useful for
moving physical objects from source to target system without being asked to enter a

password each time.

Cloning database datafiles

Among different files composing source database that need to be copied are
dump files, init.ora, datafiles, control and redo and archived log files. Some files (dump,
archives, init.ora) can be copied without taking care of database consistency. Others like
datafiles should be copied in a consistent state. In order to copy datafiles in a consistent

state, source database tablespace should be put in backup mode:

alter tablespace $TBS begin backup

The algorithm can be summarized as; for each Tablespace in the source database
do: First put the tablespace in backup mode, then move each datafile from source to
the target system in parallel, and finally end the tablespace backup mode. The code

necessary to implement it, is:

Code Listing 3. Moving database datafiles.

sync_db_datafiles(){
TBS="get_tablespaces_name ${SOURCE_DB_CONNECT_STRING}"

switch_db_logfile

_ini # Parallelism related variables & locks initialization

for T in $TBS; do

DATAFILES="get_tbs_datafiles ${ SOURCE_DB_CONNECT_STRING} ${T}"
begin_ tbs backup ${SOURCE DB CONNECT STRING} ${T}

for d in $SDATAFILES ; do

maximum parallelism barrier

mkdir -p “dirname $d°

rsync -e 'ssh -c blowfish' -tapogL. $HOST:$d $d;_sub;exit;)&
done
_wait_for_all children_to_finish barrier
end_tbs_backup ${SOURCE_DB_CONNECT_STRING} ${T}

done

Parallel programing

As you can imagine, moving large databases could take a lot of time. In order to
improve database cloning time, parallel programing techniques are applied. The main
parallel technique is to divide the amount of objects needed to move among different
tasks. In order to do so, we create a process for each datafile to be moved until a
maximum level of parallelism is reached (_maximum_parallelism barrier). Once the
maximum parallelism degree is reached, only a new process is created when a running
task finishes. Finally, the program flow must wait for ending the backup state for a
determinate tablespace until all tasks created for moving datafiles finishes its work (
_wait_for all children to finish barrier). The maximum parallelism degree, this is
the maximum number of tasks created to move physical database objects, it is a
configurable parameter. A similar approach is used to move both control and redo logs

files.

?Step 3: Recovering database

After a hotbackup whatever it is remote or local, always media recovery — also
called datafile media recovery - is needed. The goal of datafile media recovery is to
restore database integrity. So, what it is needed to do at this step is to recover source
database physical copy on target system. In order to do so, source database catalog is
queried to determine source database datafiles. For each source database datafile a media
recovery is issued on the physical copy at target system. The procedure can be automated
using the following code and consists in 3 steps: First the database is mounted, then

media recovery is issued on each datafile and finally the database is opened:

Code Listing 3. Database recovery code:

recover_db(){

export ORACLE_SID=$SOURCE_DB

startup_db "mount"

TBS="get_tablespaces_name ${SOURCE_DB_CONNECT_STRING}"

for T in $TBS; do

DATAFILES="get_tbs_datafiles ${SOURCE_DB_CONNECT_STRING}

${T}
for d in $DATAFILES ; do
recover_datafile $d "AUTOMATIC"
done
done
open_db
}
recover_datafile() {

DATAFILE=S1

MODE=$2

sglplus /nolog <<EOF

connect / as sysdba ;

recover $SMODE datafile 'S$DATAFILE' ;

exit

EOF

?Conclusion

Database cloning can be used for different purposes like testing (functional &
load), developing, database maintenance tests or DBA training. Here, I have provided
you with a tool that automates the whole process without disrupting production systems
in an easy, efficient and reliable manner, without needing any special hardware or
software. The whole process and the major steps and code necessary to implement it, has

been discussed in the article.

Of course the amount of time needed to complete the whole process depends on
database size, available computational resources (CPUs & discs) and database
modification rate as well as the updating frequency. For example, our organization has
150 GB accounting production database running in a p-570 server uncapped LPAR (6
power 5 CPUs). After an initial cloning to test system - remote development p570 LPAR
- databases were running independently during 6 months. After that, the test database
was updated from production, and the whole process ended in less than an hour (58

minutes).

The whole procedure can be scheduled as a nightly batch crontab job and
doesn't need any human intervention. I am currently working in a similar automation
tool to clone databases between systems with different oracle versions, operating systems

& system architectures.

Josep Vidal (josep.vidal@uv.es) is a system analyst & DBA at UV,
(http://www.uv.es) a Spanish university located at Valencia City. Josep has
been an active open source developer on RT-Linux kernel extensions, including
Posix Signals, Timers & Application defined scheduling.

References:

SSH login without password: http://linuxproblem.org/art 9.html

Basic NTP configuration: http://tldp.org/LLDP/sag/html/basic-ntp-config.html

& QOracle hotbackup: http://www.adp-gmbh.ch/ora/admin/backup_recovery/hot_backup.html

mailto:josep.vidal@uv.es
http://tldp.org/LDP/sag/html/basic-ntp-config.html
http://linuxproblem.org/art_9.html
http://www.uv.es/

