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Abstract
Soon after Shannon defined the concept of redundancy it was suggested that it
gave insight into mechanisms of sensory processing, perception, intelligence
and inference. Can we now judge whether there is anything in this idea, and
can we see where it should direct our thinking? This paper argues that the
original hypothesis was wrong in over-emphasizing the role of compressive
coding and economy in neuron numbers, but right in drawing attention to the
importance of redundancy. Furthermore there is a clear direction in which
it now points, namely to the overwhelming importance of probabilities and
statistics in neuroscience. The brain has to decide upon actions in a competitive,
chance-driven world, and to do this well it must know about and exploit the
non-random probabilities and interdependences of objects and events signalled
by sensory messages. These are particularly relevant for Bayesian calculations
of the optimum course of action. Instead of thinking of neural representations
as transformations of stimulus energies, we should regard them as approximate
estimates of the probable truths of hypotheses about the current environment,
for these are the quantities required by a probabilistic brain working on Bayesian
principles.

1. History

The idea that the statistics of the sensory stimuli we receive from the environment are important
for perception and cognition is not new, and surprisingly clear statements about it can be
found before 1950 in the writings of Mach (1886), Pearson (1892), Helmholtz (1925), Craik
(1943) and others. But Shannon’s definition of channel capacity, information and redundancy
(Shannon and Weaver 1949) was a landmark. The relations between these quantities, the
probabilities of individual signals and the statistics of ensembles of signals, are not intuitively
obvious, and they were a revelation to me—particularly as brought out in Shannon’s wonderful
paper on the redundancy of written English (Shannon 1951). I was then at an early stage in my
scientific career, and since these measurable quantities were obviously important to anyone
who wanted to understand sensory coding and perception, I eagerly stepped on the boat.

Fred Attneave (1954) had got there before me with his article in Psychological Reviews,
which I heard about when I presented my ideas to a discussion group in Cambridge in the
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mid-1950s (Barlow 1961). My leading idea was the same as Attneave’s: as he put it ‘. . . the
human brain could not possibly utilize all the information provided by states of stimulation
that were not redundant’. At about the same time Watanabe (1960) was also arguing that
redundancy is important in inductive reasoning and inference. Luckily I was more interested
in the relationship between redundancy and neuro-physiological mechanisms of sensation and
perception, Attneave was more concerned with perceptual aspects and Watanabe with high-
level inference, so we all had different things to say. But we agreed that physical stimuli from
the natural environment are redundant in ways that must be important to an animal, that this
will be reflected in the redundancy of sensory messages and that the coding and transformation
of these messages at all levels could be adapted to this redundancy in advantageous ways.

The idea has had a rather chequered history since then. On the one hand some limitations
of the original idea became clear and these will be considered below. Then, for a time,
information theory dropped out of the limelight in neuroscience, and if the idea of redundancy
reduction was mentioned at all it was often misunderstood. But over the past decade or so
interest has been re-awakened, largely through the efforts of Laughlin (1981), Srinivasan et al
(1982), Field (1987, 1994), Bialek et al (1991), Atick (1992), van Hateren (1992) and their
collaborators. In addition the ideas are more readily testable, and since we now know many
more details about the mechanisms of sensory processing in the brain we naturally want to
understand its basis—i.e. the survival value of these mechanisms.

I have recently reviewed the history of redundancy in perception in the context of Shepard’s
idea about internalizing environmental regularities (Shepard 1984, 1994, Barlow 2001), and
Simoncelli and Olshausen (2001) have recently reviewed the statistical properties of natural
images, greatly clarifying many of the issues that are important here. Notice that there are
some applications of information theory to neuroscience that have little direct bearing on the
original redundancy hypothesis. These are concerned with the measurement of information
transfer using entropy measures and are dealt with by Bialek et al (1991) and Rieke et al
(1997).

The aim of this paper is to look at the original idea with the benefit of hindsight in order to
preserve what was right, correct what was wrong and see where it leads. The conclusions are
that the idea was right in drawing attention to the importance of redundancy in sensory messages
because this can often lead to crucially important knowledge of the environment, but it was
wrong in emphasizing the main technical use for redundancy, which is compressive coding.
The idea points to the enormous importance of estimating probabilities for almost everything
the brain does, from determining what is redundant to fuelling Bayesian calculations of near-
optimal courses of action in a complicated world.

2. Clearing the ground

According to Shannon redundancy is what wastes channel capacity. He defined it as the
difference between the entropy of the ensemble of messages actually transmitted and the
maximum entropy of the ensemble that the channel could transmit. The simplest cause of this
difference is unequal probability of occurrence of the elements of these messages (e.g. letters
of the alphabet), but it can also arise from inequality of their joint probabilities, of from any
other constraint on their occurrence. For the topic under discussion the difference is important,
because inequality of the element frequencies is obvious and easy to discover, whereas other
constraints may be non-obvious and very hard to discover. Unknown, non-manifest or hidden
redundancy may not only be a source of important knowledge about the environment, but also,
if ignored, it may lead to catastrophic errors in estimating the probabilities of hypotheses about
the environment.
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Redundancy and capacity were originally defined for discrete variables, such as the letters
of the alphabet or binary variables, but it can be extended to continuous variables perturbed by
noise. Many of the successful applications of redundancy in neuroscience have used the latter
form, considering nerve messages as continuous variables, and this has both advantages and
disadvantages. It is perhaps more logical to treat impulse frequency as a continuous variable,
and it focuses attention on signal/noise problems, which are certainly important because of
the noisiness of transduction and transmission in the brain. But the logic-like faculties of
brains that lie behind higher mental functions are more interesting than the linear analysis that
continuous signals link with most naturally, so my own bias is to regard the simpler concept
of redundancy in discrete signals as more interesting and important. This should be taken into
account in reading the discussion that follows.

To clear the ground I shall start with some unattributed one-line criticisms; the original
idea will be defended where it still seems right, but matters on which it was wrong or irrelevant
will be flagged.

2.1. Coding is selective, not reversible

Quite often Attneave’s idea has been expressed as ‘stripping away redundancy to leave the
information that is biologically important’. This confuses selective coding, where some
information is retained and some is deliberately discarded, with redundancy reduction, where
no information need be lost. The point of the original idea was that you can achieve economy
without losing any information at all, for a true redundancy reducing code is reversible—the
input can be accurately reconstructed from the output. Of course selective coding does occur
in sensory systems, so full reconstruction is not actually possible, but it is surely important to
distinguish a process where information is lost irretrievably from reversible coding where it is
not.

2.2. Redundancy is unnecessary information

This is another confusion, arising partly from the everyday rather than technical meaning of
redundancy. It is important to realize that redundancy is not something useless that can be
stripped off and ignored. An animal must identify what is redundant in its sensory messages,
for this can tell it about structure and statistical regularity in its environment that are important
for its survival. Some information about them can be conveyed in its genes, but sensory
redundancy is the main source of knowledge from its own individual experience.

2.3. Redundancy is too vague a term to be useful

There is something in this criticism, for redundancy can take so many different forms that
having a single word for it may be a little misleading. It has already been pointed out that
manifest redundancy, caused by unequal probabilities of primary message or representational
elements, is benign because it is so obvious and easily discovered. On the other hand hidden
or latent redundancy, caused by unequal joint probabilities of higher-order combinations of
elements, can lead to missed opportunities and erroneous conclusions. The complexity of
redundancy is illustrated by the fact that to determine all possible forms of it one would have
to measure the frequencies of all possible messages, and this would obviously not be practical
except in the simplest instances. It is true that Shannon’s definition makes it a measurable
quantity, and this is certainly a step in the right direction, but one must raise the question, ‘Is
it the right measure?’. This is briefly considered again in section 4, paragraph 3.



244 H Barlow

Notice that these problems do not prove that the concept is useless; knowledge of any
form of redundant regularity in the input messages is potentially useful—you do not have to
know all forms of redundancy to exploit the forms of it that you do know about. It is however
knowledge and recognition of the redundancy, not its reduction, that matters.

2.4. Shannon’s redundancy is not appropriate in the brain

Shannon developed his theory with a very specific model in mind. He postulated an ensemble
of messages to be transmitted whose statistics were fully known and unchanging. These were
to be passed down a channel whose properties were also known accurately, and in the simplest
case (sufficient for defining information, capacity and redundancy) there was no noise. Also
he assumed that the messages could be subdivided into blocks as required, with delays in
transmission until the whole of a block was available.

In the brain one usually needs a different model. We rarely know the statistics of the
messages completely, and our knowledge may change. There is therefore a confusing temporal
aspect to the process, for what is redundant today was not necessarily redundant yesterday.
As knowledge of an environment is acquired, those features of sensory stimulation that are
accurately predictable from that knowledge become redundant, but they are in a genuine sense
not redundant until this knowledge has been acquired. Shannon’s assumptions were of course
right for the purpose of defining redundancy, but to use the concept in neuroscience we need
to be more flexible.

We can also see clearly that delays in coding would be disruptive and dangerous. But
the main objection is that the brain does not necessarily use redundancy for the purpose
Shannon had primarily in mind, namely compression to allow the information to be passed
down a channel of lower capacity. Although redundancy points to the importance of statistical
regularities in the input messages, one cannot be certain that redundancy based on entropies
is the correct measure unless compression is the main advantage to be derived from knowing
about it, and there is room for doubt about this (see section 4, paragraph 3).

In neuroscience one must be cautious about using Shannon’s formulation of the role of
statistical regularities, because the brain uses information in different ways from those common
in communication engineering.

2.5. Redundancy is mainly useful for error avoidance and correction

When Shannon’s simplest model is made more complicated by assuming that the channel is not
noise free but introduces errors, then redundancy in the input ensemble can make it possible to
correct such errors. Since it is certainly true that sensory transducers and neural communication
channels introduce noise, this is likely to be important in the brain, but the correction of such
internally generated errors is a separate problem, and it will not be considered further here.

2.6. The redundancy of representation is not actually decreased

This is the point on which my own opinion has changed most, partly in response to criticism,
partly in response to new facts that have emerged. Originally both Attneave and I strongly
emphasized the economy that could be achieved by recoding sensory messages to take
advantage of their redundancy, but two points have become clear since those early days. First,
anatomical evidence shows that there are very many more neurons at higher levels in the brain,
suggesting that redundancy does not decrease, but actually increases. Second, the obvious
forms of compressed, non-redundant, representation would not be at all suitable for the kinds
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of task that brains have to perform with the information represented; this is discussed in the
next section.

In most mammals there are vastly more photoreceptors than there are fibres in the optic
nerve, and it has been suggested that retinal coding can be viewed as redundancy reduction to
compress information into a channel of reduced capacity (Srinivasan et al 1982, Atick 1992).
This is an attractive idea, but photoreceptors are very much slower than optic nerve fibres, and
at moderate and high luminance levels only a small proportion of them are operating within
their dynamic ranges. It is therefore not clear that the reduction in capacity is as great as
the numbers initially suggest. Also it can be argued that, whether or not compression into
the optic nerve occurs, the most interesting applications of the idea are for the logic-like way
information is processed at higher levels.

In the cortex it seems likely that channel capacity increases rather than decreases. The two
optic nerves of humans contain axons from just over 2 × 106 retinal ganglion cells, whereas
in V1 alone there are probably about 109 neurons. Initially I thought these facts might be
reconciled with redundancy reduction by including the mean firing rate as a constraint when
defining the capacity of a neuron, and then assuming that the mean firing rate of many of the
neurons in V1 is extremely low. This would point to the central representation being extremely
sparse, which is a view that I shall return to because it still has its attractions. However the
numbers of neurons at different levels in the pathways have been more clearly established
over the past 30 years, and estimates of their firing rates have become higher with the use of
un-anaesthetized preparations. Although it still seems just possible that there is a large reserve
of neurons in the cortex that are hardly ever active and hardly ever recorded from, or which
come into use slowly during the lifetime of an animal, there is no convincing evidence that
this is the case.

As a result of these developments I think one has to recognize that the information capacity
of the higher representations is likely to be greater than that of the representation in the retina or
optic nerve. If this is so, redundancy must increase, not decrease, because information cannot
be created. The next point may, however, go a long way towards explaining what is going on
here.

2.7. Compressed representations are unsuitable for the brain

The typical result of a redundancy-reducing code would be to produce a distributed
representation of the sensory input with a high activity ratio, in which many neurons are
active simultaneously, and with high and nearly equal frequencies. It can be shown that, for
one of the operations that is most essential in order to perform brain-like tasks, such high-
activity-ratio distributed representations are not only inconvenient, but also grossly inefficient
from a statistical viewpoint (Gardner-Medwin and Barlow 2001).

Behind almost any interesting operation the brain performs, from detecting novelty
to classical learning, lies the need to estimate the probability of occurrence of an input
message, or of a class of input messages. In a distributed representation there is not
in general any element that is active for an input one is interested in, and only active
for that input. The absence of such an element poses a problem, for there will be no
location in the brain where all the information required to count occurrences of the input
of interest is brought together and is kept uncontaminated by occurrences of other inputs,
and if this is not done the probability cannot be accurately determined. As an alternative,
one is pretty well forced to estimate probabilities of inputs by combining measures of the
probabilities of occurrence of the representational elements that are active for them, but this
introduces a major source of error. In a distributed representation neurons are typically
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active for inputs that one does not wish to count and include in a frequency estimate, as
well as for the inputs of interest, and this is particularly the case if the activity ratio is
high. Although one can compensate for the mean error introduced from such overlaps,
there is no way to overcome the increases in the variances of the resulting estimates.
High-activity-ratio distributed representations, which are the typical product of redundancy-
reducing codes, lead to inaccurate estimates of frequencies, and the resulting statistical
inefficiency would slow down learning or make it unreliable. This could obviously be
disastrous for survival, so high-activity-ratio distributed representations are likely to be
unsuitable for use as a basis for learning, or for any cognitive function that requires probability
estimates.

To overcome this problem one needs representations with minimum overlap, that is
ones with the minimum number of elements active in both of two inputs that need to
be distinguished. Such overlap is perfectly allowable, on the other hand, when two
inputs do not need to be distinguished, for example when an action learned for one
of them is appropriately generalized to the occurrence of the other. Our quantitative
estimates of the seriousness of this problem (Gardner–Medwin and Barlow 2001) used
two models. In the simple one, reliable and efficient frequency estimates of R different
input states required approximately the same number, R, of representational elements—
vastly more than the log2 R that are sufficient simply for unambiguous representation
in a distributed representation with high activity ratio. One can do better than this
in a more complex model that has modifiable interconnections (Gardner-Medwin 1976)
between the representational elements, but the number is still much greater than log2 R.
Accurate frequency estimation in a typical distributed representation requires very high
redundancy, but this must be in a form that reduces overlap—one must minimize the
number of elements active in more than one of the sensory stimuli that the brain needs to
distinguish.

3. Why redundancy is still important

This example, where redundancy definitely helps the brain perform an important task, makes
us re-assess the redundancy-reduction hypothesis, for it would have little remaining value if
the compression apparently predicted by it does not occur, and if it would be harmful if it
did! But this totally negative message is incomplete, for as the original hypothesis claimed,
it is still true that discovering statistical structure in sensory messages is important. The
point Attneave and I failed to appreciate is that the best way to code information depends
enormously on the use that is to be made of it. As a general point this has been well
recognized (see e.g. Levesque and Brachman 1987). In the current case, if you simply want
to transmit information to another location, then redundancy-reducing codes economizing
channel capacity are what you need. This is the aspect Shannon’s formulation brings out
most clearly and is also what is most important for communication engineers. But the brain
is not just a communication system, and we now need to survey cases where compression is
not the best way to exploit statistical structure. What I think emerges is that coding should
convert hidden redundancy into a manifest, explicit, immediately recognizable form, rather
than reduce it or eliminate it.

3.1. Improving S/N ratios

Knowledge of the properties of signals that are behaviourally important for an animal can be
used to improve the signal/noise ratio for their detection by matching the characteristics of the
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detector to those properties. As far as possible this preserves the stimulus energy and excludes
other signals that would only contribute noise. This is important for birds detecting the songs
of their own species, and similarly for crickets, bats and electric fish. A similar principle must
be responsible for one’s ability to pick out one’s own name whispered at the other side of a
noisy room, and one’s dog can do the same.

These advantages are obtained by having detectors selective for particular patterns among
the many that one receives. There is a less obvious advantage to be obtained by having the whole
sensory system selective for the specific statistical properties of natural stimuli, as opposed
to the class of all possible stimuli covering the same waveband. Natural images differ from
white-noise images with the same waveband, as is shown by one’s instant ability to distinguish
examples of each, and Kersten (1987) used the ability of human subjects to fill in missing pixels
in natural images to estimate how redundant they are. He obtained values around 50–75%, but
the ability to achieve ratios of 10:1 or higher in image compression suggests the redundancy
is even higher.

Similar improvements to sensitivity and signal/noise ratios can be gained from the
knowledge of natural images obtained by principal components analysis, or other comparable
methods, though this is not usually cited as the advantage of employing such methods. One
can use the results in two ways: if knowledge of the presence, or amplitude, of a particular
component is useful for some purpose, then you are in good position to use it for that purpose.
But if it is known not to be useful you still gain, for you can remove it from the input message,
leaving a residue where other types of information can be detected with improved signal/noise
ratio because what you have removed no longer contributes to the noise.

This second course of action often seems to be occurring in the early stages of sensory
pathways through the action of temporal adaptation and lateral inhibition, and it is often
cited as an example of ‘rejecting redundant information’. But this is the wrong way to
look at it, for the low-temporal- and spatial-frequency information has not necessarily been
rejected: in many cases it has simply been separated, and is adequately represented on other
nerve fibres. Separation allows the appropriate extended spatial or temporal summation
for the low frequencies, improving sensitivity for their detection, and it can also improve
sensitivity for detecting patterns involving high frequencies by reducing interference from the
low frequencies.

3.2. Prediction

Next to consider is prediction, which obviously promotes survival whether one is considering
prey-capture, predator-avoidance or simply keeping ahead of the competition. Prediction is
possible if there is spatio-temporal redundancy in the input data. One must first know that
the data are redundant in containing more than the random amount of particular patterns
with temporal characteristics, such as a constant trend in one direction, or a tendency to
recur at a particular interval. Then if one can identify one of these patterns at an early
stage, one can predict that it will be continued or that it will recur after some interval.
Knowledge of the redundancy of the messages from the environment enables such a pattern
to be identified in its early stages, and knowledge of its particular temporal pattern makes
prediction possible.

Prediction is important on all timescales, from the millisecond range of a fly pursuing
its mate to the years or centuries involved in forecasting eclipses. It must be particularly
important in vision, because the early stages in photo-detection and transduction are so slow,
and many early visual mechanisms may be concerned specifically with countering this slowness
by prediction.
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3.3. Associative learning

If reinforcement were only randomly associated with the sensory messages an animal receives,
it could never learn reliably what caused the rewards and punishments that follow these
messages. Thus there is a genuine sense in which all reinforcement learning is a response
to statistical structure (of special kinds) in the sensory messages. This is quite an instructive
way of looking at the problem, for it immediately brings home the fact that much more is
required for learning than reinforcement. First one needs a representation in which those
different external objects and events that can be learned about separately, are represented
separately. Second one needs estimates of the probabilities of occurrence of these objects and
events. Third, if the system is to learn about combinations of them, one needs to know that
they are independent, or what the dependences are. Most familiar representations of sensory
stimuli, such as a photograph or a tape recording, do none of this. Learning theorists often
blandly assume that, when they change the external stimulus in an experiment, there will be
reliable changes in the internal representation that can be used for learning, but this assumption
needs more justification than it receives.

Perceptual mechanisms segregate objects from their backgrounds, classify them and
identify them, and as far as we can judge at the moment the neural mechanisms for doing
this employ a large fraction of available neurons in the brains of higher animals. The extent
to which reinforcement influences classification is unresolved, but it is genuinely difficult
to see where perception stops and learning begins—indeed it is not clear how much of the
apparent difficulty of learning remains, once perception has properly prepared the ground
for it. In classical learning the sensory stimuli that habitually precede a small number of
innately specified reinforcements are identified and cause conditioned responses, but this is
relatively simple. The task of perception is more general and difficult, for natural stimuli
have to be classified according to their statistics in a way that allows the resulting items to be
separately counted and have their probabilities estimated, and perhaps it must be ensured that
the independence assumption is valid.

3.4. Increasing the information carried by active network elements

An animal switches the main goal of its behaviour rather infrequently, no more often than, say,
once every few seconds. When it does so it needs summary representations of its environment in
which evidence about important matters has been collected together. It does not need details
of a large number of individually insignificant events, which is the form in which sensory
messages normally arrive, and is incidentally also the form in which it would be presented
after compressive coding. An example may make this clearer. At a fork in the road, both
branches lead to many possible destinations each with its own associations, but an animal in
a hurry needs simple signs directing it to food, safety or other opportunities, not the detailed
evidence for such directions. For its current behavioural choices the brain needs representations
in which detailed evidence has already been gathered together into chunks worth more than a
single bit.

The idea of a very sparse representation, mentioned above, captures this notion, which
is one reason why I hesitated to abandon it. Certainly information that is widely scattered
over the brain in many unknown neurons cannot contribute to useful decision-making without
appropriate means for collecting it together, and as we have seen compressive coding—the
expected result of straightforward redundancy reduction—is positively harmful. But a very
sparse representation with minimum overlap would be a different matter, provided that it
retained as much as possible of the original information. The probability of a given element
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being active would be low, so when it became active this would be worth more than just one bit,
and it could make an important contribution towards recognizing an object or justifying a major
change of goal. This was the thinking behind the suggestion (Barlow 1972) that perception
is represented by a relatively small number of active ‘cardinal cells’, each with a selectivity
intermediate between those of supposed ‘pontifical neurons’, and those of a typical distributed
representation.

4. Displaying the redundancy as well as the message

The examples given above show that the statistical structure of sensory messages can be used in
many different ways, but behind them all lies the fact that, since the data are redundant, it must be
possible to represent them in a simpler form without introducing ambiguity. If the ‘reduction’
part of the redundancy reduction hypothesis is discarded one sees that exploiting redundancy
in sensory messages links with much other work in statistics, artificial intelligence and neural
networks, where the aim has been to find hidden factors that would account for the data. The
technique of factor analysis has long been used to determine a small number of factors capable
of accounting for variations in data such as intelligence test results, and principal components
analysis is a more general technique for organizing the sources of variation in multi-dimensional
data. Latent structure analysis (Henry 1983) postulates discrete ‘attitudes’ to account for the
results of social surveys, and in the field of artificial intelligence Neal (1992) has described
a network that determines simplifying beliefs, Hinton and Zemel (1994) suggest minimum
description length and vector quantization methods for finding latent variables and Bishop
et al (1998) describe a method that uses nonlinear transformations but is otherwise analogous
to factor analysis. In all these methods the aim is to determine these hidden factors and make
them explicit. This aim would be achieved by sensory coding that not only represents incoming
messages unambiguously, but also makes explicit the ways in which they are redundant.

Notice that written language achieves something like this, for all fluent readers can use the
probabilities of the components, as Shannon’s analysis (1951) showed, and therefore must, in
some sense, have knowledge of them. Economizing in the number of impulses used to transmit
messages, rather than the number of neurons employed, would produce a coded output with
its redundancy explicit in the form of non-equal frequencies of use of the primary message
elements. The principle of ‘economy of impulses’ was actually proposed originally as a form of
redundancy reduction (Barlow 1961), but it may be better to regard it as converting redundancy
into a standard form that can be recognized wherever the neuron’s activity is detectable.

If all the redundancy is to be in this standard form, the elements would also have to be
active independently of each other in the normal environment. One would then have a factorial
representation with the merit that the frequencies of conjunctions of two or more elements can
be estimated immediately from the product of their individual frequencies. There is therefore
no hidden redundancy; it is all manifest in the non-optimal frequencies of activity in the
elements. Sparse coding of this type would obviously be exceedingly difficult to achieve with
the large number of elements occurring in sensory systems, and it could only be done in some
hierarchical fashion (e.g. Barlow 1981). This might explain why a large increase in the total
number of neurons seems to be required, but notice that the object of such coding is to represent
information in a form where redundancy is manifest, not one in which it has been reduced.

Abbott and Dayan (1999) have pointed out the curious fact that positive correlations
between the representational elements can sometimes improve the accuracy of representation
in a population code. Another curious fact is that negative correlations between elements
in a representation would decrease the overlap and thus increase the efficiency for making
frequency estimates. Negative correlations are, however, a form of statistical structure and
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must increase redundancy. It is thus unclear whether Shannon’s redundancy is the appropriate
measure for the statistical properties of input messages that are important in the brain. What
may be needed is coding for overlap-reduction, rather than for reduction of redundancy based
on entropies.

Allman (1990) drew attention to the high energy cost of the mammalian neocortex, and
argued that it only evolved because it increased the food-finding efficiency of its owner.
A detailed energy budget shows that impulse activity in the cortex does in fact require
extraordinarily high energy consumption (Laughlin and Attwell 2000), lending support to
the suggestion by Levy and Baxter (1996) that economy of impulses is necessary because it
reduces energy consumption. This argument for economy of impulses is of course independent
of the notion that it is used to make the redundancy of sensory messages explicit, but there is
no reason why both advantages should not be important.

To summarize this section, economy in the number of neurons used for the representation
of sensory information is a bad idea, and the reverse is what actually seems to happen. On the
other hand economy in the number of active neurons would make redundancy manifest and
explicit rather than hidden, and would make each impulse represent an important, informative,
event. We now need to step back and take a more global view of the brain’s task in order to
see what lies behind the importance of recognizing redundancy.

5. Statistics of natural stimuli and Bayesian inference

To determine the best (i.e. most probably rewarded, least probably punished) way for an animal
to behave at any time its brain should decide what hypotheses about the world around the animal
hold true at that time. The brain must therefore derive the probabilities of hypotheses being
true from the evidence currently provided by its senses, and this is what Bayes’ expression
tells one how to do. If P(H |D) is the probability of a hypothesis being true, given the current
sensory data, then

P(H |D) = P(D|H) × P(H)/P (D)

where P(D|H) is the probability of the data given that the hypothesis is true, P(H) is the
prior probability of the hypothesis being true and P(D) is the probability of the data.

All four components of Bayes’ expression are probabilities. This re-emphasizes the
importance of having distributed representations in which frequencies of occurrence can be
reliably and accurately determined, as discussed in section 2.7, but it also brings out the
importance of the statistical structure of the input messages. The first term on the rhs is
the probability of obtaining the current pattern of sensory data, given that some particular
hypothesis about the current environment is true. This requires a model of the way the real
world causes the sensory messages that come from it, and this in turn has to be derived from
the statistical structure of these sensory messages, aided of course by innately determined
assumptions. To put this in a different way, Craik’s working models (Craik 1943) are the
bridge between the sensory messages received by an animal, and the hypothetical objects
and events in its environment whose truth-probabilities the brain needs in order to decide
upon its appropriate actions. These models incorporate and must be largely derived from
the observed statistical regularities in the sensory stimuli, which explains the importance of
sensory redundancy.

The lesson from this is that we should be thinking how perceptual mechanisms form
probability estimates, how probabilities are represented in the brain and how they are
transmitted from place to place in it. This is not a new idea (see Helmholtz 1925, Barlow
1969, Gregory 1970) but we defer accepting it because we persist in thinking of sensory
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messages and perceptions just as transformations of the physical stimuli. It is, however, the
probabilities that are required to select appropriate behaviour.

Can this insight help? Here are some brief points that do not answer the question, but
make one feel optimistic about the possibility of answers.

5.1. How to modify old (inherited) probabilities with new evidence

All the variables in Bayes’ expression are probabilities, but to obtain from scene statistics the
three probabilities on the rhs of Bayes’ expression of course requires something more. The
prior probability of a hypothesis being true gives trouble to those who insist that a probability
has no meaning unless it is based on measured frequencies, but this need not be a stumbling
block here. A biophysical variable in a cell can have a value that is initially determined
genetically, and subsequently adjusted according to what happens to that cell. The innate
value can surely be regarded as a probability estimate derived from the frequencies of survival
and death involved in natural selection, while the adjusted value is an improved estimate
utilizing frequencies of events within the experience of a particular cell.

5.2. Models for calculating likelihoods

The second term on the rhs of Bayes’ expression requires a model showing how likely the
hypothesis is to generate the data, if it is true. Where can this model come from? This too
could start as a neural structure evolved under natural selection, with the initial connectivity
and parameter values determined genetically, but modifiable subsequently by experience. We
do not yet have many clues about what such variables may be, their genetics, or how they
might be modified, but the Bayesian view at least provides a framework within which these
questions can be asked.

Observe that it is not only the initial parameter values and connectivity that must have
evolved through natural selection, but also the means for modifying these according to
experience—i.e. the algorithms for executing Bayes’ rule. But any naturalist could give many
other equally impressive examples of evolutionary adaptation.

6. Conclusions

I doubt if it is useful for the neuroscientist to regard perception as a compressed representation
of sensory experience, for compression generally implies high-activity-ratio distributed
representations, and frequency estimates can only be made from these slowly or unreliably.
But the brain does need a representation with as little hidden redundancy as possible: the
probabilities of occurrence of the objects and events represented in it should be obvious or
easily accessed, and statistical dependences between them should either be absent, or easily
obtained.

In any such representation probabilities are key elements, because they are the fuel for
accurate decision making. So the take-home message for the neuroscientist should be: ‘Think
probabilities: What probabilities are needed? How are they represented? How are they
estimated? How are they modified? How are they transmitted to other places in the brain?
And how are they combined for making the moderately rational decisions that we observe brains
making?’. Relating the terms in Bayes’ expression to measurable cellular and physiological
quantities in the brain may be a difficult task, but it does not seem an impossible one.
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