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Vision and the Statistics of the Visual Environment

Eero P Simoncelli

Summary

It is widely believed that visual systems are opti-
mized for the visual properties of the environment
inhabited by the host organism. A specific instance
of this principle known as the Efficient Coding Hy-
pothesis holds that the purpose of early visual pro-
cessing is to produce an efficient representation of
the incoming visual signal. The theory provides
a quantitative link between the statistical proper-
ties of the world and the structure of the visual
system. As such, specific instances of this theory
have been tested experimentally, and have be used
to motivate and constrain models for early visual
processing.
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Introduction

One of the primary roles of theory in the sciences is
to provide fundamental principles that explain why
the natural world is constructed as it is. In biology,
the main example of such a principle is the theory
of evolution by natural selection. In the context
of vision, this sort of philosophy was championed
by David Marr, who argued that it is essential to
consider the visual system at an abstract compu-
tational level in order to understand its design [1].
Two specific instances of this philosophy provide a
quantitative link between the statistical properties
of the visual environment and the structure of bio-
logical visual systems: The so-called Efficient Cod-
ing Hypothesis, and the formulation of early vision
problems in terms of Bayesian estimation or deci-
sion theory. As such, specific instances of both
theories may be tested experimentally, and may be
used to motivate and constrain models for vision.

The Efficient Coding Hypothesis has been a central

topic in a variety of recent workshops and meet-
ings [2], as well as several review articles [3, 4] and
a special journal issue [5]. Recent results are inter-
esting, albeit controversial. Because of this flurry
of recent interest, and because Bayesian theories
of vision have been reviewed in a number of other
places [e.g., 6, 7, 8, 9, 10, 11], I willl focus almost
entirely on efficient coding in this article, with em-
phasis on articles published in 2001 or later.

Efficient Coding

The theory of information plays a natural role in
models of neural systems, by providing abstract
but unique quantitative definitions for information
[12]. Barlow [13] recognized the importance of in-
formation theory in this context, and hypothesized
that the efficient coding of visual information could
serve as a fundamental constraint on neural pro-
cessing. That is, a group of neurons should encode
information as compactly as possible, in order to
most effectively utilize the available computing re-
sources. Mathematically, this is expressed as a de-
sire to maximize the information that neural re-
sponses provide about the visual environment.

The simplest form of this hypothesis (in particu-
lar, ignoring the noise in neural responses) decou-
ples naturally into two separate statements: one re-
garding the statistics of individual neural responses
and a second regarding the joint statistics of the re-
sponse of a population [14, 3, 15]:

• The responses of an individual neuron to the
natural environment should fully utilize its
output capacity, within the limits of any con-
straints on the response (e.g., maximum firing
rate).

• The responses of different neurons to the nat-
ural environment should be statistically inde-
pendent of each other. In other words, the in-



formation carried by each neuron should not
be redundant with that carried by the others.
This is also consistent with a notion that the
visual system strives to decompose a scene into
statistically independent constituents (e.g., in-
dividual objects).

More detailed discussions of these ideas, as well
as the role of noise, may be found in many other
references [16, 13, 17, 18, 19, 20, 21, 22, 3, 15].

Criticisms

A variety of criticisms have been voiced regard-
ing the Efficient Coding Hypothesis. A number
of these represent misconceptions about the the-
ory, some are aimed at particular variants of the
theory, some are about practical experimental is-
sues, whereas others are more fundamental. Below
is brief discussion of some of these (see the recent
review article by Horace Barlow for additional dis-
cussion [4]).

The purpose of vision. It has often been ar-
gued that efficient coding of visual information is
irrelevant because the purpose of vision is not to
encode or reconstruct the visual world. There is
some truth to this criticism, in that the hypothe-
sis does not take into account how the information
that has been extracted is to be used. This may be
viewed as either an advantage (because one does
not need to assume any specific visual task or goal,
and does not even need to specify what is being rep-
resented) or a limitation (because tasks and goals
are clearly relevant for visual processing). More
complete theories, such as that given by Bayesian
estimation and decision, can take into account both
the statistical structure of the environment and the
visual task or goal.

Relevance of information theory. A second
criticism of the Efficient Coding Hypothesis is that
“information theory is irrelevant because the brain
is not concerned with bits.” Bits are just a stan-

dard choice of unit for information, but the ab-
stract definition of information is well-motivated,
unique, and is most certainly relevant to the brain.

Experimentally observed dependency. An-
other criticism of the Hypothesis is that “some
experimental data from multi-neuron recordings
show correlation, synchronization, or other forms
of statistical dependency between neurons”. Most
such experiments do not use naturalistic stimuli,
and thus dependencies in the neural responses are
not directly relevant to the hypothesis. In addi-
tion, recent studies suggest that responses to nat-
ural stimuli in primary visual cortex are relatively
independent[23, 24, 25]. Finally, even if one were
to observe dependencies in neural responses under
natural stimulus conditions, the hypothesis states
only that the system strives for independence: The
constraints of neural processing may prevent actual
achievement. Perhaps a more realistic expectation,
then, is that successive stages of processing (e.g.,
along an ascending sensory pathway) should reduce
statistical dependence [26].

Over-representation in cortex. A further
criticism is based on a comparison of the num-
ber of retinal ganglion cells to the number of neu-
rons in primary visual cortex. Critics argue that
“the number of neurons devoted to processing sen-
sory information seems to expand as one goes
deeper into the system, suggesting that the brain
increases redundancy.” This argument usually as-
sumes, however, that the coding capacity of all
neurons (and in particular those in retina and cor-
tex) is the same. The distribution of information
amongst more neurons does not necessitate more
redundancy if the form of neural coding employed
by those neurons is allowed to differ. For exam-
ple (as Barlow points out in [4]) cortical neurons
tend to have lower firing rates, and may well use a
different form of code than retinal neurons. In ad-
dition, cortical neurons have more complex tempo-
ral dynamic properties (e.g., adaptation) that may
serve to encode information over longer timescales.
Although the redundancy of retinal and V1 neu-
rons has not been experimentally compared, a re-
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lated comparison in the auditory system was able
to demonstrate a reduction of redundancy [26].

Experimental impracticality. Many authors
have pointed out that “Estimation of information-
theoretic quantities requires enormous amounts of
data, and is thus impractical for experimental ver-
ification.” This is a significant problem, especially
since commonly used estimators of information are
also known to be heavily biased. Nevertheless,
cases of successful experimental measurement give
reason for optimism (see below).

Definition of input and output. The Hypoth-
esis depends critically on the probability distribu-
tion of natural images and the definition of neu-
ral response, both of which are underconstrained.
Thus the theory is not as assumption-free as one
is led to believe. In my opinion, this is the most
fundamental problem with the hypothesis. The in-
put distribution is typically not defined explicitly ,
but is assumed to be well represented by a collec-
tion of calibrated “naturalistic” images. One must
also specify which neurons are meant to satisfy the
hypothesis (e.g., neurons within a particular cell
class, or within a specific visual area, or across mul-
tiple visual areas), and how their responses are to
be measured (e.g., mean firing rates vs. individual
spike times). Again, cases of successful experimen-
tal measurement give reason for optimism.

Importance of noise. A final criticism of the
Efficient Coding Hypothesis is that “commonly
used versions of the theory that ignore noise and
other physical constraints are too simplistic.” This
is a valid criticism, but in many cases may not con-
stitute a fatal flaw. In particular, even simplistic
forms of the theory seem to make interesting pre-
dictions, and many authors have developed more
sophisticated versions of the theory that do include
physical constraints such as noise (see below).

Testing the Hypothesis

Although the efficient coding hypothesis is roughly
fifty years old, it has only recently been explored
quantitatively. This recent progress is due to three
fundamental improvements: (1) we have a much
better understanding of early sensory processing;
(2) mathematical and engineering tools have been
developed to describe and manipulate more com-
plex statistical models; and (3) advances in com-
puting and imaging technologies allow us to gather
and manipulate vast quantities of image data, both
for statistical modeling purposes, and for use as ex-
perimental stimuli.

There are two basic methodologies for testing and
refining the efficient coding hypotheses. The direct
approach is to examine the statistical properties
of neural responses under natural stimulation con-
ditions [e.g. 27, 21, 28, 29, 23]. An alternative
approach is to use the statistical properties of nat-
ural images to constrain or derive a model for early
sensory processing [e.g. 30, 31, 32, 33, 34, 19, 35,
36, 37, 38]. Below, I’ll review some recent examples
of each of these.

Experimental Tests

In recent years, there have been a number of inter-
esting experimental articles examining neural re-
sponses to naturalistic images or image sequences
(see [39] for a review). These authors measure effi-
ciency in a variety of different ways, and while some
of these seem confirmatory of the efficient coding,
others seem inconsistent. But on the whole, these
recent results are advancing our understanding of
the issues.

For example, Baddeley et. al. [29] had shown
that firing rate distributions of cat V1 neurons and
Monkey IT neurons were exponential under natu-
ralistic conditions, which implies optimal informa-
tion transmission for a fixed average rate. A subse-
quent study of monkey IT neurons found that only
a minority were well described by an exponential
firing distribution [40]. De Polavieja later argued
that the discrepancy was due to the fact that the
exponential solution is correct only in the noise-free
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case, and showed that by taking noise into consid-
eration, one could account for the data [41].

Similarly, previous results suggested that retinal
ganglion cells exhibit strong correlations in firing,
and that these patterns could provide useful infor-
mation [42] (although these experiments did not
directly address efficient coding, as they were not
based on natural image stimuli). A recent arti-
cle by Nirenberg et. al. [24] argues that retinal
ganglion cells act as independent encoders, based
on multi-cell recordings with natural stimuli, and
a novel (but controversial) choice of redundancy
measure. Reich et. al. [43] find that responses
of V1 neurons are nearly independent under non-
natural (approximately white noise) stimulation.
This seems inconsistent with efficient coding, since
one typically expects efficiency to degrade for non-
natural stimuli (e.g., [21]). Wiener et. al. [44] find
that the information encoded by the spike counts of
V1 neurons over moderate length intervals is nearly
the same for various artificial stimuli as it is for
naturalistic stimuli, but Vinje and Gallant [25] re-
cently reported that the presence of natural stimuli
in the nonclassical receptive field increases several
measures of informational efficiency. Finally, al-
though the study concerns the auditory system,
it is worth mentioning an interesting article by
Chechick et.al. [26], that provides one of the first
direct tests of the reduction of redundancy as one
ascends a sensory pathway.

A number of studies also suggest that the visual
system exhibits improved performance under nat-
uralistic input conditions. For example, Lewen et.
al. [45] demonstrated that the H1 neuron in the
blowfly responds over a substantially broader range
of velocities for outdoor scenes as compared with
indoor scenes. Kern et. al. [46] show that blowfly
neurons can encode turning directions independent
of environmental texture and spatial structure, but
only when the environment is “natural”. Although
the connection has not been carefully established,
the efficient coding hypothesis would seem to sug-
gest that optimal characterization of a neural sys-
tem might be best performed using naturalistic
stimuli. Experiments to demonstrate this have
been performed [e.g., 47], and recently developed

analysis techniques may provide the necessary tools
for characterization [48, 49].

Optimal Models

The second method of testing the hypothesis is
to derive a model for efficient coding of the envi-
ronment and then compare this with physiological
data. Many of the original attempts to accomplish
this were constrained to linear filtering and second-
order statistical modeling [e.g., 30, 31, 32, 33, 34,
19]. Recently, a number of authors have established
relationships between higher-order statistical prop-
erties and linear filtering [e.g., 35, 36]. Others have
used various forms of nonlinear processing such as
divisive gain control [38, 50, 51, 52]. In addition,
some authors are beginning to explore cascades of
redundancy-reduction stages. For example, Hoyer
and Hyvarinen [53] have developed a model that
forms contour-like receptive fields on the basis of
the statistical properties of V1 complex cells layer
under natural stimulus conditions.

Extensions

There are a variety of auxilliary constraints or ex-
tensions that authors have recently used to aug-
ment the efficiency hypothesis. Several authors
have tried to incorporate metabolic costs as a con-
straint [54, 55]. Recently, Balasubramanian and
Berry [56] demonstrated that retinal ganglion cells
in tiger salamander are optimized to transmit vi-
sual information at minimal metabolic cost, assum-
ing the symbols of the neural code are represented
by spike bursts of a given length. Although the
result is interesting, the data were recorded and
under artificial visual stimulation conditions, and
thus do not bear directly on the issue of environ-
mental statistics. Similarly, Gottschalk shows that
a hyperbolic ratio provides an optimal neural re-
sponse nonlinearity in that it maximizes informa-
tion transmission subject to a simple model of neu-
ral costs that includes both synaptic strength and
spike rate [57]. Again, the result is implicitly based
on white noise input stimuli, and thus does not
bear directly on the Efficient Coding Hypothesis.
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It has been proposed that efficient coding might
also apply to adaptive processes [58, 59, 60]. Bialek
and colleagues [61, 62] have demonstrated that
adaptation of the fly’s H1 neuron to the variance
of a white noise stimulus appears to optimize in-
formation trasmission.

Finally, a number of authors have augmented ef-
ficient coding with other constraints or principles.
Several authors have derived models for V1 com-
plex cells by maximizing the independence or tem-
poral coherence of cells constructed using nonlin-
ear combinations of linear subunits (e.g., sums of
squared linear filter responses) [63, 64, 65]. Balboa
and Grzywacz argue that lateral inhibition in the
retina retina is inconsistent with pure information
maximization, and provide an alternative hypoth-
esis that the system is designed to detect and rep-
resent image features in the presence of photon ab-
sorption noise [66]. And Twer and Mcleod showed
that color representation in monkey ganglion cells
is best understood in the context of optimizing the
average discriminability of color signals in the nat-
ural environment [67].

Conclusion

The recent resurgence of interest in efficient coding
has produced a number of interesting experimental
and theoretical results. But rather than merely so-
lidifying or disproving the basic hypothesis, this
body of work demonstrates the complexity and
subtlety of establishing firm quantitative connec-
tion between the properties of natural stimuli and
neural response. Most of the difficulty lies in the
definition of the input (what is a “natural” image?)
and the output (which neurons should be consid-
ered, and how does one define “neural response”?),
as well as the complexities of incorporating real-
istic constraints (e.g., noise, metabolic costs) and
realistic computational goals. As we wrestle with
these issues, it becomes clear that the value of effi-
cient coding has already far exceeded its role as a
hypothesis to be confirmed or disproven. The ef-
fort directed at studying this hypothesis has signif-
icantly advanced the field by increasing the general
level of quantitative investigation, by leading us to

carefully study and model the visual environment
from a statistical standpoint, by forcing us to con-
sider the influence of environmental statistics on
neural response, and by encouraging us to examine
neural response to natural stimuli. And although
it seems improbable that Efficient Coding will suf-
fice as the sole principle for understanding sensory
system design, it is clear that it will continue to
play an important role.
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