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We present a parametric statistical model for visual im-
ages in the wavelet transform domain. We characterize the
joint densities of coefficient magnitudes at adjacent spa-
tial locations, adjacent orientations, and adjacent spatial
scales. The model accounts for the statistics of a wide va-
riety of visual images. As a demonstration of this, we’ve
used the model to design a progressive image encoder with
state-of-the-art rate-distortion performance. We also show
promising examples of image restoration and texture syn-
thesis.

Vision is arguably our most important sensory system,
judging from both the ubiquity of visual forms of communi-
cation, and the large proportion of the human brain devoted
to visual processing. Nevertheless, it has proven difficult to
establish a good mathematical definition (in the form of a
statistical model) for visual images. Many applications in
image processing can benefit from a statistical prior model.
In addition, such a model is a necessary component of eco-
logical theories of vision, which hypothesize that biological
visual systems are constructed (through some combination
of evolution and development) to decompose and represent
the statistics of the visual world.

In this paper, we examine the problem of decomposing
digitized images, through linear and/or nonlinear transfor-
mations, into statistically independent components. The
classical approach to such a problem is Principal Compo-
nents Analysis (PCA), also known as the Karhunen-Loève
(KL) or Hotelling transform. This is a linear transform
that removes second-order dependencies between input pix-
els. The most well-known description of image statistics
is that their power spectra take the form of a power law
[e.g., 20, 11, 24]. Coupled with a constraint of translation-
invariance, this suggests that the Fourier transform is an ap-
propriate PCA representation. Fourier and related represen-
tations are widely used in image processing applications.
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1. Wavelet Marginal Statistical Model

Recently, multi-scale linear transforms such as wavelets
have become popular for image representation. Typically,
the basis functions of these representations are localized in
spatial position, orientation, and spatial frequency (scale).
For many applications, these appear to be superior to
Fourier representations. We believe that there are a number
of reasons for this. As with the Fourier basis, orthonormal
wavelets are good at decorrelating second-order pixel statis-
tics. In addition, image wavelet coefficients have signifi-
cantly non-Gaussian marginal statistics [e.g., 11, 17], while
Fourier coefficient marginals are much closer to Gaussian
(and thus have higher entropy).

Example histograms1 for wavelet subbands of several
images are plotted in figure 1. Compared with a Gaussian,
these densities are more sharply peaked at zero, with more
extensive tails. The intuitive explanation is that images con-
tain smooth areas interspersed with occasional sharp tran-
sitions (e.g., edges). The smooth regions produce small-
amplitude coefficients, and the transitions produce sparse
large-amplitude coefficients [11]. To quantify this, we give
the sample kurtosis (fourth moment divided by squared sec-
ond moment) below each histogram. The estimated kur-
toses of all of the subbands are significantly larger than the
value of three that characterizes a Gaussian distribution.

Also shown in figure 1 are two-parameter density func-
tions of the form [17, 28]:

P(c) ∝ e−|c/s|p . (1)

The density parameters {s, p} are estimated by minimizing
the relative entropy (the Kullback-Leibler divergence) be-
tween a discretized model distribution and the 256-bin co-
efficient histogram. The fits are generally quite good: The
CTscan fit in figure 1 is the worst in our data set.

1By considering these as representative of the underlying coefficient
densities, we are making an implicit assumption of spatial stationarity.
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Figure 1. Examples of 256-bin coefficient histograms for vertical bands of four images (“Boats”, “Lena”, “CTscan”, and “Toys”),
plotted in the log domain. Also shown (dashed lines) are fitted model densities corresponding to equation (1). Below each
histogram is the sample kurtosis (fourth moment divided by squared variance), and the relative entropy of the model.

 

Figure 2. Coefficient magnitudes of a wavelet decom-
position. Shown are absolute values of subband coeffi-
cients at three scales, and three orientations of a separable
wavelet decomposition of the “Einstein” image.

2. Wavelet Joint Statistical Model
Despite the decorrelation properties of the wavelet de-

composition, it is quite evident that wavelet coefficients are
not statistically independent. Figure 2 shows the magni-
tudes (absolute values) of coefficients in a four-level sepa-
rable wavelet decomposition. Large-magnitude coefficients
tend to lie along ridges with orientation matching that of the
subband. Large-magnitude coefficients also tend to occur at
the same relative spatial locations in subbands at adjacent
scales, and orientations.

In order to characterize these statistical relationships ex-
plicitly, consider two coefficients representing horizontal
information at adjacent scales, but the same spatial loca-
tion. Figure 3A shows the log-domain conditional his-
togram H (log2(C)| log2(P )), where P is the magnitude
of the coarse-scale coefficient and C is the magnitude of
the finer-scale coefficient. The right side of the distribution
is unimodal and concentrated about a unit-slope line, indi-
cating that C is roughly proportional to P . Furthermore,
vertical cross sections (i.e., the histogram conditioned on a
fixed value of P ) have roughly the same shape for different
values of P . The left side of the distribution is concentrated

about a horizontal line, suggesting that C is independent of
P in this region. The form of the histogram shown in fig-
ure 3A also holds for pairs of coefficients at adjacent spatial
locations and orientations, and is surprisingly robust across
a wide range of images [3].

Given the linear relationship between large-amplitude
coefficients and the difficulty of characterizing the full den-
sity of a coefficient conditioned on its neighbors, we’ve ex-
amined a linear predictor for coefficient magnitude. Fig-
ure 3B shows a histogram of C conditioned on a linear
combination of the magnitudes, Qk, of eight adjacent co-
efficients in the same subband, two coefficients at other ori-
entations, and a coefficient at a coarser scale. The linear
combination, 〈~w, ~Q〉, is chosen to be least-squares optimal.
The histogram is similar to the single-band conditional his-
togram of figure 3A. But the linear region is extended, and
the conditional variance is significantly reduced.

In order to determine which coefficients to include in the
conditioning set {Qk}, we calculated the mutual informa-
tion between C and 〈~w, ~Q〉 for a variety of choices of in-
terband and intraband coefficients. We used a greedy algo-
rithm to choose the causal conditioning neighbors yielding
the largest reduction in entropy.

The form of these log-domain conditional histograms (in
particular, the independence at small magnitudes, and the
nearly constant shape that shifts linearly with the predictor
at large magnitudes) suggests a model of multiplicative un-
certainty with additive noise, which we write as:

C = M · 〈~w, ~Q〉 + N, (2)

where M and N are two mutually independent zero-mean
random variables. The distribution of M is determined
empirically. We construct a lookup table for the conditional
cumulative distribution in the log domain by averaging the
mean- and variance-normalized conditional histograms of
three training images at two scales and all three orientations.
We assume N is Gaussian distributed. The parameters of
the model are thus the variances of M (in the log domain)
and N , and the weights {wk}. The weights are chosen to
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Figure 3. Conditional histograms of the log magnitude of a coefficient in a horizontal subband of the “Boats” image. Intensity
corresponds to probability, except that each column has been independently rescaled to fill the full intensity range. A: Conditioned
on the log magnitude of a coefficient in a coarser-scale horizontal subband. B: Conditioned on the log of a linear combination of
coefficient magnitudes from adjacent spatial positions, orientations, and scales. C: Model of equation (2) fitted to the conditional
histogram in B. D: Divisively normalized coefficient (see text).

be least-square optimal, and the variances are then chosen
to minimize the relative entropy between the joint model
density and the joint histogram. Figure 3C shows the model
density that best fits the density of figure 3B.

Finally, consider the goal of independent components
described in the introduction. The variance of coefficient
C depends on its neighbors, ~Q, but this dependency may be
removed by calculating a divisively normalized component:

C̃ = C/

√

〈~w, ~Q〉2 + σ2

Figure 3D shows the conditional density of this normal-
ized component, which is seen to be roughly independent
of 〈~w, ~Q〉.

3. Compression
Wavelets have been particularly successful for image

compression. Although many image coders do not incor-
porate an explicit probability model, a number of recent al-
gorithms make use of joint statistical regularities between
wavelet coefficients [19, 27, 22, 26, 15, 25, 6, 32, 16].

We have constructed two coders called EPWIC [4, 29, 3]
based directly on the probability models described in sec-
tions 1 and 2. In both coders, subband coefficients are en-
coded one bitplane at a time using a non-adaptive arithmetic
encoder that utilizes probabilities calculated from the corre-
sponding model. Bitplanes are ordered using a greedy al-
gorithm that considers the MSE reduction per encoded bit.
The decoder uses the statistical model to predict coefficient
values based on the bits it has received.

Figure 4 shows a comparison of our coders to two well-
known coders: the JPEG coder2, and the Embedded Ze-
rotree Wavelet (EZW) coder [27]. Also shown in figure 4
is the relative encoding size as a function of target PSNR.
This gives a sense of how long one would wait during a pro-
gressive transmission for an image of a given quality. The

2Independent JPEG Group’s CJPEG, version 5b.
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Figure 4. Relative rate-distortion tradeoff for four im-
age coders (JPEG, EZW, EPWIC-1, and EPWIC-2). Top:
PSNR values (in dB), relative to EPWIC-1, as a func-
tion of the number of encoded bytes. Bottom: Number
of bytes necessary to achieve a given PSNR, relative to
EPWIC-1. All curves are averages over a set of 13 im-
ages (512 × 512, 8-bit pixels).
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coders perform quite well, despite considerable overhead,
and a direct (non-heuristic) implementation. EPWIC-1 uti-
lizes only marginal statistics, but is comparable to EZW,
which captures coefficient structure across scale. EPWIC-
2, which encodes the normalized components described in
section 2, significantly outperforms the other techniques.

4. Restoration
The classical solution to the noise removal problem is

the Wiener filter, which assumes an image model of in-
dependent Gaussian-distributed coefficients in the Fourier
domain. On the other hand, the non-Gaussian marginal
statistics of filtered subbands have been utilized implicitly
in a noise removal procedure known as “coring” [e.g., 23,
1, 5, 18], a simple version of which is used in consumer
videocassette players. In this approach, the image is split
into subbands, and the coefficients are thresholded to sup-
press low-amplitude values while retaining high-amplitude
values. Recent work has provided statistical justification
for such algorithms [e.g., 10]. As a simple example, a
least-squares Bayesian estimator, assuming non-Gaussian
marginal statistics of the type shown in figure 1, is a nonlin-
ear function in the form of a softened coring function [28].

We’ve been developing a semi-blind noise-removal algo-
rithm based on the joint statistical model of section 2. We
use an overcomplete tight frame representation with four
oriented subbands at each scale [30]. We use a causal neigh-
borhood of size 18 and bootstrap to estimate model param-
eters. For each subbands, from coarse to fine, we:

1. Adjust subband variances:

C ′ =

√

E(C2)−σ2

E(C2) · C

2. Estimate normalization weights based on C ′:

~w = E
(

~Q · ~QT
)−1

· E
(

~Q · |C ′|
)

3. Compute a Wiener estimate, using the neighbor-
predicted variance:

Ĉ =
〈~w, ~Q〉2

〈~w, ~Q〉2 + σ2
· C

Figure 5 shows comparisons of Wiener filtering, Bayes
least-square coring [28], and the joint algorithm. Each al-
gorithm is “semi-blind”: the contaminating noise is additive
white Gaussian with known variance. The joint algorithm
produces better results, both visually and in SNR.

5. Synthesis
There is a large body of literature on texture synthesis,

with much of it based on Markov Random Fields [e.g., 8,

12]. Recent techniques have been developed to synthesize
images with the same wavelet coefficient marginal statis-
tics as those of an example image. In particular, Heeger
and Bergen [13] used an overcomplete basis, and iteratively
alternated between matching the subband histograms, and
matching the pixel histogram. Zhu et. al. [33] used Gibbs
sampling to draw from the maximal-entropy distribution
with the same marginals as the example image. This tech-
nique may be applied to the marginals of linear or non-linear
operators. But in contrast to the Heeger and Bergen algo-
rithm, it is extremely expensive computationally.

The use of joint statistics of rectified subband coeffi-
cients for texture analysis appears often in the human vi-
sion literature in the form of “second-order” texture mod-
els [e.g., 2, 7]. Recent nonlinear joint models have given
impressive synthesis results. Popat and Picard [21] have
developed a probability model for densities of local coeffi-
cient clusters (including those at different scales), and used
it to synthesize texture examples. DeBonet and Viola [9]
describe a fast heuristic synthesis technique which captures
joint relationships across scale.

We’ve been working to develop a synthesis algorithm3

based on the joint statistical observations of section 2.
Within each subband of a steerable pyramid [30], we match
the correlation of the magnitudes of a set of neighboring
(in spatial position, orientation, and scale) coefficients, ~Q,
using a linear transformation closest to the identity. In par-
ticular, we solve for matrix A that

minimizes: E
(

|| ~Q − A~Q||2
)

subject to: E
(

A~Q~QT AT
)

= E
(

~Q0
~Q0

T
)

,

We alternate between applying A, and projecting into the
image subspace. The density from which we are sampling
is thus not explicit, but the algorithm does converge quickly
(minutes). Figure 6 shows comparisons to the Heeger-
Bergen algorithm for three/////// example textures. For each, the two
joint algorithm is seen to better capture the structure of the
underlying texture. The second example (a piece of fabric)
is particularly impressive, as our algorithm captures both
the fine-scale diagonals of the fabric, and the organization
of these diagonals into vertical bands.

6. Discussion
We’ve described a parameterized model for the joint

statistics of wavelet coefficient magnitudes, and demon-
strated its use in applications of compression, restoration,
and synthesis. The results are quite strong, considering the
simplicity of the model.

Many aspects of the model could be improved. The most
obvious of these is to describe the signs of the coefficients,
which exhibit significant statistical regularity. We estimate

3Joint work with Javier Portilla, Instituto de Optica.
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Figure 5: Semi-blind noise removal example (see text).

Figure 6. Texture synthesis examples. Left: Original texture example. Center: First-order model synthesis [13]. Right: Joint
model synthesis.
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that the entropy of the sign bits, given a simple prediction
from neighboring signs, is about 0.4 bits/coefficient and
could thus give substantial coding improvements. These re-
lationships could also improve the restoration and synthesis
results. In addition, the model does not accurately account
for statistics of overcomplete bases (as used in both the
restoration and synthesis examples), since the coefficients
of such transforms are not decorrelated.

There are also many other interesting applications. We
are working to develop more controlled synthesis and en-
hancement techniques that can take into account spatial or
scale constraints [e.g., 14]. A simple example is “super-
resolution”, in which one synthesizes fine-scale detail. In
addition, the decomposition into independent components
(described above) using divisive normalization may provide
the first theoretical justification for current models of pro-
cessing in visual cortex [e.g., 31].
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