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ABSTRACT

The estimation of high-dimensional probability density
functions (PDFs) is not an easy task for many image process-
ing applications. The linear models assumed by widely used
transforms are often quite restrictive to describe the PDF of
natural images. In fact, additional non-linear processing is
needed to overcome the limitations of the model. On the con-
trary, the class of techniques collectively known as projec-
tion pursuit, which solve the high-dimensional problem by se-
quential univariate solutions, may be applied to very general
PDFs (e.g. iterative Gaussianization procedures). However,
the associated computational cost has prevented their exten-
sive use in image processing.

In this work, we propose a fast alternative to iterative
Gaussianization methods that makes it suitable for image pro-
cessing while ensuring its theoretical convergence. Method
performance is successfully illustrated in image synthesis and
classification problems.

Index Terms— Gaussianization, PCA, density estima-
tion, image synthesis, one-class image classification.

1. INTRODUCTION

Many image processing applications such as coding, restora-
tion, classification or synthesis greatly depend on an appro-
priate description of the PDF of the signal. However, den-
sity estimation is a challenging problem when dealing with
high-dimensional signals because direct sampling of the input
space is not an easy task due to the curse of dimensionality.

The aim of image representations (or transforms) is to in-
clude the properties of the signal in the transform parame-
ters. However, the most popular representations rely on linear
models that are too restrictive to describe natural images glob-
ally. For instance, PCA and local DCT assume a Gaussian
source, while linear ICA and wavelets assume that images
come from the linear combination of independent sources.
These assumptions are not completely correct: for instance,
a usual combination rule in natural scenes such as occlusion
is intrinsically non-linear. This implies that residual relations
among coefficients still remain after any linear transform. The
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unsuitability of linear transforms to encompass the complex-
ity of natural images implies that a number of tricks have to
be added after the linear transform in order to describe the re-
maining relations. Examples of successful characterization of
post-transforms relations include texture synthesis [1], image
coding [2, 3], or image denoising [4].

On the contrary, the class of techniques collectively known
as projection pursuit [5, 6] may be applied to very general
PDFs. These techniques solve the high-dimensional density
estimation problem by successive univariate solutions thus
circumventing the curse of dimensionality. For instance, the
Gaussianization procedure proposed in [7] performs a series
of linear ICA transforms followed by marginal Gaussianiza-
tion in every transformed dimension. We will refer to this
particular projection pursuit technique as GICA. Since con-
vergence is guaranteed, after an appropriate number of iter-
ations, any arbitrary PDF can be turned into a unit variance
Gaussian, and thus (unlike linear transforms) complete in-
dependence among coefficients is achieved. The richness of
the PDF under consideration is captured by the series of ICA
transforms and the corresponding marginal non-linearities.

The weakness of general projection pursuit techniques,
and also of GICA, is their computational cost. Note that, in
this case, ICA is performed in each iteration: robust ICA al-
gorithms such as RADICAL [8] lead to extremely slow con-
vergence while convenient alternatives such as FastICA [9]
may not converge. This explains why, so far, GICA has been
applied just to low-dimensional (audio) signals [10, 11].

These problems could be alleviated by the recently pro-
posed single-step (non-iterative) Gaussianization transforms
[12, 13]. Unfortunately, these single step procedures are also
restricted to particular PDF classes: (1) PDFs defined in con-
vex domains so that the final Gaussian can be achieved by
marginal Gaussianization of every dimension in the appropri-
ate axes [12], or (2) elliptically symmetric PDFs so that the fi-
nal Gaussian can be achieved by equalizing the length (norm)
of the whitened samples [13]. In the case of images, the ellip-
tical symmetry, and consequently convex domain, is true for
small image patches (e.g. 10×10 pixels), but does not hold for
bigger neighborhoods [13]. According to this, a general (yet
computationally affordable) PDF estimation technique suited
to image processing applications is not available yet.

In this work, we propose a fast alternative to GICA [7] that
makes it suitable for image processing applications. In each
iteration, we use the standard PCA as an alternative to linear



ICA, thus obtaining the desired Gaussianization through iter-
ated PCA and marginal Gaussianization (GPCA). Here, we
show that using an orthogonal linear transform in the iterative
procedure does not change the theoretical convergence nor the
convergence rate in practice. As a result, a much faster pro-
cedure is obtained while keeping the appealing properties of
the original method.

The paper is outlined as follows. Section 2 reviews the
original GICA formulation. Section 3 presents the proposed
GPCA method, demonstrates its theoretical convergence, and
shows that, in practice, GPCA converges to GICA-like solu-
tions in a fraction of the time. Section 4 illustrates the po-
tential of Gaussianization in image processing by using the
proposed GPCA in synthesis and classification problems. Fi-
nally, Section 5 draws the conclusions of the work.

2. ICA GAUSSIANIZATION (GICA)

Given a d-dimensional random variable x(0), in each iteration
k, the ICA-based Gaussianization (GICA) performs:

x(k+1) = Ψ(k)(A(k)x(k)), (1)

where A is a linear transform, and Ψ is the marginal Gaus-
sianization of each dimension of Ax.

It can be shown that by choosing the matrices A(k) that
minimize the mutual information of transformed data, the se-
ries of the corresponding PDFs, p(x(k)), converges to a mul-
tivariate Gaussian distribution N (0, I) [7]. Since ICA tech-
niques fulfil the above requirement by definition, these are
used to compute A(k). Note that, in this particular projec-
tion pursuit method, the general idea of seeking for interest-
ing projections reduces to looking for the most independent
projected features in each iteration.

The interesting property of GICA is that any dataset can
be turned into a multivariate Gaussian through an invertible
and differentiable transform. Being a Gaussian distribution
(fully independent features) implies that the complexity of the
original PDF is encoded in the transform. Transform invert-
ibility allows us to achieve solutions in the original domain
while operating in a well-characterized (Gaussian) domain.
Finally, as the transform is differentiable, one can estimate the
PDF in the original domain from the Jacobian in each point.

The main problem of GICA is its computational cost, as
it relies on performing ICA at every iteration. ICA has no
closed-form solution and iterative methods must be deployed.
Robust ICA algorithms, such as RADICAL [8], are extremely
slow while convenient alternatives, such as FastICA [9], may
not converge in all cases. A second and critical problem is
that, surprisingly, no practical criterion to stop the iterative
procedure was proposed in [7]. However, note that after a
number of iterations, no significant gain may be achieved in
terms of independence of the transformed features.

3. PCA GAUSSIANIZATION (GPCA)

Here, we propose to solve the aforementioned problems of
GICA by replacing linear ICA transforms A(k) with a se-

ries of orthogonal transforms B(k) obtained through linear
PCA, referred to as GPCA. Unlike ICA, using PCA ensures a
closed-form stable and unique solution and the computational
burden is dramatically reduced. While this may seem a naı̈ve
solution, some non-trivial questions arise:

• Is convergence of the new algorithm guaranteed?
• Do GICA and GPCA solutions differ?

In the following subsections we address these questions both
theoretically and experimentally.

3.1. Convergence of GPCA

The series of PDFs corresponding to x(k) following (1) and
fulfiling

lim
k→∞

(
sup

‖α‖2=1

J(α>x(k))
)

= 0 (2)

converges to a normal distribution N (0, I) [6], where J(·) is
the negentropy (i.e. the Kullback-Leibler divergence between
a random variable and a normal), and α represents any possi-
ble orthogonal projection of the data.
It is easy to see that

J∗ = sup
‖α‖2=1

J(α>x(k)) ≤ I(x(k))− inf
U

I(U>x(k)), (3)

where U is any possible orthogonal matrix and I(·) is the
mutual information. Note that the infimum term in (3) will be
smaller for non-orthogonal matrices A, and thus

J∗ ≤ I(x(k))− inf
A

I(Ax(k)). (4)

ICA computes matrices A(k) such that mutual information is
minimized. In addition, it can be shown that the negentropy
reduction in each iteration ∆(k)

ICA equals the right hand side
term in (4), and its limit is zero. Hence, since J∗ is bounded
by ∆(k)

ICA, p(x(k)) → N (0, I).
When using PCA instead of ICA, it is not possible to ob-

tain (4) since PCA matrices B(k) do not necessarily minimize
mutual information among all possible orthogonal transforms
U. However, one can always define an upper bound for J∗

by using an ε > 0 such that,

J∗ ≤ I(x(k))−inf
U

I(U>x(k)) ≤
1
ε

(
I(x(k))−I(B>

(k)x(k))
)

provided that I(x(k))− I(B>
(k)x(k)) ≥ 0. If, in addition, this

upper bound tends to zero, convergence of GPCA is guaran-
teed. In the following, these conditions are demonstrated.

Upper bound is positive. Negentropy reduction in each itera-
tion when using PCA reduces to ∆(k)

PCA = I(x(k))−I(B>
(k)x(k)).

The mutual information can be decomposed into second and
higher order terms:

I(x(k)) =
d∑

i=1

log(Cii)− log(|C|) + J(x(k))− JM (x(k)),



where C is the covariance matrix of x(k), and JM (·) is the
marginal negentropy defined as the sum of univariate negen-
tropies. Since x(k) is marginally gaussianized, Cii = 1 ∀i,
and therefore the first and last terms vanish. Also, note that as
the sum of the eigenvalues is

∑d
i=1 λi = tr(C) = d, Πiλi ≤ 1,

then the second term log(|C|) = log(Πiλi) ≤ 0. After PCA,
the covariance is diagonal Λ, and the mutual information is

I(B>
(k)x(k)) = log(Πiλi)− log(|Λ|)

+ J(B>
(k)x(k))− JM (B>

(k)x(k)).

Since J(B>
(k)x(k)) = J(x(k)), |C| = |Λ|, and given that

JM (·) ≥ 0 by definition, then
∆(k)

PCA = JM (B>
(k)x(k))− log(Πiλi) ≥ 0

Upper bound tends to zero. As I(B>
(k)x(k)) ≥ I(A(k)x(k)),

then ∆(k)
PCA ≤∆(k)

ICA. Since ∆(k)
ICA tends to zero, and ∆(k)

PCA ≥ 0,
as demonstrated before, then ∆(k)

PCA tends to zero.

3.2. Stopping Criterion

The previous theoretical convergence limit does not provide a
practical criterion to stop the iteration. Note that one should
stop the series of transforms when the reduction in negen-
tropy (distance to a Gaussian) is small enough. On the one
hand, when approaching the theoretical limit (infinite itera-
tions), the reduction is not zero but the different solutions are
quite similar. Therefore, in practice, a much lower number
of iterations is needed. On the other hand, another practical
issue concerns cross-validation: in order to avoid over-fitting
to a particular data set, it is convenient to train the transform
with a representative data subset and evaluate the information
measurement in an independent yet representative test subset.
Therefore, we propose to stop the iteration when the informa-
tion measure is minimum in this test subset.

This criterion involves computing the negentropy reduc-
tion in the test subset at each iteration,

∆(k)
PCA =

d∑

i=1

H(x(k))−
d∑

i=1

H(B>
(k)x(k)) + E

[
log(|B>

(k)|)
]

where only univariate (reliable) entropy measures, H , are nee-
ded since |B>

(k)| = 1.

3.3. Performance of GPCA vs GICA

Here, we analyze two important characteristics of GPCA: the
convergence rate and the computational cost. Figure 1 illus-
trates the performance of our method in a 2D highly non-
Gaussian manifold. The proposed early-stopping criterion
was applied: the transform was learned with 2/3 of the data
and validated in the rest. Figure 1 shows how at each itera-
tion the (accumulated) redundancy reduction ∆I converges
for both GICA1 and GPCA, and our method achieves vir-
tually the same results with a slightly higher number of it-
erations (37 vs 25). Note, however, that it does not imply

1We used the FastICA algorithm [9] to speed up learning.
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Fig. 1. Performance of GPCA in a toy example. Original and
transformed data (top), and cumulative ∆I for each iteration
for GPCA (solid) and GICA (dashed). Optimal iterations are
highlighted. Inset scatter plots show the achieved GPCA so-
lution at different iterations.

GPCA GICA
dim ∆I [bpp] Time [s] ∆I [bpp] Time [s]
2× 2 1.51 14 1.54 865
3× 3 2.05 34 2.08 1236
4× 4 2.29 63 2.38 2197
5× 5 2.44 99 2.50 3727
6× 6 2.56 141 2.60 6106
7× 7 2.63 170 2.68 9329
8× 8 2.69 233 2.69 15085

Table 1. Cumulative ∆I and CPU time for GICA and GPCA.

a higher computational load, as PCA is much cheaper than
ICA. This advantage is more relevant in higher dimensional
problems. To assess this, we Gaussianized patches of differ-
ent sizes from the image ‘Barbara’. Results for both CPU
time and the achieved ∆I are presented in Table 1. For sim-
ilar ∆I reductions, more than an order of magnitude in com-
putation time is gained by GPCA, e.g. when working with
8× 8 patches GPCA takes about 4 minutes while GICA takes
around 4 hours.

4. EXPERIMENTAL RESULTS

This section presents the capabilities of the proposed GPCA
in two image processing applications: image synthesis and
target detection in multispectral images.
Experiment 1: Image Synthesis. A nice property of GPCA
is invertibility. In this experiment, we applied GPCA to de-
scribe the PDF of a database of 2400 faces [14]. Images
cropped to 17×15 pixels were used to learn the transform that



‘Gaussianizes’ the data. Then, the inverse of the transform
was applied to random samples generated from a multivari-
ate Gaussian. This operation leads to new synthetic faces in
the original space. Figure 2 shows real (top) and synthesized
images (bottom), which are a realistic representation of the
learned PDF. Finally, note that dimension d = 17 · 15 = 255,
is unaffordable for GICA (cf. Table 1).

Fig. 2. Original (top) and GPCA synthetic faces (bottom).

Experiment 2: Multisource one-class image classification.
We stacked at a pixel level seven Landsat bands, two SAR
backscattering intensities, and its interferometric coherence
for target detection (d = 10). We compare the performance of
the GPCA with the support vector domain descriptor (SVDD)
since they are conceptually similar. On the one hand, GPCA
learns the class of interest (‘urban’) in the scene. Then test
samples are transformed and classified as target if they lie in-
side the sphere containing 1− ν fraction of the Gaussian dis-
tribution. On the other hand, SVDD finds a minimum volume
sphere in a kernel feature space that contains 1 − ν fraction
of the training samples [15]. We used the RBF kernel for the
SVDD whose width was varied in the range σ ∈ [10−3, 103].
The fraction rejection parameter was varied in ν ∈ [0, 10−1]
for both methods. The best parameters were selected through
3-fold cross-validation in the training set (1500 pixels). The
experiment was repeated for 20 different random realizations.
The average overall accuracy (OA) and kappa statistic (κ) in
the test set (40000 pixels) for the SVDD were OA = 87 ± 9
and κ = 0.75± 0.19, while GPCA obtained OA = 91± 4 and
κ = 0.83± 0.07. Figure 3 shows the classification maps for a
representative realization. Note that GPCA better rejects the
‘non-urban’ areas (in white).

5. CONCLUSIONS

We proposed a fast alternative to iterative Gaussianization
methods that makes it suitable for image processing. The pro-
posed GPCA consists of iteratively applying PCA and mar-
ginal Gaussianization to any original dataset, thus leading to
a multivariate Gaussian. Theoretical convergence of the pro-
posed method has been proved. It exhibits fast and stable
convergence rates through a suitable early-stopping criterion.
Finally, the computational cost is dramatically reduced com-
pared to ICA-based Gaussianization methods. Method per-
formance is successfully illustrated in image synthesis and
classification problems.

Fig. 3. Ground truth (left), SVDD (middle), GPCA (right).
Black: unknown class, Gray: urban, White: non-urban.
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