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ABSTRACT

The most successful one-class classification methods are discriminative approaches aimed at separating the class of
interest from the outliers in a proper feature space. For instance, the support vector domain description (SVDD)
has been successfully introduced for solving one-class remote sensing classification problems when scarce and
uncertain labeled data is available. The success of this kernel method is due to that maximum margin nonlinear
separation boundaries are implicitly defined, thus avoiding the hard and ill-conditioned problem of estimating
probability density functions (PDFs). Certainly, PDF estimation is not an easy task, particularly in the case of
high-dimensional PDFs such as is the case of remote sensing data. In high-dimensional PDF estimation, linear
models assumed by widely used transforms are often quite restrictive to describe the PDF. As a result, additional
non-linear processing is typically needed to overcome the limitations of the models. In this work we focus on
the multivariate Gaussianization method for PDF estimation. The method is based on the Projection Pursuit
Density Estimation (PPDE) technique.1 The original PPDE procedure consists in iteratively project the data
in the most non-Gaussian directions (like in ICA algorithms) and Gaussianizing them marginally. However,
the extremely high computational cost associated to multiple ICA evaluations has prevented its practical use in
high-dimensional problems such as those encountered in image processing. Here, we propose a fast alternative
to iterative Gaussianization that makes it suitable for remote sensing applications while ensuring its theoretical
convergence. Method’s performance is successfully illustrated in the challenging problem of urban monitoring.

Keywords: Projection Pursuit, Gaussianization, PCA, density estimation, one-class, image classification, urban
monitoring

1. INTRODUCTION

During the last decade, many methods have been developed to classify remote sensing images. The field comprises
different learning paradigms, either supervised, unsupervised or semi-supervised. In the case of supervised
classification, the user is given a number of labeled pixels belonging to different classes to develop a model
that extrapolates well to unseen situations. The image classification problem is complex due to the potentially
high dimension of available samples, low-sized labeled datasets, the presence of different noise sources, the non-
stationary behaviour of land-cover spectral signatures, and the nonlinearities involved in the problem.2 In such
difficult situations, classifiers should produce accurate land-cover maps.

However, in many remote sensing applications, acquiring ground truth information for all classes is very
difficult, especially when complex and heterogeneous geographical areas are analyzed. Actually, many other
applications have turned to recognize one specific land-cover class of interest and to discriminate it from the
other classes present in the investigated area. This formulation of the problem relaxes the constraint of having
an exhaustive training set, but requires the availability of representative training data for the analyzed class and,
if possible, some training samples representative of other classes, considered as outliers. Lately, high interest
has been payed to this approach through the fields of: 1) anomaly detection, where one tries to identify pixels
differing significantly from the background; and 2) target detection, where the target spectral signature is assumed
to be known (or available from spectral libraries), and the goal is to detect pixels that match the target; and 3)
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one-class classification, where one tries to detect one class and reject the others. In this paper, we focus on this
latter problem of one-class classification.

Classical one-class classification methods are based on single hypothesis testing methods, which are intrinsi-
cally devoted to recognize the samples of one specific class from a heterogeneous distribution. Examples include
the one-class Gaussian and the mixture of Gaussians methods, where the target class is either modeled using
just one Gaussian or a mixture of K Gaussians, respectively.3 The methods may work well in some well-sampled
scenarios but the general assumption of Gaussianity in the input domain is not certainly a good choice in many
cases. Another popular one-class method is the k-nearest neighbor algorithm, in which labels to test samples are
assigned by computing the kth normalized distance to their nearest neighbor.4 Despite its good performance in
general, the accuracy of the k-nearest neighbor decreases severely if not enough training data is available, the
data is composed of heterogeneous features or modalities, or when dealing with high dimensional feature spaces.5

These are the common situations in remote sensing data classification: typically low number of training samples
are available, one is usually interested in combining multisource information which dramatically increases data
dimensionality. Despite these shortcomings, some applications of these methods can be found for remote sensing
applications.6–9 Lately, the introduction of kernel methods10, 11 alleviated these problems: in particular, the sup-
port vector domain description (SVDD) method has been recently introduced for specific one-class classification
problems in remote sensing.7, 12–16 The success of kernel methods in general, and of the SVDD in particular,
is due to that maximum margin nonlinear separation boundaries are defined implicitely, thus avoiding the hard
and ill-conditioned problem of estimating probability density functions (PDFs).

In this paper, we focus on tackling the high-dimensional PDF estimation problem. For this purpose, we
propose a simple method based on transforming the labeled image data to a statistically tractable feature space:
the multivariate Gaussian. This, of course, cannot be done with a single linear transform due to its intrinsic
limitations. For instance, PCA and local DCT assume a Gaussian source, while linear ICA and wavelets assume
that images come from the linear combination of independent sources. These assumptions are not completely
correct: for instance, a usual combination rule in natural scenes such as occlusion is intrinsically non-linear. This
implies that residual relations among features still remain after any linear transform. The unsuitability of linear
transforms to encompass the complexity of natural images implies that a number of tricks have to be added
after the linear transform in order to describe the remaining relations. Examples of successful characterization
of post-transforms relations include texture synthesis,17 image coding,18, 19 or image denoising.20

On the contrary, the class of techniques collectively known as projection pursuit1, 21 may be applied to very
general PDFs. Using projection pursuit for hyperspectral image classification has been studied previously in
22–24. Jimenez and Landgrebe22 designed a projection index based on Bhattacharyya’s distance to reduce the
dimensionality of feature space. Ifarragaerri and Chang23 used the information divergence (relative entropy)
criterion to look for interesting projections that deviate from Gaussian distributions. Chiang and co-workers24

developed evolutionary algorithms to find the best linear transform for a number of projection indices. However,
none of the above approaches used projection pursuit to deal with the general PDF estimation problem.

Projection pursuit density estimation techniques solve the high-dimensional estimation problem by successive
marginal univariate solutions thus circumventing the curse of dimensionality. For instance, the Gaussianization
procedure proposed in Ref. 25 performs a series of linear ICA transforms followed by marginal Gaussianiza-
tion in every transformed dimension. We will refer to this particular projection pursuit technique as G-ICA:
Gaussianization through iterative ICA and marginal Gaussianization. Since convergence is guaranteed, after
an appropriate number of iterations, any arbitrary PDF can be turned into a unit variance multidimensional
Gaussian, and thus (unlike linear transforms) complete independence among features is achieved. The richness
of the PDF under consideration is captured by the series of ICA transforms and the corresponding marginal
non-linearities.

The weakness of general projection pursuit density estimation techniques, and also of G-ICA, is their com-
putational cost. Note that, in this case, ICA is performed in each iteration: robust ICA algorithms such as
RADICAL26 lead to extremely slow convergence while convenient alternatives such as FastICA27 may not con-
verge. This explains why, so far, G-ICA has been applied just to low-dimensional signals.28, 29 These problems
could be alleviated by the recently proposed single-step (non-iterative) Gaussianization transforms.30, 31 Unfor-
tunately, these single step procedures are also restricted to particular PDF classes: (1) PDFs defined in convex



domains so that the final Gaussian can be achieved by marginal Gaussianization of every dimension in the ap-
propriate axes,30 or (2) elliptically symmetric PDFs so that the final Gaussian can be achieved by equalizing
the length (norm) of the whitened samples.31 In the case of images, the elliptical symmetry, and consequently
convex domain, is true for small image patches (e.g. 10×10 pixels), but does not hold for bigger neighborhoods.31

Moreover, the PDF of the spectral signatures may not necessarily fulfill these constraints. According to this,
a general (yet computationally affordable) PDF estimation technique suited to image processing applications is
not available yet.

In this work, we propose a fast alternative to G-ICA25 that makes it suitable for high-dimensional remote
sensing image applications. In each iteration, we use the standard PCA as an alternative to linear ICA, thus
obtaining the desired result through iterated marginal Gaussianization and PCA (G-PCA). We show that using
orthogonal linear transforms in the procedure does not change the theoretical convergence nor the convergence
rate in practice. As a result, the proposed method reduces computation time by more than one order of magni-
tude, while keeping the appealing properties of the original method.

The paper is outlined as follows. In Section 2 we present the G-PCA transform compared to the previous
G-ICA technique. Then we prove its theoretical convergence, and show that, in practice, G-PCA converges to
G-ICA-like solutions in a fraction of the time. Section 3 analyzes the Jacobian of the G-ICA transform, which is
the key factor for PDF estimation. The ability of G-PCA for PDF estimation is illustrated by using 2D examples.
Section 4 shows the experimental results of the proposed method in non-linearly separable classification problems
and in the challenging multispectral and multisource urban monitoring. Finally, Section 5 draws the conclusions
of the work.

2. PCA GAUSSIANIZATION (G-PCA)
The inspiring paper of Chen and Gopinath25 proposed a multivariate Gaussianization technique to turn any
random variable into a unit variance multidimensional Gaussian by recursive application of linear ICA and
marginal Gaussianization of the transformed variables. In this particular projection pursuit method, the general
idea of seeking for interesting projections reduces to looking for the most independent projected features (linear
ICA features) in each iteration. Beyond the theoretical convergence to a Gaussian, the nice property of G-ICA
is that the transform is invertible and differentiable. Invertibility allows us to achieve solutions in the original
domain while operating in a well-characterized (Gaussian) domain. Differentiability, allows to estimate the PDF
in the original domain from the Jacobian of the transform in each point. However, as stated above, reliable ICA
algorithms are extremely slow while fast algorithms may not converge.

Here, we propose to solve the aforementioned problems of G-ICA replacing linear ICA transforms with a
series of orthogonal transforms obtained through linear PCA. Accordingly, we will refer to this PCA-based
Gaussianization as G-PCA. Unlike ICA, using PCA ensures a closed form stable and unique solution in each
iteration while dramatically reducing the computational burden. We, in addition, exchange the order of marginal
Gaussianization and linear transform in each iteration. Even though this does not induce qualitative differences
for a sufficiently large number of iterations, it is mathematically more convenient to prove method’s convergence.

The proposed algorithm is summarized as follows: given a d-dimensional random variable x(0) = [x1, . . . , xd]�,
following a PDF, p(x(0)), in each iteration k, G-PCA performs:

x(k+1) = B(k) · Ψ(k)(x(k)), (1)

where Ψ(k) is the marginal Gaussianization of each dimension of x(k) for the corresponding iteration, and B(k)

is the PCA transform matrix for the marginally Gaussianized variable Ψ(k)(x(k)). Marginal Gaussianization in
each dimension, Ψi

(k), can be decomposed into two equalization transforms: (1) marginal uniformization, U i
(k),

based on the cumulative density function of the marginal PDF, and (2) Gaussianization of a uniform variable,
G(u), based on the inverse of the cumulative density function of a univariate Gaussian: Ψi

(k) = G�U i
(k), where:

u = U i
(k)(x

(k)
i ) =

∫ x
(k)
i

−∞
pi(x

′(k)
i ) dx

′(k)
i (2)

G−1(xi) =
∫ xi

−∞
g(x′

i) dx′
i (3)
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Figure 1. Example of marginal Gaussianization in a particular dimension i. From left to right: marginal PDF of xi,
uniformization transform u = U i(xi), PDF of the uniformized variable p(u), Gaussianization transform G(u), and PDF
of the Gaussianized variable pi(Ψ

i(xi)).

and g(xi) is just a univariate Gaussian. Figure 1 shows an example of the marginal Gaussianization of a one-
dimensional variable xi (Landsat TM channel 3 of the Naples scene used in the experiments, cf. Section 5.2).

While the proposed modifications of the original method may seem näıve, some non-trivial questions arise:

• Is convergence of the new algorithm guaranteed?
• Do G-ICA and G-PCA solutions differ?

In the following subsections we address these questions both theoretically and experimentally.

2.1 Theoretical convergence of G-PCA

In order to prove the convergence of G-PCA we have to show that the Kullback-Leibler (KL) divergence between
the PDF of the transformed random variable and a multivariate Gaussian (the negentropy, J) is reduced in each
iteration k. If ΔJ (k) ≥ 0 ∀ k, the transformed variable asymptotically tends to a Gaussian.

The negentropy of a random variable, x, may be expressed as:31

J(x) = I(x) +
d∑

i=1

JM (xi) −
(

d∑
i=1

log(Σii) − log |Σ|
)

︸ ︷︷ ︸
2nd ord(x)

(4)

where, I(x) is the multi-information among the coefficients (features) of the random variable x ∈ R
d, JM (xi) is

the marginal negentropy (i.e. the divergence between the marginal PDF of xi and a univariate Gaussian), and
the last term, related to the covariance matrix, Σ, describes the second order relations between the features of
the random variable.

The negentropy reduction in each iteration, k, of G-PCA is:

ΔJ (k) = J(x(k)) − J(x(k+1)) (5)
= J(x(k)) − J(B(k) · Ψ(k)(x(k)))

The negentropy is invariant under orthogonal transforms, B(k), because these imply pure rotations and hence
the divergence between the rotated PDF and the (spherically symmetric) Gaussian is the same. Therefore, by
applying Eq. (4), one can readily express the negentropy reduction as follows:

ΔJ (k) = J(x(k)) − J(Ψ(k)(x(k))) (6)

= I(x(k)) +
d∑

i=1

JM (x(k)
i ) − 2nd ord(x(k)) − I(Ψ(k)(x(k))) −

d∑
i=1

JM (Ψ(k)(x(k))i) + 2nd ord(Ψ(k)(x(k)))

Taking into account that multi-information is invariant under dimension-wise transforms, I(x(k)) = I(Ψ(k)(x(k)));
given that marginally Gaussianized variables have zero marginal negentropy,

∑d
i=1 JM (Ψ(k)(x(k))i) = 0; and



considering that the second order relations in x(k) are removed by the PCA in the previous iteration, B(k−1); we
have:

ΔJ (k) =
d∑

i=1

JM (x(k)
i ) + 2nd ord(Ψ(k)(x(k))) ≥ 0 (7)

Since marginal negentropies and second order relations are always equal or bigger than zero, we proved that
negentropy is reduced in each iteration, thus ensuring convergence to a multivariate Gaussian.

The previous theoretical convergence limit provides a practical criterion to stop the iterative process. Note
that one should stop the series of transforms when the reduction in negentropy (distance to a Gaussian) is small
enough.

2.2 Convergence of G-PCA in practice

Here, we experimentally analyze two important characteristics of G-PCA: the convergence rate and the com-
putational cost. Figure 2 illustrates the performance of our method in a 2D highly non-Gaussian manifold
compared to the G-ICA result. In this case we used the FastICA algorithm27 to speed up G-ICA. The proposed
early-stopping criterion was applied. Figure 2 shows how at each iteration the (accumulated) multi-information
reduction, ΔI, converges to a constant value for both G-ICA and G-PCA, and our method achieves virtually
the same results with a slightly higher number of iterations (N = 37 vs N = 25). Note that there is a direct
functional relation between the negentropy reduction ΔJ and the mutual-information reduction ΔI (equation
4). Although G-PCA converges after more iterations, this does not imply a higher computational load, as PCA
is much cheaper than ICA. This advantage is more relevant in higher dimensional problems. To assess this, we
Gaussianized patches of different sizes from the standard grayscale image ‘Barbara’. Results for both CPU time
and the achieved ΔI are presented in Table 1. For similar ΔI reductions, more than one order of magnitude
in computation time is gained by G-PCA, e.g. when working with 64 dimensions (8 × 8 patches), G-PCA takes
about 4 minutes while G-ICA takes around 4 hours.
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Figure 2. Performance of G-PCA in a toy example. Original and transformed data (top), and cumulative ΔI for each
iteration for G-PCA (solid) and G-ICA (dashed). Optimal iterations are highlighted. Inset scatter plots show the achieved
G-PCA solution at different iterations.



Table 1. Cumulative ΔI and CPU time for G-ICA and G-PCA.

G-ICA G-PCA

dim ΔI [bpp] Time [s] ΔI [bpp] Time [s]

2 × 2 1.54 865 1.51 14

3 × 3 2.08 1236 2.05 34

4 × 4 2.38 2197 2.29 63

5 × 5 2.50 3727 2.44 99

6 × 6 2.60 6106 2.56 141

7 × 7 2.68 9329 2.63 170

8 × 8 2.69 15085 2.69 233

3. PDF ESTIMATION WITH G-PCA

Given two random variables x and y, such as y = G(x), the PDF in the input domain, px(x), is related to the
PDF in the transform domain, py(y), according to Ref. 32:

px(x) = py(G(x)) |∇xG| (8)

In the G-PCA case the PDF in the transformed domain is a multivariate unit variance Gaussian, so the only
unknown in the above equation is the Jacobian of the G-PCA transform, ∇xG.

The Jacobian of the series of N transforms is the product of the Jacobians in each iteration:

∇xG =
N∏

k=1

B(k) · ∇x(k)Ψ(k) (9)

Marginal Gaussianization, Ψ(k), is a dimension-wise transform, whose Jacobian is the diagonal matrix,

∇x(k)Ψ(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂Ψ1
(k)

∂x
(k)
1

· · · 0

...
. . .

...

0 · · ·
∂Ψd

(k)

∂x
(k)
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(10)

According to the two equalization steps in each marginal Gaussianization (Eq. 3), each element in ∇x(k)Ψ(k) is:

∂Ψi
(k)

∂x
(k)
i

=
∂G

∂u
· ∂u

∂x
(k)
i

=
(

∂G−1

∂xi

)−1

· pi(x
(k)
i ) = g(Ψi

(k)(x
(k)
i ))−1 · pi(x

(k)
i ) (11)

It is important to note that the proposed multivariate PDF estimation using G-PCA and expressions (8)-(11)
just depends on univariate (marginal) PDF estimations. Therefore the proposed method does not suffer from
the curse of dimensionality.

Figure 3 shows a 2D example of PDF estimation using G-PCA and the above expressions. In this case, 104

samples were used in the G-PCA transform and in the histogram. The PDF was estimated in 50 × 50 points of
the domain. The same resolution in bins was used to compute the histogram. Note that the G-PCA estimation
of the PDF is much smoother than näıve estimation using a simple histogram.

4. RELATION OF G-PCA TO OTHER METHODS

In this section, we point out some particularly interesting relations of the proposed G-PCA to the kernel-based
SVDD and artificial neural networks.
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Figure 3. Example of PDF estimation. From left to right: theoretical PDF, scatter plot of the data used in the estimations,
histogram estimation using a number of bins to obtain the same resolution as in the G-PCA estimation.

4.1 Relation to the Support Vector Domain Description (SVDD)

The proposed G-PCA and the Support Vector Domain Description (SVDD) method may be seen as conceptually
similar due to their apparent geometrical similarity. However, G-PCA and SVDD represent two different ap-
proaches to the classification problem: PDF estimation versus separation boundary estimation. On the one hand,
SVDD finds a minimum volume sphere in a kernel feature space that contains 1−ν fraction of the target training
samples.33 On the other hand, naive interpretation of G-PCA may be seen as if test samples were transformed
and classified as target if lying inside the sphere containing 1 − ν fraction of the learned Gaussian distribution.
According to this interpretation, both methods reduce to computing spherical boundaries in different feature
spaces. However, this is not completely true in the G-PCA case: note that the value of the G-PCA Jacobian
is not the same at every location in the Gaussianized domain. Therefore, the optimal boundary to reject a ν
fraction of the training data is not necessarily a sphere in the Gaussianized domain. In the case of the SVDD,
though, by using an isotropic RBF kernel, all directions in the kernel feature spaces are treated in the same way.

Strictly speaking, the solution of classification problems does not need PDF estimation but boundary estima-
tion. This dilemma cuts to the heart of that pointed out by Vapnik [34, pg. 30]: “When solving a given problem,
try to avoid solving a more general problem as an intermediate step”. This rationale suggests not tackling the
general problem of density estimation for classification but rather the more specific, tractable and direct problem
of large margin separation. However, the techniques looking for the optimal classification boundary, such as
SVDD, may need non-target labeled samples all around the class of interest in order to find a proper set of
free parameters allowing to learn the support of the target class. The lack of non-target samples could lead to
incorrect boundary estimates, as it is difficult, and for some problems even impossible, to find a proper set of free
parameters. This issue becomes critical in high dimensional problems since the boundary surface increases with
dimensionality. On the contrary, the rejection fraction (and the associated classification boundary) in G-PCA is
set according to the probability of the target class, so it only depends on the amount of target class samples. This
is particularly important in one-class classification problems since the target class may be well characterized,
while accurate characterization of all other possible classes is neither generally available nor actually needed.
This problem will be illustrated in the results section.

4.2 Relation to deep neural networks

The proposed Gaussianization method is essentially a sequence of two operations: a linear transform followed by
a non-linear squashing function. This processing is intuitively very similar to that carried out in a feedforward
neural network (linear transform plus sigmoid-shaped function in each hidden layer). Therefore, one could see
each iteration of the G-PCA as one hidden layer processing of the data, and thus argue that complex (highly
non-Gaussian) tasks should require more hidden layers (iterations). This view is in line with the field of deep
learning in neural networks, which consists of learning a model with several layers of nonlinear mappings. The
field is very active nowadays because some tasks, such as natural language processing or speech recognition, are
highly nonlinear. Note, that it may appear counterintuitive the fact that full Gaussianization of a dataset is
eventually achieved with a large enough number of iterations, thus leading to overfitting in the case of a neural
network with such number of layers. Nevertheless, note that capacity control also applies here: we have observed
that early-stopping criteria must be strictly applied to allow good generalization properties. In this setting, one
can see early stopping in G-PCA as a form of model regularization. This is certainly an interesting research line
to be pursued in the future.
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Figure 4. Outlier detection in a non-linearly separable 2D problem. The target class is represented by dots. Circles and
crosses represent outliers of different nature. The figures show the classification boundaries found by SVDD (left) and
G-PCA (right) when trained using a restricted set of outliers (crosses).

5. EXPERIMENTAL RESULTS

The proposed method is illustrated in two experiments and will be compared to standard SVDD because of
their intuitive similarity (cf. Section 4.1). The first 2D experiment on synthetic data illustrates the capabilities
of the method in a non-linearly separable and poorly sampled one-class problem. The second experiment deals
with real multispectral and multisource data and illustrates the advantages of G-PCA in real and challenging
scenarios.

5.1 Experiment 1: 2D non-linearly separable problems.

In this 2D experiment the problem is detecting outliers from the target class represented by dots in Fig. 4. Two
possible outlier classes were considered, represented by circles ‘o’ and crosses ‘×’. Imagine that, at the training
stage, only outliers of the cross class are available. Then, the G-PCA transform, the width of the RBF kernel
in SVDD, and the rejection ratios are trained to maximize the κ statistic35 by using the available samples of
the target class and the ‘×’ class (103 and 102 samples, respectively). The classification boundaries for both
methods and the referred training are represented in gray lines.

Note that the proposed method is able to identify/reject outliers of different nature (‘o’) while the SVDD
solution is unable to discriminate these new outliers. This example stresses the advantages of PDF estimation
of the target class in scenarios where all possible outliers are not available, or the space is not correctly sampled.

5.2 Experiment 2: Multisource one-class image classification

In this experiment, we assess the performance of the G-PCA classifier to detect urban areas from multispectral
and SAR images. The images used in this section were collected in the Urban Expansion Monitoring (UrbEx)
ESA-ESRIN DUP project.36 For further details, visit http://dup.esrin.esa.int/ionia/projects/summaryp30.asp.
The considered test sites were the cities of Rome and Naples, Italy, for two acquisition dates (1995 and 1999).
The available features were the seven Landsat bands, two SAR backscattering intensities (0–35 days), and the
SAR interferometric coherence. Since these features come from different sensors, the first step was to perform a
specific processing and conditioning of optical and SAR data, and to co-register all images. We used all seven
Landsat TM spectral bands (containing three VIS, one Near IR, two Short-Wave IR, and one Thermal IR bands).
In the case of the SAR images, we also used a spatial version of the coherence specially designed to increase the
urban areas discrimination.36 After this preprocessing, all features were stacked at a pixel level, and each feature
was standardized.

We compared the G-PCA classifier based on the estimated PDF for urban areas with the classifier based on
the SVDD. We used the RBF kernel for the SVDD whose width was varied in the range σ ∈ [10−2, . . . , 102]. The
fraction rejection parameter was varied in ν ∈ [10−2, 0.5] for both methods. The optimal (best κ) parameters
were selected through 3-fold cross-validation in the training set. Training sets of different size for the target class
were used in the range [100, 2500]. We assumed a scarce knowledge of the non-target class: 10 outlier examples



were used in all cases. The test set was constituted by 105 pixels of each considered image. Training and test
samples were randomly taken from the whole spatial extent of each image. The experiment was repeated for 10
different random realizations in the three images.

Figure 5 shows the κ statistic achieved by SVDD and G-PCA in the test set of the three considered images.The
κ values are relatively small because samples were taken from a large spatial area thus giving rise to a challenging
problem due to the variance of the spectral signatures. Results show that SVDD outperforms the proposed
method for small size training sets. This is because more target samples are needed by the G-PCA for an
accurate PDF estimation. However, for moderate and large training sets the proposed method substantially
outperforms SVDD. Note that training size requirements of G-PCA are not too demanding: 750 samples on a
10-dimensional problem are enough for G-PCA to outperform SVDD when very little is known of the non-target
class.
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Figure 5. Classification performance (κ statistics) as a function of the number of training samples for the three considered
images by the SVDD (dashed) and the G-PCA (solid).
.

Figure 6 shows the classification maps using a restricted training strategy. In this case, the experiment was
carried out over a small region (200 × 200) of the Naples 1995 image. We used 2000 samples of the target class
and only 10 samples of the non-target class. Here the classification performance (κ statistic) is better than
the results reported in Fig. 5 because small regions have more homogeneous features, and then the variance
of spectral signatures is smaller. As a consequence, the training data describes more accurately the particular
behavior of the smaller spatial region thus achieving a better performance in the test set.

Note that, although the SVDD classification map is more homogeneous, G-PCA better rejects the ‘non-
urban’ areas (in black). This may be because SVDD training with few non-target data gives rise to a too broad
boundary as in the example of Fig. 4. As a result, too many pixels are identified as belonging to the target class
(in white). Another relevant observation is the noise in neighboring pixels, which may come from the fact that
no spatial information was used. This problem could be easily alleviated by imposing some post-classification
smoothness constraint or by incorporating texture features for classification.

6. CONCLUSIONS

We proposed a fast alternative to iterative Gaussianization methods that makes it suitable in high-dimensional
problems such as those in remote sensing applications. The proposed G-PCA consists of iteratively applying
marginal Gaussianization and PCA to any original dataset. The result is a multivariate Gaussian. Theoretical
convergence of the proposed method was proved.

The method exhibits fast and stable convergence rates through a suitable early-stopping criterion. The
computational cost is dramatically reduced compared to ICA-based Gaussianization methods. The proposed
Gaussianization technique can be used for accurate multivariate PDF estimation when a relatively small number
of samples is available. This is because the proposed G-PCA reduces the multidimensional problem to a set of
univariate (marginal) PDF estimation problems.



Ground truth SVDD, κ = 0.62 G-PCA, κ = 0.65

Figure 6. Classification performance over a small region of the Naples image (1995). White points represent urban areas
while black points represent non-urban areas.

The experiments showed that G-PCA outperforms the (qualitatively similar) SVDD in realistic situations
in which the target class is well known but not many examples of the non-target class are available. From an
experimental viewpoint, our future work is tied to testing performance in hyperspectral image classification. In
the theoretical side, a deeper analysis of the geometrical relationship with SVDD and deep neural networks will
be carried out.
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