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Abstract— Support Vector Machine (SVM) learning has been However, the proposed SVM schemes for image compres-
recently proposed for image compression in the frequency domain sion have always used a fixed accuracy leveingensitivity)
using a constantz-insensitivity zone by Robinson and Kecman [1]. persample [1], [11]. A constant insensitivity zone makes sense
However, according to the statistical properties of natural imags . S . . .
and the properties of human perception, a constant insensitivity In the.spat|al doma!n because of the approxmate stationary
makes sense in the spatial domain but it is certainly not a Pehavior of the luminance samples of natural images. More-
good option in a frequency domain. In fact, in their approach, over, the perceptual relevance of pixels is also approxinat
they made a fixed low-pass assumption as the number of DCT constant across the spatial domain. However, these faetsoar
coefficients to be used in the training was limited This paper longer true in a frequency domain: the statistics of freqyen

extends the work of Robinson and Kecman by proposinghe fficients of natural i is hiahl tati d
use of adaptive insensitivity SVMs [2] for image coding using CO€MCIENTS OF natural images 1S highly non-stationary an

an appropriate distortion criterion [3], [4] based on a simple their perceptual relevance is highly uneven [IBjie method
visual cortex model. Training the SVM by using an accurate proposed by Robinson and Kecman [1] limited the number

perception model avoids anya priori assumption and improves of DCT coefficients to a fixed number. This approach can
the rate-distortion performance of the original approach. affect the reconstructed image by blurring some detail$ién t
Index Terms— Support Vector Machine, Adaptive Insensitivity, image, such as sharp edges or high frequency components
Image Coding, DCT, Perceptual Metric, Maximum Perceptual This suggests that their results can be improved if the SVM
Error. learning in the DCT domain is modulated by a perceptually-
based frequency-dependent insensitivity zone.
I. INTRODUCTION In order to obtain a good subjective performance in image

A recent approach to machine learning problems is the Su§#ding applications, it is important to restrict the Maximu
port Vector Machine (SVM) [5]. The Support Vector Regressdrerceptual Error (MPE) in each DCT coefficient [3], [4],
(SVR) [6] is its implementation for function approximation [15], [16]. In this work, we propose an SVM with adaptive
Several applications of SVM have appeared in the contdRensitivity zone [2] for image coding, which is based on an
of image processing, such as face recognition [7], imag@pPropriate Human Visual System (HVS) model. Therefore,
classification [8], texture segmentation [9], and imageddius Using perception models to design the adaptive insertgitivi
[10]. The use of SVMs for image compression was originallgives rise to SVM coders which are optimal under the MPE
presented in [11], where the authors used the SVR to learn i#erion, and there is no need to make @u¢hoc(low-pass)
gray levels in the image. However, the statistical propsrtiassumption in the SVM training.
of the natural images make the Discrete Cosine TransformThe structure of the paper is as follows. Section Il reviews
(DCT) suitable for image representation [12], improving ththe adaptive SVM formulation and how it can be used in
performance of the SVM learning [1]. According to thes®CT modeling schemes. Section Il motivates the perceptual
results [1], the ability of SVMs to model DCT-transformedveighting in the DCT domain and analyzes the use of the
image representations with a small set of parameters ma®kPE criterion in the SVM coding scheme. Section IV shows
them a promising alternative to classical transform codirigsults of our proposal on benchmark images. Section V ends
techniques based on quantization [13], [14]. this paper with some conclusiomasid further work.

[1. ADAPTIVE INSENSITIVITY IN THE SUPPORTVECTOR
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subject to: the Lagrange multipliers of the support vectors needed ép ke
the regression error below the thresholds Increasing the

T S
yi— @ (xw—b<e+§ Vi=1,....n (2) thresholdse;, reduces the number of required support vectors,
()W b—y; <e+ & Vi=1,...,n (3) thus reducing the entropy of the encoded image and incigasin
&6 >0 Vi=1,...,n (4) the distortion. The key point here is choosifigaccording to

a meaningful criterion for the application.

Wheregf*) andC are, respectively, positive slack variables to In [2], [18], we designed profiles for the variation 6f
deal with training samples with a prediction error largearth ande as a function of the sample in complex pharmacokinetic
e (¢ > 0) and the penalization applied to these. The usuptoblems. In [19], profiles were defined in terms of clusters
procedure for solving SVRs introduces the linear restieti rather than fixeda priori. In this paper, we will define the
(2)-(4) into Eq. (1) by means of Lagrange multipliemé*), e-insensitive zone to restrict the Maximum Perceptual Error
computes the Karush-Kuhn-Tucker conditions, and solves ttMPE) [3], [4], [15], [16] in each coefficient of the DCT. This
Wolfe’s dual problem using quadratic programming (QR)rofile will vary the s-insensitive region as a function of the

procedures [5], [17]. frequency in the DCT domain.
The regression estimate for a given input vestdhen takes
the form [1l. M AXIMUM PERCEPTUALERROR FOR ADAPTIVE
n INSENSITIVITY
g=f(x)= Z(O‘i — ;) K(xi,x) +b ®) The core of the transform coding idea is that the relevance
i=1 of the coefficients in the DCT-transformed domain is highly

where the inner produap(x;)” - ¢(x) is represented with a uneven. This is because while some coefficients have a big
kernel matrixk (x;, x). Note that only samples with non-zerocontribution to the distortion, others can be strongly rfiedi
Lagrange multipliersag*) count in the solution and are callegwithout significant loss. In the transform and quantization
support vectorsThe immediate advantage of the method iBaradigm [14], the hierarchy of coefficients has led to uneve
that good approximating functions can be obtained with kit allocation schemes (and non-uniform 1D quantizers for
(relatively) small set of support vectors, leading to thacapt €ach coefficient) [3], [4], [15], [16]. This implies that the
of sparsityand, in turn, to the idea of inherent compressionmaXimum distortion introduced in each coefficient depends
However, the main problem when considering this solutig? Poth its frequency and its amplitude. These ideas can be
is that we assume that each sample contaipsiori the same incorporated into the SVM paradigm by considering that the
relevance to the modelling, which in general is not true sThmaximum distortion is given by the insensitivity parameter
can be easily alleviated by using a different penalizatawmidr Therefore, the distortion criteria used to design the \weia
for each training samplé according to a certaiconfidence duantizer step in each coefficient could be applied to design
functionc; on the samples. This idea can be also extended 8f) adaptive insensitivity zone in the SVM case.
using different insensitivity zone for each sample. In this ~ Classical quantizer design is founded on MSE minimization
work, we use the profiled SVR approach [2], which relaxedNd gives rise to variable quantization steps based on the
or tightens thes-insensitive region depending on each trainingariance of the coefficients and their particular probapili

sample. Now, the objective function becomes [5]: Qensity function [14]. However, as th.e c_oded imagg has to be
judged by a human observer, the criterion should include the
. 1 9 " sensitivity of the human viewer. In that sense, the intréidac
wiLer b {QHW + CZQ(@ +& )} ©®) oa perceptual metric in average error criteria does notesol
K3

o _ the problem because average perceptual error minimization
and restrictions over slack variables become samplgses not imply that every error is below (or proportional)

dependent: to the perceptual discrimination thresholds. In fact, i ha
Ty Ve e . . been shown that keeping the distortion proportional to the
vim ¢ (riw —b< ci & Vis=l..on (1) visibility thresholds (restricting the MPE of each coeffiaf)
o7 (%)W + b —y; < £ b Vi=1,....,n (8) leads to better subjective results than minimizing the ayer
Ci perceptual error [3], [4], [15], [16]. Therefore, the battdine
&6 >0 Vi=1,...,n (9) to design the adaptive insensitivity zone of the SVM, which

restricts the maximum error in each coefficient, is drawmfro

Therefore, now .eaclh. sample has its own insensitivity eIMfs \pE criterion in each coefficient for each particular gima
e; = &/¢;, which intuitively means that different samples holqegion

different confidence intervals. By including linear restions In our case, we have to compute the human visual insensi-

(7)-(9) in the corresponding functional (), we can follosia i for every DCT coefficient from the corresponding stop

the standard case, which once again constitutes a QP problgpwan appropriate vision response model. Current models of

In thg SVR image coding procedure [1], the Wholg imag§ luman visual cortex assume that each regibnof the input
first divided in blocks, and then a 2D DCT-transform is amb“eimage around some spatial position,undergoes a two-stage
to each one of them. Then, dedicated SVR models are trainggctorm [20], [21] "

in the frequency domain for each block and the obtained
weights are quantized. Therefore, the signal is describyed b AL Yy L (20)



whereT is a linear transform in which the input is analyze CSE =1
by a set of unit-norm oriented local-frequency sensors (' i !
neurons) with receptive fields qualitatively similar to th
block-DCT basis functions [22]:

yi=Y Tij- A (11)
J

0.8

and R is a transduction function that represents the gi% °°| CSF =054

of each particular sensoff;, and maps the linear trans ©

form representation into a perceptually Euclidean respol

representation [21]. The Euclidean nature of the respo

representation implies that the linear transform repriediem,

y, is not Euclidean [23]. 02
In this way, a small distortion in the transform represe

tation, Ay, induces a distortion that can be approximated

0.4

using the Jacobian of the transduction function: % s 0 5 2 2 "
i frequency (cycles/degree)
r+ Ar~ R(y) + VR(y) - Ay (12)
. . . .Fjg. 1. Contrast Sensitivity Function (CSF) of Nygan et a5][ The slopes of
Then, the maximum perceptual distortion for that Spat'a:l/o particular sensors respectively tuned to low-freqyestienuli (CSF; = 1)
region is given by and high-frequency stimuiCSF o = 0.54) have been highlighted.
MPE; = [[Ar|| = max(VR(y) - Ay) (13)

The global perceived distortion in an image withspatial 9iven by the selected sampling frequency (or equivaleryly b
regions will be a particular spatial pooling-horm) of these the size and viewing distance).

n local distortions from each local (block) response represe 1h€ discrimination ability of a sensor (its insensitivity
tation: can be obtained from the slope of its response cufigure 2

shows that the bigger the slope, the smaller the insergitivi
different slopes in the response of each sensor imply diffier
insensitivities, and hence different boundsty; for the same

. ) i i ) . perceptual error MPE= 7.
where 3 is the summation exponent in this spatial pooling. Using insensitivity values according to Eq. (17) is optimal

The most accurate gain control models of V1 sensors inclugeihe MPE sense because it ensures that the MpBelow
non-linearities with interactions between the outputhefltn- o sejected threshold, for every regionss, thus minimizing
ear sensors [20], [21], thus giving rise to a non-diagonalitn ¢, global MPE.

dependent Jacobian [23]. Using such models would not be easy
to derive a boundg;, for the distortion in each coefficient,
Ay;, from Eqg. (13). However, if we restrict ourselves to the . .
most simple model in which each sensor has a constant lineaf N 9eneral encoding procedure proposed by Robinson and

gain given by theContrast Sensitivity Function (CSI24]: Kecman [1] consist's of learning 'the DCT representation of
each block of the image to obtain a set of support vectors

Ar; = CSF, - Ay, (15) and their corresponding Lagrange multipliers. These weigh
the Jacobian is a diagonal matrix WiiR(y); = CSF. are then uniformly quantized. The number of_selec_ted suppor
According to this, in order to keep the perceptual error Welg/€¢0rS and thus_ the entrop_y of th_e.e.ncoded signal is céedrol
some arbitrary threshold, MRE= 7, every distortion,Ay;, by.a factor applled.to _the—msensnwny zone (th.e parameter
has to be: 7 in Eq. (17)). Tailoring differentz profiles will produce

Ay; < 7-CSF! (16) critically different support vector distributions in thee§uency

- ¢ domain and hence different error distributions in this dimma
Therefore, the insensitivity region for each coefficiept Therefore, different profiles lead to results of quite different
should be given by the CSF: perceptual quality.
e —7.CSE! 17) In this section, we show the benefits of the proposed MPE
! k optimal profile (CSF-SVR approach, Eq. (17)) by comparing
Figure 1 shows the CSF, i.e. the relative slope for eadis results with a generic uniform tube-EVR approach),
sensor (or basis function) of the DCT representatishich and with the method proposed by Robinson and Kecman [1]
is expressed in cycles/degree. The behavior of the vis&®Ki-1 approach). We compare these three different SVM
system in the frequency domain (e.g. the CSF) is commorthaining strategies in terms of (a) the distribution of sogp
defined in physically meaningful units such as cycles/degreectors, and (b) the effect that these distributions have in
or samples/degree. These units refer to the number of thscriie compression performance. Following the same approach
samples per angle subtended by the image at a given viewofg[1], we used the RBF kernel, trained the SVR models
distance. The frequency meaning of the DCT coefficients wathout the bias ternb, and modeled the absolute value of

1/p
MPE = [|(MPE,,--- ,MPE,)| s = <Z MPEf) (14)

IV. RESULTS ANDDISCUSSION
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Fig. 2. Responses and associated visibility threshold(isitivity regions) of the two sensors whose slopes haea h@ghlighted in Fig. 1. The Euclidean
nature of the response domain implies that two distortidng, and Ay, induce perceptually equivalent effects if the correspumdariations in the response
are the sameAr; = Ar; = 7. This is why, assuming a certain threshold for MPEhe biggest the slope in the respongethe smallest the acceptable
distortion iny;, giving rise to Eq. (17).

the DCT coefficients. For the sake of a fair comparison, | ~_ _ [~ ESVR
the free parameters-{nsensitivity, penalization parametér, \ T Egi':—_lSVR

Gaussian width of the RBF kernel, and uniform quantizatii ;| L7 N
level of the weigths) were optimized for all the consider¢
models.The value ofr in (17) was tuned iteratively to produce
a given compression ratio and depends on the image. Note
high values ofr increase the width of thetube, which in turn
produce lower number of support vectors and consequel
yield higher compression ratios

™

# Support Vectors
=)

A. Distribution of support vectors

Figure 3 shows a representative example of the distribut
of the selected SVs by the three models considered in |
work. These distributions reflect how the selection of aipart
ular insensitivity profile modifies the learning behaviortbé : - - .
SVMs. i Frequency (cycles/degree)

Using a straightforward constastfor all coefficients §-

SVR approach) concentrates more support vectors in 'g. 3. Distributipn of support vectors (SVs) for eaciprofile as a function
. h he frequency in the Lena image.

low frequency region because the variance of these D&

coefficients in natural images is higher [12], [15]. Howe\Eer

still yields a relatively high number of support vectors et . . . o .
high-frequency region. This is inefficient because of the IOstralghtforward uniform approach is qualitatively basedtie

L X ) .. .basic low-pass behavior of human vision. However, such a
subjective relevance of that region (see Fig. 1). Congideri P

these vectors will not significantly reduce the ( erceptua(frUde approximation (that implies no control of the distort
; lgniticantly P In the high-frequency region) can introduce annoying error
reconstruction error while it increases the entropy of thI

encoded signal R blocks with sharp edges.

A The proposed algorithm (CSF-SVR approach) uses a vari-
o e bt e Sor gyl aGcoing 0 E, (1), Takig o accout e prcep-
coefficients in training the SVM for each bldekThis is ion facts reviewed in Section lll, the acceptable distortin

equivalent to the use of an arbitrarily large insensitivity the low/medium-frequency region is smaller than in the high

"y . . . frequency region, giving rise to a (natural) concentratidn
the high-frequency region. As a result, this approach iuelgt support vectors in the low/medium frequency region. Note

allocates more support vectors in the low/medium frequenﬁ\/at this concentration is even bigger than in the RKi-1

regions. As the authors suggest, this modification of tr}:lepproach. However, the proposed algorithm does not neglect

1if a (reasonable) sampling frequency of 64 cycles/degressaraed, the any coefficient in the learning process. This strategy ladi;ur_
cut-off value recommended in [1] is around 20 cycles/deg. reduces the number of allocated support vectors in the high-

25 30



frequency region with regard to the straightforward umnifor (@)
approach, but it does not prevent selecting some of them wher ~ 2° ‘

‘
6. JPEG

it is necessary to keep the error below the selected thréshol 24) * o- ;—Ks_le 1
o i-

which may be relevant in edge blocks.

221

B. Compression performance 20¢

Exhaustive compression experiments using several stndar , 18/
images (Lena, Barbara, Boats, Peppers and Cameraman) we § , |

conducted using the different SVM training strategies &t di =
ferent compression rateis the range [0.05, 0.5] bits/pixel 14r 7
(bpp), i.e. 160:1 to 16:1 compression ratiosspectively. In 126 i

all cases, the images were analyzed using 1% block-DCT,
assuming a sampling frequency of 64 cycles/degvée.also
include results using the standard JPEG as a baseline methc g}

101

for reference purposés 0 01 02 03 04 05
Given the limitations of the available (subjective) disiam Entropy (bits/pixel)
metrics [21], [26]-[28], the more reliable evaluation ofeth (b)

subjective performance of the considered methods is tleetdir 6
visual inspection of the decoded images. However, it is also
usual to describe the compression performance using rate
distortion curves. In these curves, the volume of the emtode
image (measured, for instance, by its entropy in bits/pixel
is compared to an appropriate distortion measure. The bes 4
algorithm is the one that achieves the lowest distortionafor
range of bit rates. In this case, the distortion measurelghou §
be meaningful for the application, i.e. it should repreghet
subjective quality of the reconstructed image.

In this section, we analyze the performance of the al- ,|
gorithms through rate-distortion curves using two différe
distortion measures: the standard M&Eand the MPE of

50

3+

Eq. (14) with 3 = 2 and using the CSF model fovR. ir 7
Results are shown in Fig. 4. According to the standard MSE G o - ¥ o o
point of view, the performance of th8VM algorithms is ' “Entropy (bits/pixel) ' ’

basically the same (see Fig. 4(a)), improving the results of

JPEG as previously reported in [fJowever, we can observe arig. 4. Rate distortion curves of JPEG and the three SVMdbasmge
substantial gain in MPE of the CSF-SVR model when lookingpding methods. (a) Distortion measured with the standard M5E(b)

o Fi. 4(5) As expected fom the discussion n Section IR NS sy 1 parcptnhy mesnighl VPR i
the proposed scheme is optimal under the MPE criterion (aggndard deviation of the corresponding distortion at gawht.

the CSF model) and, of course, it is suboptimal in the MSE

(or PSNR) sense. In fact, by taking into account the visual

results presented in Fig. 5, it is cIear that the MSE resu‘ﬁ%rceptually more acceptable, images. Second, the bipckin
are nqt useful to represent the quality of the methods, gSitacts in e-SVR and RKi-1 approaches may come from
extensively reported elsewhere [21], [26]-[28]. Theselltes jfferent reasons. On the one hand, the unifer@VR wastes
not only ponflrm the t.heoretlcal and practical validity Of(relatively) too many support vectors (and bits) in the high
incorporating the CSF into the SVM methodology, but alspequency region in such a way that noticeable errors in the
the meaningfulness of the MPE distortion measure [3], [13hy-frequency components (related to the average lumimanc
[16], [23]. The visual inspection of the results (Fig. 5) 8m i each block) are produced (see the face of Barbara). How-
that the numerical gain in MPE shown in Fig. 4(b) is also gyer, note that due to the allocation of more vectors in the
perceptually significant o high-frequency region, it is the method that better repcedu
The visual effect of the different distribution of the SUPPO etails such as the high-frequency strips in the Barbataeso
vgctors QUe .t0. the @fferent insensitivity profiles |s.clear On the other hand, neglecting the high-frequency coeffisien
Fig. 5. First, it is obvious that the perceptually-basethtry i, the training (RKi-1 approach) does reduce the blocking a
leads to better overall subjective results: the annoyingkg jije pit, but it cannot cope with high contrast edges thaba
artifacts of thee-SVR and RKi-1 approaches are highly,rgqyces a lot of energy in the high frequency region (for
reduced in the proposed approach, giving rise to smoothdr, dnstance, Lena’s cheek on the dark hair background).

2We used the JPEG implementation by Lagendijk, which is aveilab AN €xample of the performance of RKi-1 and CSF-SVR
http://wwwict.ew .tudel ft.nl. at high compression ratios (from 64:1 to 125:1) is illusdat



Fig. 5. Examples of decoded images. Zoom of the original imag8sés/pixel: Lena (a), and Barbara (f). The bit-rate foegh examples is 0.3 bfg7:1)
(Lena) and 0.4 bpif20:1) (Barbara). (b) and (g) JPEG, (c) and @&iBVR, (d) and (i) RKi-1, and (e) and (j) CSF-SVR.



(d) (e)

Fig. 6.

and (d) and (e) CSF-SVR.

Examples of decoded images using the RKi-1 and the pegpo
CSF-SVR training strategies at high compression ratiosbpf (64:1) [left]
and 0.065 bpp (125:1) [right]. (a) Original Barbara imagg,dbd (c) RKi-1,

V. FINAL REMARKS

In this work, we have tailored am-insensitivity function
in the SVR model for image coding, which is optimal under
the MPE principle. This approach has been motivated by the
fact that, in the DCT-transformed domain, the use of a fixed
¢ value is not consistent with the statistical and perceptual
properties of natural images. This approach has revealbd to
more efficient than the original SVR-based coding schemes
in terms of perceptually meaningful rate-distortion measu
and visual inspection, precludirgd hocassumptions in the
training algorithm.

An accurate consideration of a perceptually profiled SVR
training has improved the results. This fact suggests that
further improvement could be achieved by including more so-
phisticated non-linear perceptual models [4] in suppoctwe
coding schemes.
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