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Machine Image Coding
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Abstract— Support Vector Machine (SVM) learning has been
recently proposed for image compression in the frequency domain
using a constantε-insensitivity zone by Robinson and Kecman [1].
However, according to the statistical properties of natural images
and the properties of human perception, a constant insensitivity
makes sense in the spatial domain but it is certainly not a
good option in a frequency domain. In fact, in their approach,
they made a fixed low-pass assumption as the number of DCT
coefficients to be used in the training was limited. This paper
extends the work of Robinson and Kecman by proposingthe
use of adaptive insensitivity SVMs [2] for image coding using
an appropriate distortion criterion [3], [4] based on a simple
visual cortex model. Training the SVM by using an accurate
perception model avoids anya priori assumption and improves
the rate-distortion performance of the original approach.

Index Terms— Support Vector Machine, Adaptive Insensitivity,
Image Coding, DCT, Perceptual Metric, Maximum Perceptual
Error.

I. I NTRODUCTION

A recent approach to machine learning problems is the Sup-
port Vector Machine (SVM) [5]. The Support Vector Regressor
(SVR) [6] is its implementation for function approximation.
Several applications of SVM have appeared in the context
of image processing, such as face recognition [7], image
classification [8], texture segmentation [9], and image fusion
[10]. The use of SVMs for image compression was originally
presented in [11], where the authors used the SVR to learn the
gray levels in the image. However, the statistical properties
of the natural images make the Discrete Cosine Transform
(DCT) suitable for image representation [12], improving the
performance of the SVM learning [1]. According to these
results [1], the ability of SVMs to model DCT-transformed
image representations with a small set of parameters make
them a promising alternative to classical transform coding
techniques based on quantization [13], [14].
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However, the proposed SVM schemes for image compres-
sion have always used a fixed accuracy level (ε-insensitivity)
persample [1], [11]. A constant insensitivity zone makes sense
in the spatial domain because of the approximate stationary
behavior of the luminance samples of natural images. More-
over, the perceptual relevance of pixels is also approximately
constant across the spatial domain. However, these facts are no
longer true in a frequency domain: the statistics of frequency
coefficients of natural images is highly non-stationary and
their perceptual relevance is highly uneven [15].The method
proposed by Robinson and Kecman [1] limited the number
of DCT coefficients to a fixed number. This approach can
affect the reconstructed image by blurring some details in the
image, such as sharp edges or high frequency components.
This suggests that their results can be improved if the SVM
learning in the DCT domain is modulated by a perceptually-
based frequency-dependent insensitivity zone.

In order to obtain a good subjective performance in image
coding applications, it is important to restrict the Maximum
Perceptual Error (MPE) in each DCT coefficient [3], [4],
[15], [16]. In this work, we propose an SVM with adaptive
insensitivity zone [2] for image coding, which is based on an
appropriate Human Visual System (HVS) model. Therefore,
using perception models to design the adaptive insensitivity
gives rise to SVM coders which are optimal under the MPE
criterion, and there is no need to make anyad-hoc(low-pass)
assumption in the SVM training.

The structure of the paper is as follows. Section II reviews
the adaptive SVM formulation and how it can be used in
DCT modeling schemes. Section III motivates the perceptual
weighting in the DCT domain and analyzes the use of the
MPE criterion in the SVM coding scheme. Section IV shows
results of our proposal on benchmark images. Section V ends
this paper with some conclusionsand further work.

II. A DAPTIVE INSENSITIVITY IN THE SUPPORTVECTOR

REGRESSOR

The standard formulation of the SVR model is stated as fol-
lows. Given a labeled training data set{(xi, yi), i = 1, ..., n},
wherexi ∈ R

d and yi ∈ R, and a nonlinear mapping to a
higher dimensional spaceφ : R

d → R
H whered ≤ H, solve

min
w,ξi,ξ∗

i
,b

{

1

2
‖w‖2 + C

∑

i

(ξi + ξ∗i )

}

(1)
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subject to:

yi − φT (xi)w − b ≤ ε + ξi ∀i = 1, . . . , n (2)

φT (xi)w + b − yi ≤ ε + ξ∗i ∀i = 1, . . . , n (3)

ξi, ξ
∗

i ≥ 0 ∀i = 1, . . . , n (4)

whereξ
(∗)
i andC are, respectively, positive slack variables to

deal with training samples with a prediction error larger than
ε (ε > 0) and the penalization applied to these. The usual
procedure for solving SVRs introduces the linear restrictions
(2)-(4) into Eq. (1) by means of Lagrange multipliersα

(∗)
i ,

computes the Karush-Kuhn-Tucker conditions, and solves the
Wolfe’s dual problem using quadratic programming (QP)
procedures [5], [17].

The regression estimate for a given input vectorx then takes
the form

ŷ = f(x) =

n
∑

i=1

(αi − α∗

i )K(xi,x) + b (5)

where the inner productφ(xi)
T · φ(x) is represented with a

kernel matrixK(xi,x). Note that only samples with non-zero
Lagrange multipliersα(∗)

i count in the solution and are called
support vectors. The immediate advantage of the method is
that good approximating functions can be obtained with a
(relatively) small set of support vectors, leading to the concept
of sparsityand, in turn, to the idea of inherent compression.

However, the main problem when considering this solution
is that we assume that each sample containsa priori the same
relevance to the modelling, which in general is not true. This
can be easily alleviated by using a different penalization factor
for each training samplei according to a certainconfidence
functionci on the samples. This idea can be also extended by
using different insensitivity zoneε for each sample. In this
work, we use the profiled SVR approach [2], which relaxes
or tightens theε-insensitive region depending on each training
sample. Now, the objective function becomes [5]:

min
w,ξi,ξ∗

i
,b

{

1

2
‖w‖2 + C

∑

i

ci(ξi + ξ∗i )

}

(6)

and restrictions over slack variables become sample-
dependent:

yi − φT (xi)w − b ≤
ε

ci
+ ξi ∀i = 1, . . . , n (7)

φT (xi)w + b − yi ≤
ε

ci
+ ξ∗i ∀i = 1, . . . , n (8)

ξi, ξ
∗

i ≥ 0 ∀i = 1, . . . , n (9)

Therefore, now each sample has its own insensitivity error
εi = ε/ci, which intuitively means that different samples hold
different confidence intervals. By including linear restrictions
(7)-(9) in the corresponding functional (6), we can follow as in
the standard case, which once again constitutes a QP problem.

In the SVR image coding procedure [1], the whole image is
first divided in blocks, and then a 2D DCT-transform is applied
to each one of them. Then, dedicated SVR models are trained
in the frequency domain for each block and the obtained
weights are quantized. Therefore, the signal is described by

the Lagrange multipliers of the support vectors needed to keep
the regression error below the thresholdsεi. Increasing the
thresholds,εi, reduces the number of required support vectors,
thus reducing the entropy of the encoded image and increasing
the distortion. The key point here is choosingεi according to
a meaningful criterion for the application.

In [2], [18], we designed profiles for the variation ofC
andε as a function of the sample in complex pharmacokinetic
problems. In [19], profiles were defined in terms of clusters
rather than fixeda priori. In this paper, we will define the
ε-insensitive zone to restrict the Maximum Perceptual Error
(MPE) [3], [4], [15], [16] in each coefficient of the DCT. This
profile will vary the ε-insensitive region as a function of the
frequency in the DCT domain.

III. M AXIMUM PERCEPTUALERROR FOR ADAPTIVE

INSENSITIVITY

The core of the transform coding idea is that the relevance
of the coefficients in the DCT-transformed domain is highly
uneven. This is because while some coefficients have a big
contribution to the distortion, others can be strongly modified
without significant loss. In the transform and quantization
paradigm [14], the hierarchy of coefficients has led to uneven
bit allocation schemes (and non-uniform 1D quantizers for
each coefficient) [3], [4], [15], [16]. This implies that the
maximum distortion introduced in each coefficient depends
on both its frequency and its amplitude. These ideas can be
incorporated into the SVM paradigm by considering that the
maximum distortion is given by the insensitivity parameterε.
Therefore, the distortion criteria used to design the variable
quantizer step in each coefficient could be applied to design
an adaptive insensitivity zone in the SVM case.

Classical quantizer design is founded on MSE minimization
and gives rise to variable quantization steps based on the
variance of the coefficients and their particular probability
density function [14]. However, as the coded image has to be
judged by a human observer, the criterion should include the
sensitivity of the human viewer. In that sense, the introduction
of a perceptual metric in average error criteria does not solve
the problem because average perceptual error minimization
does not imply that every error is below (or proportional)
to the perceptual discrimination thresholds. In fact, it has
been shown that keeping the distortion proportional to the
visibility thresholds (restricting the MPE of each coefficient)
leads to better subjective results than minimizing the average
perceptual error [3], [4], [15], [16]. Therefore, the bottom line
to design the adaptive insensitivity zone of the SVM, which
restricts the maximum error in each coefficient, is drawn from
the MPE criterion in each coefficient for each particular image
region.

In our case, we have to compute the human visual insensi-
tivity for every DCT coefficient from the corresponding slope
of an appropriate vision response model. Current models of
human visual cortex assume that each region,A, of the input
image around some spatial position,s, undergoes a two-stage
transform [20], [21]:

A
T

−→ y
R

−→ r (10)
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whereT is a linear transform in which the input is analyzed
by a set of unit-norm oriented local-frequency sensors (V1
neurons) with receptive fields qualitatively similar to the
block-DCT basis functions [22]:

yi =
∑

j

Tij · Aj (11)

and R is a transduction function that represents the gain
of each particular sensor,Ti, and maps the linear trans-
form representation into a perceptually Euclidean response
representation [21]. The Euclidean nature of the response
representation implies that the linear transform representation,
y, is not Euclidean [23].

In this way, a small distortion in the transform represen-
tation, ∆y, induces a distortion that can be approximated by
using the Jacobian of the transduction function:

r + ∆r ≃ R(y) + ∇R(y) · ∆y (12)

Then, the maximum perceptual distortion for that spatial
region is given by

MPEs = ‖∆r‖∞ = max(∇R(y) · ∆y) (13)

The global perceived distortion in an image withn spatial
regions will be a particular spatial pooling (β-norm) of these
n local distortions from each local (block) response represen-
tation:

MPE = ‖(MPE1, · · · , MPEn)‖β =

(

∑

s

MPEβ
s

)1/β

(14)

whereβ is the summation exponent in this spatial pooling.
The most accurate gain control models of V1 sensors include
non-linearities with interactions between the outputs of the lin-
ear sensors [20], [21], thus giving rise to a non-diagonal input-
dependent Jacobian [23]. Using such models would not be easy
to derive a bound,εi, for the distortion in each coefficient,
∆yi, from Eq. (13). However, if we restrict ourselves to the
most simple model in which each sensor has a constant linear
gain given by theContrast Sensitivity Function (CSF)[24]:

∆ri = CSFi · ∆yi, (15)

the Jacobian is a diagonal matrix with∇R(y)ii = CSFi.
According to this, in order to keep the perceptual error below
some arbitrary threshold, MPEs = τ , every distortion,∆yi,
has to be:

∆yi ≤ τ · CSF−1
i (16)

Therefore, the insensitivity region for each coefficientyi

should be given by the CSF:

εi = τ · CSF−1
i (17)

Figure 1 shows the CSF, i.e. the relative slope for each
sensor (or basis function) of the DCT representation,which
is expressed in cycles/degree. The behavior of the visual
system in the frequency domain (e.g. the CSF) is commonly
defined in physically meaningful units such as cycles/degree
or samples/degree. These units refer to the number of discrete
samples per angle subtended by the image at a given viewing
distance. The frequency meaning of the DCT coefficients is
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Fig. 1. Contrast Sensitivity Function (CSF) of Nygan et al. [25]. The slopes of
two particular sensors respectively tuned to low-frequency stimuli (CSF4 = 1)
and high-frequency stimuli(CSF10 = 0.54) have been highlighted.

given by the selected sampling frequency (or equivalently by
the size and viewing distance).

The discrimination ability of a sensor (its insensitivityε)
can be obtained from the slope of its response curve.Figure 2
shows that the bigger the slope, the smaller the insensitivity:
different slopes in the response of each sensor imply different
insensitivities, and hence different bounds on∆yi for the same
perceptual error MPEs = τ .

Using insensitivity values according to Eq. (17) is optimal
in the MPE sense because it ensures that the MPEs is below
the selected threshold,τ , for every region,s, thus minimizing
the global MPE.

IV. RESULTS AND DISCUSSION

The general encoding procedure proposed by Robinson and
Kecman [1] consists of learning the DCT representation of
each block of the image to obtain a set of support vectors
and their corresponding Lagrange multipliers. These weights
are then uniformly quantized. The number of selected support
vectors and thus the entropy of the encoded signal is controlled
by a factor applied to theε-insensitivity zone (the parameter
τ in Eq. (17)). Tailoring differentε profiles will produce
critically different support vector distributions in the frequency
domain and hence different error distributions in this domain.
Therefore, differentε profiles lead to results of quite different
perceptual quality.

In this section, we show the benefits of the proposed MPE
optimal profile (CSF-SVR approach, Eq. (17)) by comparing
its results with a generic uniform tube (ε-SVR approach),
and with the method proposed by Robinson and Kecman [1]
(RKi-1 approach). We compare these three different SVM
training strategies in terms of (a) the distribution of support
vectors, and (b) the effect that these distributions have in
the compression performance. Following the same approach
of [1], we used the RBF kernel, trained the SVR models
without the bias termb, and modeled the absolute value of
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Fig. 2. Responses and associated visibility thresholds (insensitivity regions) of the two sensors whose slopes have been highlighted in Fig. 1. The Euclidean
nature of the response domain implies that two distortions,∆yi and∆yj , induce perceptually equivalent effects if the corresponding variations in the response
are the same:∆ri = ∆rj = τ . This is why, assuming a certain threshold for MPEs, the biggest the slope in the response,i, the smallest the acceptable
distortion inyi, giving rise to Eq. (17).

the DCT coefficients. For the sake of a fair comparison, all
the free parameters (ε-insensitivity, penalization parameterC,
Gaussian width of the RBF kernel, and uniform quantization
level of the weigths) were optimized for all the considered
models.The value ofτ in (17) was tuned iteratively to produce
a given compression ratio and depends on the image. Note that
high values ofτ increase the width of theε tube, which in turn
produce lower number of support vectors and consequently
yield higher compression ratios.

A. Distribution of support vectors

Figure 3 shows a representative example of the distribution
of the selected SVs by the three models considered in this
work. These distributions reflect how the selection of a partic-
ular insensitivity profile modifies the learning behavior ofthe
SVMs.

Using a straightforward constantε for all coefficients (ε-
SVR approach) concentrates more support vectors in the
low frequency region because the variance of these DCT
coefficients in natural images is higher [12], [15]. However, it
still yields a relatively high number of support vectors in the
high-frequency region. This is inefficient because of the low
subjective relevance of that region (see Fig. 1). Considering
these vectors will not significantly reduce the (perceptual)
reconstruction error while it increases the entropy of the
encoded signal.

The RKi-1 approach [1] uses a constantε but the authors
solve the above problem by neglecting the high-frequency
coefficients in training the SVM for each block1. This is
equivalent to the use of an arbitrarily large insensitivityfor
the high-frequency region. As a result, this approach relatively
allocates more support vectors in the low/medium frequency
regions. As the authors suggest, this modification of the

1If a (reasonable) sampling frequency of 64 cycles/degree is assumed, the
cut-off value recommended in [1] is around 20 cycles/deg.
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Fig. 3. Distribution of support vectors (SVs) for eachε profile as a function
of the frequency in the Lena image.

straightforward uniform approach is qualitatively based in the
basic low-pass behavior of human vision. However, such a
crude approximation (that implies no control of the distortion
in the high-frequency region) can introduce annoying errors
in blocks with sharp edges.

The proposed algorithm (CSF-SVR approach) uses a vari-
ableε according to Eq. (17). Taking into account the percep-
tion facts reviewed in Section III, the acceptable distortion in
the low/medium-frequency region is smaller than in the high-
frequency region, giving rise to a (natural) concentrationof
support vectors in the low/medium frequency region. Note
that this concentration is even bigger than in the RKi-1
approach. However, the proposed algorithm does not neglect
any coefficient in the learning process. This strategy naturally
reduces the number of allocated support vectors in the high-
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frequency region with regard to the straightforward uniform
approach, but it does not prevent selecting some of them when
it is necessary to keep the error below the selected threshold,
which may be relevant in edge blocks.

B. Compression performance

Exhaustive compression experiments using several standard
images (Lena, Barbara, Boats, Peppers and Cameraman) were
conducted using the different SVM training strategies at dif-
ferent compression ratesin the range [0.05, 0.5] bits/pixel
(bpp), i.e. 160:1 to 16:1 compression ratios, respectively. In
all cases, the images were analyzed using 16×16 block-DCT,
assuming a sampling frequency of 64 cycles/degree.We also
include results using the standard JPEG as a baseline method
for reference purposes2.

Given the limitations of the available (subjective) distortion
metrics [21], [26]–[28], the more reliable evaluation of the
subjective performance of the considered methods is the direct
visual inspection of the decoded images. However, it is also
usual to describe the compression performance using rate-
distortion curves. In these curves, the volume of the encoded
image (measured, for instance, by its entropy in bits/pixel)
is compared to an appropriate distortion measure. The best
algorithm is the one that achieves the lowest distortion fora
range of bit rates. In this case, the distortion measure should
be meaningful for the application, i.e. it should representthe
subjective quality of the reconstructed image.

In this section, we analyze the performance of the al-
gorithms through rate-distortion curves using two different
distortion measures: the standard MSE1/2 and the MPE of
Eq. (14) with β = 2 and using the CSF model for∇R.
Results are shown in Fig. 4. According to the standard MSE
point of view, the performance of theSVM algorithms is
basically the same (see Fig. 4(a)), improving the results of
JPEG as previously reported in [1].However, we can observe a
substantial gain in MPE of the CSF-SVR model when looking
at Fig. 4(b). As expected from the discussion in Section III,
the proposed scheme is optimal under the MPE criterion (and
the CSF model) and, of course, it is suboptimal in the MSE
(or PSNR) sense. In fact, by taking into account the visual
results presented in Fig. 5, it is clear that the MSE results
are not useful to represent the quality of the methods, as
extensively reported elsewhere [21], [26]–[28]. These results
not only confirm the theoretical and practical validity of
incorporating the CSF into the SVM methodology, but also
the meaningfulness of the MPE distortion measure [3], [15],
[16], [23]. The visual inspection of the results (Fig. 5) confirm
that thenumerical gain in MPE shown in Fig. 4(b) is also
perceptually significant.

The visual effect of the different distribution of the support
vectors due to the different insensitivity profiles is clearin
Fig. 5. First, it is obvious that the perceptually-based training
leads to better overall subjective results: the annoying blocking
artifacts of the ε-SVR and RKi-1 approaches are highly
reduced in the proposed approach, giving rise to smoother, and

2We used the JPEG implementation by Lagendijk, which is available at
http://www-ict.ewi.tudelft.nl.

(a)

0 0.1 0.2 0.3 0.4 0.5

8

10

12

14

16

18

20

22

24

26

Entropy (bits/pixel)

M
S

E
1/

2

JPEG
ε−SVR
RKi−1
CSF−SVR

(b)

0 0.1 0.2 0.3 0.4 0.5

1

2

3

4

5

6

Entropy (bits/pixel)

M
P

E

JPEG
ε−SVR
RKi−1
CSF−SVR

Fig. 4. Rate distortion curves of JPEG and the three SVM-based image
coding methods. (a) Distortion measured with the standard MSE1/2. (b)
Distortion measured using the perceptually meaningful MPE. These results
are the average over the five standard images, and the error bars stand for the
standard deviation of the corresponding distortion at eachpoint.

perceptually more acceptable, images. Second, the blocking
artifacts in ε-SVR and RKi-1 approaches may come from
different reasons. On the one hand, the uniformε-SVR wastes
(relatively) too many support vectors (and bits) in the high-
frequency region in such a way that noticeable errors in the
low-frequency components (related to the average luminance
in each block) are produced (see the face of Barbara). How-
ever, note that due to the allocation of more vectors in the
high-frequency region, it is the method that better reproduces
details such as the high-frequency strips in the Barbara clothes.
On the other hand, neglecting the high-frequency coefficients
in the training (RKi-1 approach) does reduce the blocking a
little bit, but it cannot cope with high contrast edges that also
produces a lot of energy in the high frequency region (for
instance, Lena’s cheek on the dark hair background).

An example of the performance of RKi-1 and CSF-SVR
at high compression ratios (from 64:1 to 125:1) is illustrated
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Fig. 5. Examples of decoded images. Zoom of the original images at 8 bits/pixel: Lena (a), and Barbara (f). The bit-rate for these examples is 0.3 bpp(27:1)
(Lena) and 0.4 bpp(20:1) (Barbara). (b) and (g) JPEG, (c) and (h)ε-SVR, (d) and (i) RKi-1, and (e) and (j) CSF-SVR.
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(a)

(b) (c)

(d) (e)

Fig. 6. Examples of decoded images using the RKi-1 and the proposed
CSF-SVR training strategies at high compression ratios: 0.1bpp (64:1) [left]
and 0.065 bpp (125:1) [right]. (a) Original Barbara image, (b) and (c) RKi-1,
and (d) and (e) CSF-SVR.

in Fig. 6 and Table I. Both the numerical and visual re-
sults show the same trend observed in Fig. 5. Specifically,
the proposed method reduces the blocking effect due to a
better perceptually-based distribution of support vectors. The
reduction in MPE distortion in Table I is confirmed by the
appearance of the CSF-SVR results in Fig. 6.

TABLE I

OBJECTIVE (MSE1/2) AND SUBJECTIVE (MPE) ERRORS OF THE

DECODED IMAGES AT HIGH COMPRESSION.

MSE1/2 MPE

Compression ratio RKi-1 CSF-SVR RKi-1 CSF-SVR

0.10 bpp (64:1) 17.5 17.4 6.2 5.0

0.08 bpp (100:1) 18.0 17.8 6.6 5.5

0.065 bpp (125:1) 18.7 18.5 7.1 6.4

V. FINAL REMARKS

In this work, we have tailored anε-insensitivity function
in the SVR model for image coding, which is optimal under
the MPE principle. This approach has been motivated by the
fact that, in the DCT-transformed domain, the use of a fixed
ε value is not consistent with the statistical and perceptual
properties of natural images. This approach has revealed tobe
more efficient than the original SVR-based coding schemes
in terms of perceptually meaningful rate-distortion measure
and visual inspection, precludingad hocassumptions in the
training algorithm.

An accurate consideration of a perceptually profiled SVR
training has improved the results. This fact suggests that
further improvement could be achieved by including more so-
phisticated non-linear perceptual models [4] in support vector
coding schemes.
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