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Abstract— In this paper we propose an adaptive non-linear
image representation based on the divisive normalization of local-
frequency transforms used in contrast masking models. This
normalized representation has two effects: (1) it increases the
statistical independence of the coefficients of the representation
and (2) it is Euclidean from a perceptual point of view.

Experimental results show that reducing the remaining statisti-
cal and perceptual dependence using normalized representations
for transform coding may make a big difference in the quality
of the reconstructed images.

I. INTRODUCTION

The aim of the change of representation in transform coding
is twofold [2]: it is intended to remove the statistical and the
perceptual dependence between the image coefficients.

A number of linear transforms (such as PCA, DCT, ICA or
Wavelets) have been used to reduce the statistical dependence
between the coefficients of the representation [3]–[5]. In the
conventional approach to transform coding, perceptual factors
are taken into account only after the selection of the repre-
sentation, in the quantizer design. Moreover, in order to apply
the standard theory for bit allocation, the (perceptual) metric
has to be diagonal in the representation to be quantized [4].

However, the above linear transforms do not completely
achieve the desired independence from both points of view [2],
[6]. This means that scalar quantization of these representa-
tions is not completely appropriate.

It has been shown that using non-linearities in which each
coefficient is normalized by a combination of the neighboring
coefficients (the local variance [7] or a linear combination of
the energy of the neighbors [6]) gives rise to signals with in-
teresting marginal probability density functions and increased
independence. This divisive normalization non-linearity is the
transform that takes place after the local-frequency analysis in
biological early vision [8], [9]. Besides, this kind of percep-
tually inspired normalization naturally leads to a perceptually
Euclidean domain [2], [10].

According to the referred (statistical and perceptual) proper-
ties of the divisive normalization, it could make a difference in
image coding. However, using the divisive normalization is not
straightforward since it is not easily invertible. This is a critical
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issue because the reconstructed image has to be obtained
inverting the non-linearity from the quantized coefficients.

In this work we propose the use of a psychophysically
inspired divisive normalization to obtain an image represen-
tation which is perceptually Euclidean and has an increased
independence at the same time. We present a computationally
efficient method to invert the representation and we analyze
the invertibility condition and its robustness to quantization.
Finally, we show that removing the remaining dependence in
linear transforms using this normalization prior to quantization
makes a difference in the quality of the reconstructed images.

II. DIVISIVE NORMALIZATION MODELS

The current models of early visual processing in the human
cortex involve two stages:

A
T−→ a

R−→ r (1)

where the image, A, is first analyzed by a (linear) wavelet-
like filter bank, T [9], and R is a non-linear transform of the
wavelet coefficients: the divisive normalization [8], [9]. The
linear filter bank, T , leads to a local-frequency representation
similar to the one used in transform coding (such as block-
DCT or Wavelets). The divisive normalization models describe
the gain control mechanisms normalizing the energy of each
linear coefficient by a linear combination of its neighbors in
space, orientation and scale:

ri =
|ai|γ

βi + (h · |a|γ)i
(2)

where h is a matrix that defines the neighborhoods that
describe the masking interactions between all the coefficients
of the vector a, and the rectification (the absolute value) and
the exponent γ are applied to each coefficient of the vector a.
The sign (or phase) of each coefficient is inherited from the
sign of the corresponding linear coefficient.

Note that this scheme is similar to the one used in transform
coding, where first a linear transform is used to reduce the
statistical dependence between the samples of A and then
some additional non-linearity may be considered in order to
simplify the quantizer design [3], [4].

In the visual psychophysics context [9], the parameters of
the divisive normalization are chosen to fit the experimental
contrast incremental thresholds (i.e. the inverse of the slope
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of the response). As illustration we propose normalization pa-
rameters for a particular set of local-frequency basis functions:
the block-DCT.

We use the parameters that fit the contrast incremental
thresholds of sinusoidal grids measured at our lab. The ex-
perimental procedure was similar to the one used in [9], [11].
In this fit we have only considered Gaussian neighborhoods
in scale (frequency) and orientation because these particular
experiments didn’t explore the spatial interactions. This is not
a problem in the case of applications that use extended basis
functions in each region such as the block-DCT. As in [9],
here, an additional scalar weighting parameter, α, is included
in the transform, T , simulating the global band-pass response
of the filter bank (the Contrast Sensitivity Function, CSF). This
means that the transform coefficients, ai, are given by:

ai = αi ·
N2∑

j=1

Tij Aj

Figure 1 shows the values of the parameters, α, β and
h that reproduce the contrast incremental threshold data and
some examples of the response curves for certain local-DCT
patterns. The value of the excitation and inhibition exponent
has been fixed to γ = 2 [8].

For other basis of interest such as wavelets, the normaliza-
tion model can be extended introducing spatial interactions in
the Gaussian kernel, h, using the results reported in [9] or [12]:
the spatial extent of the interactions is about twice the size of
the impulse response of the CSF.

Given an image, A, of size N × N , if a non-redundant
basis is used to model T , the size of the vectors a, r and β is
N2, and the size of h is N2 × N2. Considering these sizes,
an arbitrary interaction pattern in h would imply an explicit
(expensive) computation of the product h·|a|γ . Fortunately, the
nature of the interactions between the coefficients is local [9],
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Fig. 1. Psychophysical parameters α, β and (examples of the
interaction kernels in) h for the local-DCT case. The different line
styles represent different frequencies: 4 cpd (solid), 8 cpd (dashed)
and 16 cpd (dotted). The bottom right figure shows some examples
of the response for the corresponding basis functions on a zero
background.

[12], as shown in figure 1. This fact induces a sparse structure
in h and allows a very efficient computation of h · |a|γ using
simple convolutions.

III. BENEFITS OF DIVISIVE NORMALIZATION FOR IMAGE

CODING

As stated in the introduction the aim of the image represen-
tation in the context of transform coding should be reducing
the statistical and the perceptual dependence between the
coefficients at the same time.

The statistical dependence is usually described by a non-
diagonal covariance matrix, Γ [3], [4]. The perceptual depen-
dence may be described by a non-Euclidean perceptual metric,
W [2]. The efficiency of a representation from both points of
view may be evaluated analyzing the non-diagonal nature of
these matrices. This can be measured using a parameter, ηs

(for Γ) or ηp (for W ), that is defined as the ratio between the
magnitude of the off-diagonal coefficients of the (statistical
or perceptual) matrix with the magnitude of their diagonal
coefficients [3].

Table I shows these interaction measures for the spatial do-
main, for two classical linear local-frequency domains and for
the proposed domain: local-DCT plus divisive normalization.

On one hand we have computed the statistical interaction
measure, ηs, on the covariance of the samples in the usual way,
i.e. taking into account their sign. In this case, as expected,
the local-PCA, which is designed to diagonalize Γ, achieves
the best ηs result. The local-DCT which is a good fixed-basis
approximation of the PCA [3], achieves a quite good result
as well. However, notice that if the statistical relation between
the absolute value of the coefficients is analyzed (measure η|s|)
it is obvious that the linear transforms do not remove these
interactions. On the other hand, we see that the proposed image
representation does reduce the statistical interactions. And this
is true even in the absolute value (or energy) case, which is
something that linear transforms cannot do.

Beyond these statistical facts, the non-linear interactions
after the transform domain imply that the metric, W , estimated
using Riemannian geometry is not diagonal in any linear
representation. In particular, the coefficients of the metric in
the linear representation given by the filters T in eq. 1 depend
on the slope (jacobian) of the non-linear response in eq. 2.
As this slope is non-diagonal and input-dependent, the metric,
W , cannot be diagonalized in any linear domain (see [1], [2]
for details).

The simultaneous consideration of both aspects makes the
proposed representation a good candidate for transform cod-
ing. The only technical issue to be analyzed before using the

Spatial Domain local-DCT local-PCA Normaliz. Domain

ηs 169.2 6.6 0.0 0.7
η|s| 169.2 21.5 17.1 1.3
ηp 48.2 1.1 12.6 0.0

TABLE I

Stat. and Perceptual interaction measures in different domains.
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normalization is its inversion in order to come back to the
spatial domain after the quantization.

IV. INVERSION OF THE NORMALIZATION

Let Dr and Dβ be diagonal matrices with the vectors r and
β in the diagonal, then from eq. 2 it follows:

|a|γ = (I −Dr · h)−1 ·Dβ · r (3)

However, this analytic solution is not practical because of
three reasons. First, the matrices are huge so computing the
inverse (I−Dr ·h)−1 is very expensive. Second, while in the
normalization the interactions between the coefficients of a are
local (h is sparse), in the inverse the interactions between the
coefficients of r are global, i.e., (I −Dr ·h)−1 is dense. This
dense interaction makes eq. 3 hard to use even with moderate
size images. And third (the worse one), the inverse will not
exist if I −Dr · h is singular.

A. Series expansion inversion

The particular form of the normalization model and the corre-
sponding inverse allows us to propose an alternative solution
that doesn’t involve matrix inversions nor dense matrices. The
idea is using a series expansion of the inverse matrix in eq. 3.

(I −Dr · h)−1 =
∞∑

k=0

(Dr · h)k

In that way, we can compute the inverse up to a certain degree
of approximation, taking n < inf terms in the series:

|a|γ(1) = Dβ · r + (Dr · h) ·Dβ · r
|a|γ(2) = Dβ · r + (Dr · h) ·Dβ · r + (Dr · h)2 ·Dβ · r

...

A naive implementation would imply computing powers of
Dr · h which is also a problem. However, taking into account
that the previous equations can be rewritten as:

|a|γ(1) = Dβ · r + (Dr · h) ·Dβ · r
|a|γ(2) = Dβ · r + (Dr · h) · ((Dr · h) ·Dβ · r + Dβ · r)

...

we can write the series approximation in a recursive fashion
that only involves vector additions and matrix-on-vector mul-
tiplications:

|a|γ(0) = Dβ · r
|a|γ (n) = Dβ · r + Dr · h · |a|γ(n−1) (4)

Note that the matrices in eq. 4 are sparse and therefore it
allows a fast implementation using convolutions.

B. Invertibility and convergence condition

The same condition has to hold to ensure the existence
of the solution and the convergence of the series inversion
method. Let V and λ be the eigenvector and eigenvalue matrix
decomposition of Dr · h:

Dr · h = V · λ · V −1

As we show below, the invertibility condition turns out to be:

λmax = max (λi) < 1 (5)

In the analytic case the matrix (I−Dr ·h) has to be invertible,
i.e. det(I −Dr · h) 6= 0. However if some eigenvalue, λi, is
equal to one, then det(λiI−Dr ·h) = 0. In theory, it would be
enough to ensure that λi 6= 1, but in practice, as the spectrum
of Dr ·h is almost continuous (see the example in figure 2), it
is very likely to have dangerous eigenvalues if the condition 5
doesn’t hold.
In the series expansion case, the convergence of the series has
to be guaranteed. Using the eigenvalue decomposition of Dr ·h
in the expansion, we find:

∞∑

k=0

(Dr · h)k = V ·
( ∞∑

k=0

λk

)
· V −1

which clearly converges only if the maximum eigenvalue is
smaller than one.

We have empirically checked the invertibility of the psy-
chophysically inspired normalization for the local-DCT case
by computing the maximum eigenvalue of Dr · h over the
blocks of a set of 200 images of the Van Hateren natural
image data set [13]. Figure 2 shows the average eigenvalues
spectrum with the corresponding standard deviation. As the
obtained eigenvalues are smaller than 1, the normalization with
these psychophysical parameters will be invertible. Besides, as
they are far enough from 1 it will remain invertible even if
the responses undergo small distortions such as quantization.

C. Convergence rate

It is possible to derive an analytic description for the
convergence of the series expansion method. It turns out that
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Fig. 2. Average eigenvalues of Dr · h for 200 natural images.
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the convergence is faster for a smaller λmax . Consider that the
error vector at the step n of the approximation,

e(n) = |a|γ − |a|γ(n)

is just the last part of the series, and using the eigenvalue
decomposition of Dr · h, we have:

e(n) =
∞∑

k=n+1

(Dr · h)k ·Dβ · r =
∞∑

k=0

(Dr · h)(n+k+1) ·Dβ · r

= V ·
( ∞∑

k=0

λ(n+k+1)

)
· V −1 ·Dβ · r

Then, taking the | · |∞ norm as a measure of the error, we
have:

ε(n) = |e(n)|∞ = max (e(n) i) ∝
∞∑

k=0

λmax
(n+k+1)

=
∞∑

m=0

(λmax
n)m − 1

and therefore, the error at each step is:

ε(n) ∝
λmax

n

1− λmax
n (6)

Figure 3 confirms this convergence rule: it shows the
evolution of the error measure as a function of the number
of terms in the series for three images with different λmax .
From eq. 6 it follows that for a big enough number of terms it
holds log(ε(n)) ∝ log(λmax ) · n, as shown in the figure. The
experiment in figure 3 shows the result of local-DCT blocks,
but the same behavior is obtained in the wavelet case.

D. Robustness to quantization

Figure 4 shows the effect of the quantization step (number
of bits per coefficient) on λmax which is the key for the
invertibility (and convergence). These results capture the evo-
lution of the maximum eigenvalue of data set used in figure 2
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Fig. 3. Error the series expansion method as a function of the number
of terms in the series. The different lines represent the error obtained
when inverting different images with different values of λmax .

when compressing the images in the range 1–0.02 bits/pix.
For relatively high bit-rates (over 0.6 bits/pix) the maximum
eigenvalue remains stable and equal to its value in the original
signal. For smaller bit-rates λmax oscillates a little bit, but it
always lays in the region that allows the invertibility.

This ensures that the proposed normalized representation
is invertible no matter the bit-rate: the coarseness of the
quantization is not limited by the invertibility condition but
just by the admissible distortion (as usual).

V. IMAGE CODING RESULTS

The nature of the quantization noise depends on the quan-
tizer design. The quantizers based on the minimization of the
MSE end with non-uniform quantization solutions based on
the marginal PDFs [4] or some modification of them including
the perceptual metric [2], [14]. However, it has been suggested
that constraining the Maximum Perceptual Error (MPE) may
be better than minimizing its average [14]. This is because the
important issue is not minimizing the average error across the
regions, but minimizing the annoyance in every region.

Constraining the MPE is equivalent to a uniform quan-
tization in a perceptually uniform domain. Therefore, once
in the perceptually Euclidean domain the quantizer design is
extremely simple: uniform scalar quantizers and uniform bit
allocation. Of course, the expression of this quantizer turns
out to be non-uniform in the (intermediate) transform domain
(local-DCT or wavelets).

The difference between the approaches that implicitly fol-
lowed the MPE idea [2], [14]–[18] is the accuracy of the
perception model which is used to propose the perceptually
Euclidean domain. For instance, the quantization scheme (em-
pirically) recommended in the JPEG standard [16] may be
deduced from the MPE restriction with a very simple linear
vision model based on the CSF [14]. In this case, the percep-
tual metric is fixed (the model is linear) and it is assumed to be
diagonal in the local DCT domain. In this very simple case, it
is assumed that no perceptual relationship exists between the
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Fig. 4. Effect of quantization on λmax . The solid line and the
dotted line stand for the average and the average plus one standard
deviation of λmax over the considered data set. The dashed line shows
the behavior of the maximum λmax of the data set.
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coefficients of the transform, and that the perceptual relevance
of each coefficient is given by the corresponding CSF value.
The performance of this approach can be improved at around
0.5 bits/pix if a more sophisticated model is used [14], [15],
[17], [18]. In these references the authors used a point-wise
non-linear model in the DCT domain. In that case the metric
is image adaptive but still it is assumed to be diagonal, i.e.,
no interactions are considered between coefficients. These
results can be improved if the perceptual interactions are not
neglected [2]. In that case, the authors used a fixed (average)
non-diagonal metric together with the correlation matrix in
order to represent the signal in a perceptually and statistically
decorrelated domain. However, in this case the authors had to
neglect the input adaptive behavior because of the inversion
problem. In this paper we follow the same MPE (uniform
quantization approach) but using the state-of-the-art perceptual
model: the divisive normalization model that implies a non-
diagonal and input-dependent metric.

Here (figure 5 and table II) we compare the results of
different MPE transform coding schemes at the same com-
pression ratio using image representations (or vision models)
of progressively increasing accuracy: JPEG [16] that assumes
the linear CSF model and a fixed diagonal metric in the DCT
domain (fig. 5, top-left), the algorithm of Malo et al. [14],
[18], that assumes a point-wise non-linear model [11] and
hence an input-dependent diagonal metric in the DCT domain
(fig. 5, top-right), the algorithm of Epifanio et al. [2], that
assumes a fixed non-diagonal metric in the DCT domain
(fig. 5, bottom-left), and the proposed representation, that uses
the psychophysical normalization assumes an input-dependent
and non-diagonal perceptual metric (fig. 5, bottom-right).

VI. CONCLUSION

Image coding results suggest that a straightforward uniform
quantization of the normalized coefficients is a promising
alternative to the current transform coding techniques that
use different degrees of perceptual information in the image
representation and quantizer design. These results show that
removing or reducing the remaining (statistical and perceptual)
dependence in linear transforms may make a big difference in
the quality of the reconstructed images.
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