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ABSTRACT

Regularization constraints are necessary in inverse prob-
lems such as image restoration, optical flow computation or
shape from shading to avoid the singularities in the solution.
Conventional regularization techniques are based on somea
priori knowledge of the solution: usually, the solution is as-
sumed to be smooth according to simple statistical image or
motion models.

Using the fact that human visual perception is adapted
to the statistics of natural images and sequences, the class
of regularization functionals proposed in this work are not
based on an image model but on a model of the human
visual system. In particular, the current non-linear model
of early human visual processing is used to obtain locally
adaptive regularization functionals for image restoration with-
out anya priori assumption on the image or the noise. The
results show that these functionals constitute a valid alterna-
tive to those based on the local autocorrelation of the image.

1. INTRODUCTION

Images are produced to record or display useful information
about some phenomenon of interest. As the process of im-
age formation and recording is not perfect only a degraded
version,id(x), of the original image,io(x), is available. The
whole distortion process is usually modelled by means of a
linear operator acting upon the original image plus additive
noise:

id(x) = h(x, x′)⊗ io(x′) + n(x) (1)

The purpose of image restoration is to estimate the orig-
inal image from the distorted and noisy one. This is a non
trivial problem because even if the operator is known, a
naive inversion will amplify the noise.

Multiple techniques of different nature have been pro-
posed to solve this problem, but most of them require (and
critically depend on) some image model or somea priori
assumptions on the image or the noise [1, 2, 3]. Usually the
solution is assumed to have a particular smoothness in the
spatial domain described by its autocorrelation function or

the coefficients of an autoregressive model [3, 4]. In other
cases, the required features of the solution are given in a
transform domain [5]. In the particular context of regular-
ization techniques, the restored image is the one that mini-
mizes the departure from the observed data and the presence
of someunwanted featuresin the solution [6]. The problem
again is to define the image model or thesuitable features
in the solution.

In this work we propose a class of penalty functionals
for image regularization which are not based on a model of
the image or the noise, but on the current model of low-level
human visual perception [7, 8]. In this way there is no need
to make anya priori assumption.

The use of advanced perception models to design the
regularization functionals relies on the Barlow hypothesis [9]:
the biological vision systems have evolved for an optimal
processing of natural images. In particular, it has been shown
that the early linear processing mechanisms in the visual
cortex perform a sort of linearIndependent Component Anal-
ysis[10]. Besides, the post transform non-linearities [7, 8]
increase the independization between the transform coef-
ficients [11, 12]. This means that these mechanisms have
evolved to capture the most salient features of the natural
images, and, in a way, discriminate between useful and neg-
ligible information.

According to these facts, the generic statistical proper-
ties of natural images (as for instance their smoothness and
the relations between the coefficients in a local Fourier do-
main [11, 5]) are implicitly included in the response model.
Therefore, it makes sense to use the perceptual response to
design the regularization for restoration purposes because it
can tell us what features should be present in the solution
and what features should be removed from it.

The use of simple human vision models in the regular-
ization is not new [1, 3]. However, those approaches used
simpler (linear) models and, what is more important, the
rationale was very application-oriented (similar to the one
which is popular in the coding literature): as the images are
addressed to human viewers, the functional should penalize
the features which are not subjectively relevant.
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In addition to the use of a more advanced model, the
main idea of this work is different: here we want to stress
the fact that the information about the natural images im-
plicitly included in the human visual response models can
be used as a successful alternative to explicit image models
in the regularization functional design.

2. REGULARIZATION AND IMAGE MODELS

In the Tikhonov regularization [6] the image estimate,i′,
is the one that simultaneously minimizes the departure from
the observed data,|h(x, x′)⊗ i′(x′)− id(x)|2, and a penalty
functional,|p(x, x′) ⊗ i′(x′)|2, that measures the presence
of someunwanted featurein the solution:

arg min
i′

(
|h(x, x′)⊗i′(x′)−id(x)|2+λ2|p(x, x′)⊗i′(x′)|2

)
(2)

whereλ establishes the trade-off between both terms. As-
suming thath andp are shift invariant, the solution to eq. 2
in the Fourier domain is [1]:

I ′(f) =
H∗(f)

|H(f)|2 + λ2

|P (f)−1|2
Id(f) (3)

The meaning of the regularization functional,p, in terms
of a simple image model can be inferred from the result
using the optimal Wiener filter [1]:

I ′(f) =
H∗(f)

|H(f)|2 + |N(f)|2
|Io(f)|2

Id(f) (4)

In the Wiener solution the inverse operatorH∗/|H|2 is mod-
ified using information about the power spectrum of the
original signal and the noise (which is not available in gen-
eral). Eq. 4 suggests that the regularization penalty func-
tional,p, and the parameter,λ, should be related to the spec-
trum of the signal and the energy of the noise. This is why
the conventional functional design is based in a model of
the autocorrelation of the image [4, 3]. The smoothness as-
sumption (limited band signal) gives rise to high-pass regu-
larization functionals (theunwanted featureis the energy in
the high frequency region).

3. PERCEPTUAL REGULARIZATION
FUNCTIONALS

The standard model of human low-level image analysis [8]
has two basic stages, in which the input image,i(x) is first
transformed into a vectorI(f, x), in a local frequency do-
main (using a linear filter bank,T ) and finally it is non-
linearly transformed into a response vector,r(f, x)

i
T−→ I

R−→ r

The perceptual transform,T , is similar to the class of
transforms employed in image coding. A local (block) Fou-
rier transform will be used here as a model of the percep-
tual linear transformT . The response to each coefficient
of the transform is given by a linear term which dominates
when the amplitude is small (near-threshold behavior) and
a non-linear term in which the energy of each coefficient is
normalized by a linear combination of the neighbors (supra-
threshold or masking behavior) [8, 7, 12]. For a particular
region of a local Fourier transform, the response for each
frequency component is:

r(I(f)) =
α(f)|I(f)|2

β(f) + (k(f, f ′)⊗ |I(f ′)|2)
(5)

Figure 1 shows the frequency dependence of the param-
eters in eq. 5. The unit-volume Gaussian kernels,k, relate
each coefficient with its neighbors in frequency and orien-
tation [8]. The parametersα and β are chosen to fit the
psychophysical response of the human viewer to periodic
functions of frequency,f [12]. Note that the overall behav-
ior is mediated by the band-pass filterα(f), which is similar
to the classicalContrast Sensitivity Function(CSF).

It has been reported that the energy normalization in the
non-linear term acts as a sort of divisive DPCM (the energy
in each transform coefficient is predicted from the energy of
the neighbors). In this way, the independence between the
coefficients of the response is increased [12]. This means
that the basic relations between the local Fourier coefficients
of natural images are described by the Gaussian kernels,
k(f, f ′). Summarizing, the implicit information about the
images in this model issmoothness(limited band behavior
of α) but also aparticular relationship between the trans-
form coefficients(note the frequency dependent neighbor-
hood defined by the kernels).

Assuming that the responses in eq. 5 capture the most
salient independent features of the natural images, and dis-
criminate between useful and negligible information, the
perceptual responses for a particular region of the observed
data tell us what features should be present in the solution
and what features should be removed from it. According
to this, we define the perceptual regularization functional to
be inversely proportional to the response. Therefore, each
restored region will be given by,

I ′(f) =
H∗(f)

|H(f)|2 + λ2

|r(Id(f))|2
Id(f) (6)

Using the analogy with eq. 4 we see that the role of the
response model is the extraction of the relevant features of
the image to estimate the spectrum of the original signal
from its degraded version.

As stated in the introduction, previous perceptual ap-
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Fig. 1. Parameters of the vision model and non-linear re-
sponse functions. The values in these figures assume that
the Fourier coefficients are expressed in contrast (amplitude
over mean luminance). The responses of figure 1.d illus-
trate the basic sigmoid behavior of eq.5, but they are just
particular examples for isolated sinusoids. In general these
response curves will depend on the neighbor coefficients.

proaches based in the linear CSF model [1]:

I ′(f) =
H∗(f)

|H(f)|2 + λ2

|CSF(f)|2
Id(f) (7)

can be seen as a particular case of the more general class of
functionals presented here.

4. RESULTS AND DISCUSSION

The regularization functionals proposed have been tested in
several natural images with different levels of degradation.
Some illustrative results are presented using the standard
image Barbara (figure 2).

We assume that the256 × 256 images have a physical
extent of4×4 degrees, i.e. a sampling frequency of 64 cpd.
The original image has been degraded using a linear shift
invariant low-pass filter with cutoff frequency of 16 cpd and
Gaussian white noise with varianceσ2

n = 185. The total
distortion is BSNR≈12 dB (figure 2.b). In the experiments,
the regularization parameter,λ, has been obtained using the

standard L-curve method [13] for each block of the local
Fourier Transform. To objectively test the performance of
the image restoration algorithms, the Improvement in Signal
to Noise Ratio (ISNR) will be used.

First, two classical restoration methods are presented for
reference purposes. When the second derivative is used as a
model for the autocorrelation, a result like the one shown in
figure 2.c is obtained. This image shows over-smoothed ar-
eas and noise in the band 10-24 cpd. Similar results are ob-
tained when other stationary models for the autocorrelation
are used. The restored image using the approach proposed
by Hunt (eq.7) is shown in figure 2.d. The use of this very
simple perceptual model (with a fixed regularization func-
tional) does not substantially changes the results based on a
stationary model of the autocorrelation.

The procedures with a spatially-invariant regularization
functional can be improved by using adaptive approaches:
in the procedures based on a model of the image it is pos-
sible a local estimation of the power spectrum to update the
regularization functional. In the proposed approach, consid-
ering an input-dependent perceptual model (eq. 6) naturally
implies a change in the functional in each region.

It is possible to compare the image-based and the percep-
tual-based approaches in the best (idealized) way provided
the original image is available to design the functionals. On
one hand, eq.4 can be exactly computed for each block.
And, on the other hand, the response in eq.6 can be com-
puted usingIo instead ofId. These results (figs. 2.e and
2.f) constitute an upper bound of what can be obtained in
each case. Both locally adaptive approaches certainly im-
prove the fixed functional results: e.g., specific details are
preserved. However, even if the best possible image model
(thetrueautocorrelation) and thetrueenergy noise are used
in eq. 4, the corresponding result displays annoying noise
in the smooth regions which is not present in the perceptual
case.

In practice, a model needs to be locally fitted using the
distorted image in order to properly apply the first approach,
and results are very dependent on the accuracy and robust-
ness of the model. On the other hand, the proposed ap-
proach directly uses the degraded image and there is no need
of any model. In this example, the result obtained is the one
shown in figure 2.g. The restored image constitutes a trade-
off between the overall noise and the preservation of spe-
cific details. The loss in figure 2.f with regard to the upper
bound result in figure 2.g is small given the big differences
betweenio andid.

5. CONCLUDING REMARKS

In this paper, the information about natural images implic-
itly included in the current model of early human vision
(smoothness and relations between coefficients in a trans-
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c) ISNR=2.07 d) ISNR=1.79

e) ISNR=3.92 f) ISNR=4.28

g) ISNR=3.12

Fig. 2. a) Original image, b) Distorted image, c) Second-
derivative based result, d) CSF-based result e) Idealized lo-
cal Wiener result, f) Idealized local non-linear perceptual
result, g) Proposed method.

form domain) has been used to define regularization func-
tionals for restoration purposes. Results suggest that the

proposed method, which does not requirea priori assump-
tions on the image, can be used as a successful alternative
to explicit image models.
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