
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 1, JANUARY 2006 189

Regularization Operators for Natural Images
Based on Nonlinear Perception Models

Juan Gutiérrez, Francesc J. Ferri, and Jesús Malo

Abstract—Image restoration requires some a priori knowledge
of the solution. Some of the conventional regularization techniques
are based on the estimation of the power spectrum density. Simple
statistical models for spectral estimation just take into account
second-order relations between the pixels of the image. However,
natural images exhibit additional features, such as particular
relationships between local Fourier or wavelet transform coef-
ficients. Biological visual systems have evolved to capture these
relations.We propose the use of this biological behavior to build
regularization operators as an alternative to simple statistical
models. The results suggest that if the penalty operator takes
these additional features in natural images into account, it will be
more robust and the choice of the regularization parameter is less
critical.

Index Terms—Early vision models, image restoration, natural
image statistics, regularization.

I. INTRODUCTION

IMAGES are produced to record or display useful infor-
mation regarding some phenomenon of interest. When the

process of image formation and recording is not perfect, only a
degraded version of the original image is available.
The whole distortion process is usually modeled by means of
a linear operator acting upon the original image, plus additive
noise

(1)

The purpose of image restoration is to estimate the original
image from the distorted and noisy one. This is a nontrivial
problem because, even if the operator is known, a naive inver-
sion will amplify the noise [1].

Multiple techniques of different nature have been proposed to
solve this problem. Most of them require (and critically depend
on) some image model or some a priori assumptions about the
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image or the noise [1]–[3]. The most exploited feature of nat-
ural images for building an image model is the specific low-pass
behavior of the power spectrum [4], [5]. This feature can be
easily described in the spatial domain by an autocorrelation
function or the coefficients of an autoregressive (AR) model
[1], [6]. In more recent approaches, the image model includes
additional features. In particular, certain relationships between
neighboring coefficients in a transformed domain are consid-
ered [7], [8].

In the context of regularization techniques, the restored image
is a tradeoff between closeness to the observed data and the
absence of some unwanted features in the solution [9]. The
problem is again to use an appropriate image model to design
the regularization operator so as to preserve the suitable features
in the solution.

In this paper, we put forward and analyze a class of penalty
operators [10] for image regularization which are not based on
a model of the image or the noise, but on the current model of
low-level human visual perception [11], [12]. In this way, there
is no need to make any a priori statistical assumptions.

The use of perception models to design regularization oper-
ators relies on the Barlow hypothesis [13], in which he argued
that biological vision systems have evolved for an optimal pro-
cessing of natural images. A number of results support this hy-
pothesis. First, it has been shown that the early processing mech-
anisms in the visual cortex perform a linear wavelet-like trans-
form using a set of filters similar to those obtained by applying
independent component analysis (ICA) to a set of natural im-
ages [14]. Second, biological vision systems exhibit nonlinear
interactions between the responses of the linear wavelet-like
stage. In these nonlinearities, each coefficient is normalized by
a combination of neighboring coefficients [11], [12], [15]. It
has been shown that this behavior gives rise to signals with in-
creased independence (see [15], [16], or [17]). By maximizing
independence, biological visual systems capture the most salient
features of natural images and, in a way, discriminate between
useful (suitable) and negligible (unwanted) information.

From this ecological point of view, current models of early
vision implicitly include the generic statistical properties of nat-
ural images (as for instance their rough spectral properties and
the relationships between the coefficients in a local frequency
domain [15], [17]). Therefore, it makes sense to use the percep-
tual response in the regularization context for restoration pur-
poses, because it can tell us what features should be present in
the solution and what features should be removed from it.

The use of simple human vision properties in regularization
is not new [1], [2]. However, these approaches used simpler
(linear) models and, of greater importance, the rationale was
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very application oriented (similar to the one which is popular
in coding literature [18], [19]): As the images are addressed
to human viewers, features which are not subjectively relevant
should be penalized.

Apart from using a more advanced model, the main idea of
this paper is different: We want to stress the fact that the infor-
mation about natural images implicitly included in the human
visual response can be used as a successful alternative to ex-
plicit image models in the penalty operator design. Moreover,
if the penalty operator takes into account these additional fea-
tures in natural images, it may be more robust and the choice
of the regularization parameter is less critical. It is important to
stress that the statistical benefits of using this advanced percep-
tual model are not limited to its application in restoration: see
[17] for an application in image coding.

This paper is organized as follows. In Section II, we review
the regularization framework. In Section III, we stress that the

spectrum shape is not the only common feature shared by
natural images. In particular, we show that the coefficients of
local Fourier representations are related. These relationships are
equivalent to those recently reported in other local frequency do-
mains [7], [8], [15], [17], [20]–[22]. In Section IV, we propose
the use of the current nonlinear early vision response to define
regularization operators. We show that this response implicitly
takes into account both band limitation and the additional fea-
tures illustrated in Section III. Our experimental results appear
in Section V, followed by our concluding remarks.

II. REGULARIZATION AND IMAGE FEATURES

In the Tikhonov regularization framework [9], the image esti-
mate is the one that simultaneously minimizes both the depar-
ture from the observed data , as well
as a penalty functional , which measures the
presence of some unwanted feature in the solution

(2)

where is a linear operator that extracts the features that
should be minimized in the solution, and , referred to as the
regularization parameter, establishes the tradeoff between both
terms. If Euclidean distance is used to measure these departures

and , we have [9]

(3)

Many different choices exist for , and the penalty oper-
ator . Common choices for the measures are norms
[23], usually and norms. In particular, the effect of a small
exponent in relatively decreases the penalization
of large variations in luminance, thus allowing the presence of
sharp discontinuities in the solution [24]. On the other hand, the
penalty operator is usually taken as a fixed high-pass filter (e.g.,
first or second derivative) or can be adaptively computed [1]. In

this paper, we propose an adaptive operator and analyze its be-
havior in the particular case of (3).

Assuming a local approach in (3), and may be considered
shift invariant, and, hence, is a convolution; therefore, the
solution in a region of a block-Fourier domain is [2]

(4)

The meaning of the regularization operator in the Fourier do-
main in terms of a simple image model can be inferred
by analogy from the result using the optimal Wiener filter [2]

(5)

In the Wiener solution, the inverse operator is mod-
ified using information about the power spectrum of the original
signal and the noise (which are not available in general). Equa-
tion (5) suggests that the penalty operator and the parameter
should be related to the power spectrum density of the signal and
the energy of the noise, respectively. Therefore, the conventional
operator design is usually based on a model of the autocorrela-
tion of the image [1], [6]. The smoothness assumption (limited
band signal) gives rise to high-pass penalty operators; so, in this
case the unwanted feature is the energy in the high-frequency
region.

A critical issue in the regularization framework is the choice
of the regularization parameter . This problem gets worse if
the operator is not specifically matched to the signal. For in-
stance, when a generic high-pass operator is used, the appro-
priate restoration of high-frequency components in the signal
becomes very sensitive to . However, the importance of the reg-
ularization parameter may be reduced if the operator not only
includes second-order relations, but also some other features
which are common in natural images.

III. ADDITIONAL FEATURES IN NATURAL IMAGES

BEYOND SPECTRUM

Natural images present a strong correlation between the
luminance of pixels in the spatial domain. This is the reason for
assuming Gaussian models for natural images [20], [25], [26].
Under the Gaussian assumption, a simple second-order ap-
proach fully describes the signal. This simple characterization
has been successfully exploited in applications where removing
the statistical dependence of the samples is required [27], [28].
Principal component analysis (PCA) on a set of natural images
gives rise to Fourier-like eigenvectors, i.e., oscillating functions
extending all over the spatial domain. Moreover, the energy (the
square of the eigenvalues) is concentrated in the low-frequency
PCA components [20], [25], [26]. Specifically, natural images
exhibit a power spectrum [4]. This justifies the use of
high-pass regularization operators (such as first and second
derivatives of the signal [1]) in image restoration.

However, natural images are not that simple. In order to con-
sider higher order interactions, ICA techniques [29], [30] have
been developed as an alternative to PCA. When applied to nat-
ural images, wavelet-like representations emerge, i.e., spatially
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Fig. 1. Empirical interaction of two particular coefficients of the local Fourier
transform with their neighbors. The absolute value of the frequency of these
two coefficients is jf j = 10:8 and jf j = 24:4 cycles/degree (cpd). A sampling
frequency of 64 cpd is assumed.

localized oscillating functions. Nevertheless, when representing
images in these local frequency domains, not all higher order
interactions are taken into account [7], [15], [17], [20]–[22].
Specifically, intriguing relationships among the coefficients of
these linear frequency transforms still remain. Linear transforms
cannot remove all the statistical dependence because natural im-
ages do not come from a linear combination of signals from in-
dependent sources (e.g., due to occlusion). Modeling these sta-
tistical relations led to improvements in image coding applica-
tions [21], [31].

Instead of modeling these relations explicitly, in this paper,
we are going to take them into account by using a nonlinear
perceptual model [11], [12]. The use of these perception models
rather than the explicit statistical modeling of the relations in
a local Fourier domain has been successfully applied in image
coding applications (see [32], [33], or [17]).

In this section, we describe a way to show these relations
in the particular local frequency domain which will be used to
define the regularization operators. This is intended to clarify
how the perceptual response reviewed in next section takes these
relationships into account.

We have computed the cross-correlation between the absolute
value of the 32 32 block-Fourier coefficients of the widely
used natural images database [34]. As the local Fourier spec-
trum of natural images is not stationary, a direct comparison
between coefficients at very different frequencies is biased. As
stated above, natural images exhibit a power spectrum,
meaning that the comparison of a high-frequency coefficient
with a low frequency coefficient is biased by the high energy
of the latter. Therefore, instead of a direct comparison, we first
divide each coefficient by (assuming that [5]). In that
way, a unit mean process is obtained and a fair computation of
the cross-correlation can be done.

Fig. 1 shows an estimate of the cross-correlation for two
particular coefficients. Obviously, for any given coefficient, the
cross-correlation is maximum for itself and its symmetrical.
When compared to other coefficients, the cross-correlation de-
creases as the distance in frequency increases. The relationships
illustrated in this example are consistent with those reported
in other local frequency transform domains (see [7], [8], [15],
[20]–[22], or [17]).

In summary, natural images have a low-pass spectrum (as as-
sumed by conventional statistical models used for regulariza-
tion), but they also exhibit the particular behavior illustrated by
these relationships in a local frequency domain. This additional
feature of natural images should not be neglected.

IV. PERCEPTUAL REGULARIZATION OPERATORS

The standard model of human low-level image analysis [11],
[12], [15] has two basic stages in which the input image
is first transformed into a vector in a local frequency
domain (using a linear filter bank ) and then it is nonlinearly
transformed into a response vector

A local (block) Fourier transform will be used here as a model
of the perceptual linear transform . The response to each co-
efficient of the transform is given by a nonlinearity
in which the energy of each coefficient is normalized by a linear
combination of the neighbors (masking behavior). This non-
linear response is commonly referred to as divisive normaliza-
tion [11], [12]. For a particular region of a local Fourier trans-
form, the response for each frequency component is

(6)
where the parameters , , and , are chosen to
fit the psychophysical response of human viewers to periodic
functions [16]. The vector is constituted by the responses of
the set of perceptual mechanisms that analyze the image. Equa-
tion (6) describes the fact that the response of a particular mech-
anism tuned to , not only depends on the energy of the
linear output, , but is also influenced by its neighbors,

, with [11], [12], [15]. In particular, the sen-
sitivity of the mechanism tuned to is decreased when
the input image excites high responses in the neighboring co-
efficients of the linear stage. The kernel determines
the extent of this neighborhood in frequency and orientation.
It is usually assumed to be Gaussian so that the influence of
closer neighbors is bigger [11], [12], [15]. Fig. 2 shows the fre-
quency dependence of the parameters in (6) and some examples
of the response for three particular mechanisms. The effect of
the denominator in (6) is to saturate the response for high-en-
ergy inputs in the local frequency region determined by : Such
input stimuli mask the response of the considered mechanism.
Note that the overall behavior of the response is mediated by the
band-pass filter, , which is similar to the classical contrast
sensitivity function (CSF) [35].

As stated in the introduction, the responses in (6) capture the
most salient independent features of natural images and discrim-
inate between useful and negligible information from the per-
ceptual point of view. Therefore, the perceptual responses for a
particular region of the observed data may tell us what features
should be present in the solution and what features can be re-
moved from it. This can be seen as a perceptual spectral estima-
tion adapted to the most common features present in natural im-
ages. According to this perception-based heuristic, we may use
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Fig. 2. Parameters of the vision model and nonlinear response functions. The
values in d) assume that the Fourier coefficients (denoted by a) are expressed
in contrast (amplitude over mean luminance). The responses of d) show the
basic sigmoid behavior of (6), but they are just particular examples for isolated
sinusoids. In general, these response curves will depend on the neighbor
coefficients. Note that the parameters are slightly different from those reported
in [17] because we are using here a local Fourier transform instead of a local
DCT and a slightly different model. However, the final qualitative behavior in
d) is the same.

the response (6) to estimate the (perceptually relevant) spectrum
in (5). We, therefore, propose to define the regularization oper-
ator of (4) as inversely proportional to the response. Thus,
each restored region in the local frequency domain
will be obtained as

(7)

Previous simpler perceptual approaches based on the linear
CSF model [2] can be seen as a particular case of the more
general class of operators presented here.

The perception model just described includes the behavior
exhibited by natural images, as illustrated in Section III. Note
that the Gaussian kernels in Fig. 2(c) follow the trend shown in
Fig. 1: The interaction neighborhood increases with frequency.
Therefore, the response implicitly includes two facts: rough
low-pass behavior through the function and the particular
relationships between the energy of neighboring coefficients
through the kernels .

From the point of view of the Barlow hypothesis, the goal
of the divisive normalization is to make those parts of the signal
that cannot be predicted from the neighborhood more explicit. In
addition, it has been reported that this energy normalization acts
as a sort of divisive DPCM [16]: The energy in each transform
coefficient is predicted from the energy of the coefficients

in the Gaussian neighborhood . This is how the saliency
of the relevant coefficients of the linear transform is increased
in the response [15], [16].

This predictive behavior is what makes normalization inter-
esting for regularization operator design. Using the analogy be-
tween (5) and (7), we see that the role of the response model
is the extraction of the relevant features of the image to esti-
mate the spectrum of the original signal from its degraded ver-
sion. Relevant features are those that cannot be predicted from
the neighborhood. Wide-band noise introduces two nonnatural
features: a noticeable change in the shape of the spectrum and
increased predictability in the frequency domain. This is true if
the bandwidth of the noise is bigger than the kernels in (6). In
this case, the energy of the noise can be predicted from the en-
ergy of the neighbors. This represents a potential limitation of
the proposed operators because they would consider a high-en-
ergy noise of too narrow a bandwidth as a relevant feature.

As in this framework, an adaptive penalty operator has to be
obtained from degraded images, the operator should be robust
to noise. Robustness in this paper is understood as the ability to
preserve the same components of the signal that would be pre-
served with an ideal operator obtained from the original signal.
The predictive behavior of the divisive normalization may be
useful to achieve robustness. If an image is degraded by adding
wide-band noise, the contribution of the noise to each transform
coefficient can be predicted from the neighboring coefficients.
In this way, the proposed operator will detect the relevant com-
ponents despite the noise.

A real example of the ability of the response to capture rele-
vant features in the presence of noise is shown in Fig. 3. Fig. 3(a)
shows a block taken from the image Barbara with a texture (a
salient feature at a particular frequency). The same block blurred
and corrupted with white noise is shown in Fig. 3(b). Fig. 3(c)
and (d) shows the corresponding regularization operators using
the proposed method together with the standard second-deriva-
tive operator. As discussed above, the relevant feature at fre-
quency cpd is preserved despite the noise, while a
second-derivative operator penalizes this feature.

V. RESULTS AND DISCUSSION

In this section, the properties of the proposed operator will be
compared to other penalty operators taking three aspects into ac-
count: a) the sensitivity of the solution to , b) the robustness of
the operators, and c) their performance in the restoration task
using a variety of synthetic degradations. Finally, we also an-
alyze the performance of the proposed method with naturally
degraded images.

Five standard images have been used for the experiments:
Barbara, Lena, Einstein, boats, and peppers. We assume that
these 256 256 images have a physical extent of 4 4 ,
i.e., the sampling frequency is 64 cpd. The proposed regulariza-
tion operator has been tested in all images with different degra-
dations. The images were blurred using known linear shift in-
variant low-pass filters with normalized cutoff frequencies of
0.1, 0.5, and 0.85 (3.2, 16, and 27.2 cpd) and were corrupted
with additive white Gaussian noise of different variances (from

to ). These restoration problems range from
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Fig. 3. Perceptual penalty operators (solid curves) in c) and d) obtained from a
particular block a) without noise and b) with noise, compared with the operator
based on (dashed curves) the second derivative. Notice how, with the proposed
approach, the relevant feature (texture of 18 cpd) is not penalized.

almost pure deblurring (very low cutoff frequency and low en-
ergy noise) to almost pure denoising (high cutoff frequency and
high-energy noise). Fig. 4 shows illustrative examples of these
degradations using the standard image Barbara.

The different restoration methods have been applied to 50
realizations of the above mentioned corruption processes over
each original image. In the experiments, the regularization pa-
rameter has been obtained using the standard L-curve method
[36] for each block of the local Fourier transform. In all cases,
the borders of neighboring 16 16 blocks have been overlapped
to reduce the blocking artifacts common to all methods.

Euclidean distortion measures may not take into account sub-
jective aspects related to the empirical mean opinion score given
by an average human observer [37]. Therefore, a perceptually
meaningful metric square-root integral (SQRI) measure [38]
was also used along with the standard peak signal-to-noise ratio
(PSNR). However, the same trends revealed by PSNR were ob-
tained for SQRI, as can be seen by subjective inspection of the
images (which is the really important issue).

In this paper, we will compare the proposed operator with
other operators based on spectral estimation, so that they can be
used in (4). In particular, we considered three AR models [1],
[6] of increasing neighborhoods as shown in Fig. 5. The coef-
ficients of these AR models have been locally fitted to capture
the nonstationarity of the signal. From those coefficients a local
estimation of the power spectrum is obtained [39], to be used in
(4).

Additionally, two classical spatially invariant operators are
included for reference purposes: the second derivative and the

Fig. 4. Zoom of original and representative degraded images. a) Original
Barbara image. b) Distorted image (almost deblurring problem): f = 3:2 cpd,
� = 15. c) Distorted image: f = 16 cpd, � = 100. d) Distorted image
(almost denoising problem): f = 27:2 cpd, � = 200.

Fig. 5. Neighborhoods of the particulart two-dimensional AR models used
here: (left) AR(4), (center) AR(8), and (right) AR(12). The dotted pixel is
linearly predicted from the corresponding neighborhood weighted by a(m;n).

CSF-based operator reported in [40]. On the one hand, the
second derivative operator captures the generic spectral
behavior of natural images. In fact, when AR models are trained
on data sets which are large enough, operators which are quite
similar to the second derivative are obtained. On the other hand,
the CSF-based operator represents a simple example of the use
of perceptual information in regularization.

A. Sensitivity to the Regularization Parameter

As discussed in Section II, the sensitivity of the solution to
the regularization parameter depends on the ability of the oper-
ator to capture the properties of the signal. Roughly speaking,
a solution is more sensitive if small variations in the regulariza-
tion parameter lead to big changes in the quality of the solution.

Given a particular operator , a solution can be com-
puted for each value of . A particular selection method, such
as the L-curve [36], obtains a particular value , which leads to
a particular solution . Assuming that the original image
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Fig. 6. Distortion of the set of solutions î (�) for a particular operator P .
The solution ranges from noise (� �) to over-smoothed images (� �).
Representative points have been highlighted. Note that this sensitivity is related
to the concavity of this curve which depends on P .

Fig. 7. Sensitivity of the different operators using image Barbara.

Fig. 8. Robustness of the different adaptive operators.

is available, and given a distortion measure , the optimal
value of could be computed as

where . The sensitivity of the solution to
, when a particular operator is used, can be defined as the

TABLE I
PSNR FOR DIFFERENT OPERATORS AND NOISE LEVELS FOR FIVE

IMAGES FOR A BLURRING WITH A CUTOFF FREQUENCY OF 3.2 cpd

TABLE II
PSNR FOR DIFFERENT OPERATORS AND NOISE LEVELS FOR FIVE

IMAGES FOR A BLURRING WITH A CUTOFF FREQUENCY OF 16 cpd

TABLE III
PSNR FOR DIFFERENT OPERATORS AND NOISE LEVELS FOR FIVE

IMAGES FOR A BLURRING WITH A CUTOFF FREQUENCY OF 27.2 cpd

Fig. 9. Example of the results of a particular restoration experiment. Average
distortions and standard deviations over 50 realizations of the degradation for a
particular image (Barbara) and a particular combination of cutoff frequency (16
cpd) and variance of the noise (� = 75).

change in the image distortion with regard to the departure from
the optimal . That is

The meaning of this sensitivity measure is illustrated in Fig. 6.
The particular sensitivity values considering different oper-

ators have been measured at each block of the Barbara image
using both mean-square error (MSE) and SQRI. A standard box-
plot (omitting outliers for clarity) of the corresponding results
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Fig. 10. Restoration results for the degraded image in Fig. 4(b) (f = 3:2 and � = 15). a) Second-derivative based result. b) CSF-based result. c) Image
restored using adaptive AR(4). d) Image restored using adaptive AR(8). e) Image restored using adaptive AR(12). f) Image restored using the proposed method.

for the MSE case is shown in Fig. 7. Similar results are obtained
when SQRI is used. The proposed operator and the CSF lead to
smaller and less scattered sensitivity values. As a consequence,
using perceptual operators makes the choice of less critical.

B. Robustness of the Operators

As discussed in Section IV, robustness in this paper is under-
stood as the ability of an adaptive operator to preserve the same
components of the signal that would be preserved with an ideal
operator obtained from the original signal. Thus, this property
only applies to adaptive operators.

If the original image is available, any adaptive operator
estimated from the degraded image can be compared to the same
operator obtained from the original one. The corresponding
MSE between the operators can be used to assess their sim-
ilarity. Consequently, we define the robustness of a particular
adaptive operator as

The robustness of the different adaptive operators considered
for the Barbara image is shown as a boxplot in Fig. 8. As the

proposed operator captures the complexity of the signal better,
it is more robust to the presence of degradations.

C. Restoration Results

Two different sets of restoration tasks have been considered to
assess the performance of the proposed method: first, different
synthetic degradations and, second, naturally degraded images.

Figs. 10–12 show representative restored images corre-
sponding to the set of operators considered in this paper applied
to the synthetic degraded images. These images correspond
to the restoration of the degraded Barbara images shown in
Fig. 14. Tables I–III show the distortion results for all the
experiments carried out. These results are the average over the
five considered images. Fig. 9 shows the details of one of the
distorted images used to compute the averages in Tables I–III.
As can be seen, the variances in the results due to the 50 real-
izations of the degradation are small. Similar plots are obtained
for the remaining images and degradations.

From these results, it is obvious that the performance of spa-
tially invariant approaches [a) and b) in Figs. 10–12] is worse
than the performance of the adaptive ones [c)–d) in Figs. 10–12].
In particular, spatially invariant approaches give rise to over-
smoothed areas in all cases. Similar results are obtained when
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Fig. 11. Restoration results for the degraded image in Fig. 4(c) (f = 16 and � = 100). a) Second-derivative based result. b) CSF-based result. c) Image
restored using adaptive AR(4). d) Image restored using adaptive AR(8). e) Image restored using adaptive AR(12). f) Image restored using the proposed method.

other stationary models for the autocorrelation are used (e.g.,
AR models trained with a wide image data set).

As expected, adaptive approaches are superior to stationary
ones. If the complexity of the model is increased, AR(4) to
AR(8), the power spectrum is more accurately estimated. Con-
sequently, a better adaptation to each block is obtained and the
performance improves (Tables I–III). This trend is broken if the
complexity of the AR model keeps increasing, because overfit-
ting occurs. This effect is particularly noticeable when the en-
ergy of the noise is high [Table III and Fig. 12, where the AR(12)
model is learning the noise].

On the other hand, the proposed approach constitutes a
tradeoff between the overall noise and the preservation of
specific details, as can be observed in f) in Figs. 10–12. The ar-
tifacts obtained with this kind of penalty operators are different
from those obtained using the AR methods. Our approach
removes wide band noise because it is predictable (in the local
Fourier domain) from the neighbors. This means that this wide
band noise is not considered to be a relevant feature. However,
unpredictable features in the transform domain, as, for instance,
salient textures, are preserved as discussed in Section IV.

The differences in performance are less noticeable in the
first experiment (almost a deblurring problem; see Table I and
Fig. 10). In this case, the low energy of the noise makes the

problem easier and all the adaptive methods perform similarly.
However, when the energy of the noise is increased, the differ-
ences are more noticeable, as can be seen in the last experiment
(almost a denoising problem; see Table III and Fig. 12). The
proposed operator works better than the other operators consid-
ered in a wider range of degradations, which is consistent with
the sensitivity and robustness results described above.

Finally, the proposed method is applied to the restoration
of naturally degraded images. The pictures were taken using a
SONY DSC P8 digital camera. In this experiment, all the im-
ages were on focus, so that the degradation comes from eventual
poor illumination conditions (unknown photon noise), and from
the artifacts due to the (unknown) processing in the acquisition
and storage of the images (e.g., demosaicing, compression, etc.).
Therefore, in this case, the proposed method is compared to a
standard denoising method [41].1

In realistic conditions, the original image is not available in
general, so the computation of quantitative distortions is not
straightforward. In order to give indicative distortion measures,
we took two versions of each image: The first one was taken in
good illumination conditions, and the second one was taken re-

1We used the Matlab implementation of Lee’s algorithm in the function
wiener2.m.
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Fig. 12. Restoration results for the degraded image in Fig. 4(d) (f = 27:2 and � = 200). a) Second-derivative based result. b) CSF-based result. c) Image
restored using adaptive AR(4). d) Image restored using adaptive AR(8). e) Image restored using adaptive AR(12). f) Image restored using the proposed method.

ducing the numerical aperture or the exposure time so that the
integrated irradiance at the CCD was reduced. The histogram of
the second image was linearly corrected to reproduce the mean
and variance (average luminance and contrast) of the first one.
In this way, the second image is a naturally distorted version of
the first image. We will refer to the first one as reference image
and to the second one as naturally degraded image.

Figs. 13–15 show representative results of the above distor-
tion procedure in a range of illuminations and the corresponding
results obtained using Wiener denosing [41] and the proposed
method. Subplots e) and f) in these figures show the difference
between the restored and the degraded images. This difference
represents the part of the degraded image identified as noise
by each method. It is worth noting that while the standard al-
gorithm removes features that may be relevant (letters, edges
and structures of the objects), the proposed algorithm preserves
these structures focusing in removing the noise.

The above qualitative results are consistent with the distor-
tion measures given in Table IV. As can be seen, both restora-
tion techniques improve the estimated PSNR, and the proposed
method provides a better result using this measure. However, it
has to be stressed that these measures are just an approximation
to the true PSNR because they have been computed using a ref-
erence image which is not the (unknown) original.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, the information about natural images implicitly
included in the current model of early human vision (approxi-
mate behavior and relations between coefficients in a local
frequency transform domain) has been used to define regulariza-
tion operators for restoration purposes. This class of operators
shows several advantages with regard to the adaptive operators
considered based on AR models: They are less sensitive to the
regularization parameter, more robust to the degradation, and
give rise to less noticeable artifacts than the other methods. Be-
sides, in naturally degraded images, they preserve the relevant
structure of objects when compared with a standard Wiener de-
noising.

These results suggest that the proposed method, which does
not require statistical a priori assumptions on the image, can be
used as a successful alternative to operators based on explicit
models of the spectrum of the image.

The proposed operator has been used in a norm penalty
functional. An interesting extension of this paper could explore
the behavior of the proposed operator with more general norms.
For instance, using the norm with the proposed operator
would improve edge preservation, as already reported using
stationary operators such as the first derivative [24].
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Fig. 13. Restoration results for a naturally degraded image (device). a) Reference image (exposure time 1/6 sec, aperture N = 5:2). b) Naturally degraded image
(exposure time 1/25 s, aperture N = 5:2). c) Restored image using Wiener denoising. d) Restored image using the proposed method. e) Information removed by
the Wiener method. f) Information removed by the proposed method.

Fig. 14. Restoration results for a naturally degraded image (stones). a) Reference image (exposure time 1/200 sec, apertureN = 9). b) Naturally degraded image
(exposure time 1/800 s, aperture N = 9). c) Restored image using Wiener denoising. d) Restored image using the proposed method. e) Information removed by
the Wiener method. f) Information removed by the proposed method.
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Fig. 15. Restoration results for a naturally degraded image (building). a) Reference image (exposure time 1/1250 sec, aperture N = 10). b) Naturally degraded
image (exposure time 1/2000 s, aperture N = 10). c) Restored image using Wiener denoising. d) Restored image using the proposed method. e) Information
removed by the Wiener method. f) Information removed by the proposed method.

TABLE IV
ESTIMATED PSNR FOR THE NATURALLY DEGRADED IMAGES
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