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Abstract

Two types of redundancies are contained in images: statistical redundancy and psychovisual redundancy. Image represen-
tation techniques for image coding should remove both redundancies in order to obtain good results. In order to establish
an appropriate representation, the standard approach to transform coding only considers the statistical redundancy, whereas
the psychovisual factors are introduced after the selection of the representation as a simple scalar weighting in the transform
domain.

In this work, we take into account the psychovisual factors in the de8nition of the representation together with the statistical
factors, by means of the perceptual metric and the covariance matrix, respectively. In general the ellipsoids described by
these matrices are not aligned. Therefore, the optimal basis for image representation should simultaneously diagonalize both
matrices. This approach to the basis selection problem has several advantages in the particular application of image coding.
As the transform domain is Euclidean (by de8nition), the quantizer design is highly simpli8ed and at the same time, the use
of scalar quantizers is truly justi8ed. The proposed representation is compared to covariance-based representations such as the
DCT and the KLT or PCA using standard JPEG-like and Max-Lloyd quantizers.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The basis selection problem is ubiquitous in many 8elds
of science. In physics the dynamics of a system is described
by the eigenfunctions of its hamiltonian [1]. In image science
the problem is 8nding the appropriate basis that optimally
represents the features of the image [2].

In many pattern recognition and image processing prob-
lems taking into account the probability density function
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(PDF) of the signal is enough given the requirements of the
application [2,3]. In this case, the basis selection problem
consists of looking for the set of functions that factorize
the PDF [2–4]. If the process is Gaussian the problem is
reduced to an eigenvalue problem on the covariance matrix
(the second-order term in the expansion of the PDF). Then
the solution is just the classical principal component anal-
ysis (PCA) or Karhunen–LoCeve transform (KLT) [2–6].
In the physics analogy, this Gaussian (covariance-only)
problem is similar to linear systems of two bodies (second
order correlations) such as the harmonic oscillator, where
the eigenfunctions are plane waves [1]. Recently in im-
age analysis, some higher order moments of the PDF
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are being taken into account in the so-called indepen-
dent component analysis (ICA) [4,7,8]. In most practical
cases (specially those dealing with natural images) 8xed
transforms such as the DCT or wavelets are used because
of their similarity to the optimal PCA or ICA solutions
[7–11].

However, in some problems taking into account the dis-
tribution of the data is not enough. For instance, in problems
involving natural images perceived by humans, such as in
multimedia applications, the diFerent dimensions of the im-
age space are not equally signi8cant. In this case the space
is highly non-Euclidean due to the particular properties of
human perception [12–16].

This is the case in the transform coding approach for im-
age coding. In transform coding the image has to be rep-
resented in a meaningful space before its components are
scalarly quantized [5]. The aim of the transform is remov-
ing the redundancies between the coeGcients of the image
in order to allow a fair scalar quantization.

In the natural images there are two kinds of redundan-
cies: statistical and psychovisual. As it is widely known, the
statistical redundancy is related to the fact that not every
sample or feature in a signal is equally important because
of the statistical relations between the samples of the signal.
In the same way, from the perceptual point of view not ev-
ery sample or feature is equally important: not every scale,
texture or color component has the same relevance for the
human visual system (HVS).

In the image coding problem the appropriate representa-
tion is the one that removes both redundancies.

However, the standard approach to transform coding
looks for the appropriate representation just by taking into
account the statistical redundancy through the diagonaliza-
tion of the covariance matrix [5,9]. In the standard approach
the psychovisual factors are empirically introduced after the
selection of the representation as a simple scalar weighting
in the transform domain [17–19].

The main idea of this work is taking into account the
psychovisual factors in the de8nition of the representation
together with the statistical factors. To this end, we
use the perceptual metric matrix, which describes the
non-uniformity of the image space from the perceptual
point of view [14,20], together with the covariance matrix
used in the standard approach. Of course, this is just a
second order approach from both perceptual and statistical
points of view. The idea could be extended to higher order
interactions taking into account higher order moments in
the expansion of the PDF and higher order terms in the
expansion of the non-linear response of the HVS. In this
work we take this second order approach just as an exam-
ple to illustrate the bene8ts of considering the HVS in the
de8nition of the image representation.

Geometrically, the ellipsoids described by the covariance
and the perceptual metric are not aligned. Therefore, the op-
timal basis for image representation should simultaneously
diagonalize both matrices. The consideration of the percep-

tual metric at this level can be seen as a particular transform
of the input data to meet the linear model assumptions taken
by the standard approach [21]. The proposed approach to
the basis selection problem has several advantages in the
particular application of image coding. On the one hand,
the distortion metric in the transform domain is diagonal by
de8nition so the use of scalar quantizers is truly justi8ed
(which is not in the standard approach). On the other hand,
the quantizer design is highly simpli8ed because the 8nal
transform domain is Euclidean.

According to the second order approach selected here,
the proposed representation is compared to standard
covariance-based representations such as the DCT and the
KLT or PCA using standard JPEG-like and Max-Lloyd
quantizers. As stated above, a comparison with other
linear transforms such as ICA solutions or wavelet trans-
forms would imply taking into account higher order
terms in the expansion of the non-linear behavior of
the HVS. We consider this is beyond the scope of this
work.

The outline of this paper is as follows: in the next section
covariance and perceptual matrix are presented. These ma-
trices describe the statistical and perceptual relations among
coeGcients and are jointly used to decorrelate coeGcients
statistically and perceptually. Section 3 elaborates on the
assumed visual model that permits the perceptual matrix
de8nition. Section 4 explains the technique used for the
simultaneous diagonalization of the perceptual metric and
the covariance matrix. In Section 5 several experiments are
conducted and their results discussed. The suggested trans-
formation is compared with a completely statistical approach
(KLT) and the standard JPEG. Experiments illustrate the
importance of including the anisotropies of the space to-
gether with the shape of the PDF. In the last section some
conclusions are drawn.

2. Matricial expressions for the statistical and
perceptual relations among coe�cients and their
interpretation

The purpose of the transform is to remove both statisti-
cal and perceptual relations among coeGcients. Firstly, the
aforementioned relations have to be quanti8ed and formally
formulated. Two matrices will de8ne these interactions: the
covariance matrix for the statistical ones and the perceptual
metric matrix for the psychovisual ones.

2.1. Covariance matrix

The luminances of an image in the spatial domain can
be represented by an array, A. This array can be seen as
an ensemble of random variables. The statistical deviations
from a point (or image), A0, can be described in that domain
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by the matrix �A(A0),

�A(A0) = E[(A− A0) (A− A0)
T]; (1)

where E stands for the expected value and T stands for
transposition. When A0 is the mean, this matrix will be sim-
ply referred as the covariance matrix �A in the A (spatial)
domain.

The diagonal element of the covariance matrix, �2
ii,

is the variance of the ith coeGcient. The element �ij

represents the covariance between the ith and jth coeG-
cients, a second-order relation.

2.2. Perceptual metric matrix

If a L2 norm is assumed [12], the perceptual deviation
from A0 due to a distortion LA is determined by [14]

d(A0; A0 + LA)2 = LAT WA(A0) LA

=
∑

i

WiiLA2
i +

∑
i �=j

WijLAiLAj; (2)

where WA(A0) is the perceptual metric of the domain A at
the point A0.

The diagonal components of the perceptual metric repre-
sent the contribution of each coeGcient to the global dis-
tortion. Non-zero oF-diagonal elements induce additional
contributions to the distortion due to combinations of devi-
ations in diFerent dimensions, i.e. they represent perceptual
interactions between features that modify the distortion per-
ception. This is a convenient way to represent what is com-
monly referred to as masking [22,23]: a distortion in one
coeGcient could mask the subjective distortion in another
one. This kind of interaction is not usually considered in the
Transform Coding overall distortion.

2.3. Geometrical interpretation of these matrices

As covariance and perceptual metric matrices are positive
de8nite matrices, two ellipsoids can be associated respec-
tively to each one (see Fig. 1). On the one hand, � describes
the shape of the distribution of image samples around A0,
it gives information about the data dispersion. On the other
hand, W describes the shape of the (ellipsoidal) locus of per-
ceptually equidistant patterns from A0 (constant distortion in
Eq. (2)). W describes the underlying geometry of the feature
space: oF-diagonal elements in W represent second-order
perceptual interactions. It is important to stress two facts:

• The ellipsoids described by the covariance and the metric
are not aligned with the axes of the spatial domain rep-
resentation. This is so in natural images because, on the
one hand, the luminance values, Ai, in each spatial loca-
tion, i, have strong statistical correlations with the values,
Aj , in neighboring locations, j [6,9]. On the other hand,

A2

WA

ΣA

A1

Fig. 1. Ellipsoids describing the data distribution and the space
geometry. Note the diFerent meaning of the ellipsoids de8ned by
� and W . While the most important features from the statistical
point of view are given by the directions of highest variance (i.e.
the major axis of the ellipsoid de8ned by �), the most important
features from the perceptual point of view are given by the di-
rections in which the discrimination is highest (i.e. the minor axis
of the ellipsoid de8ned by W ). This is why in pattern recognition
applications where the distance is completely given by the data
distribution (when there is no additional W ), the metric is de8ned
by �−1 (the Mahalanobis metric [2,3]).

there is a strong perceptual correlation between neigh-
boring pixels as well [24], giving rise to strongly
non-diagonal metrics in the spatial domain [14,20].

These interactions between coeGcients mean that the
spatial domain representation is quite inadequate for a
scalar quantization. The core of transform coding is that
some transform to a new domain, a, is needed in order to
remove these correlations prior to the scalar quantization.

• In general these ellipsoids are not aligned between them.
This means that the standard KLT, PCA or DCT approach
based on the diagonalization of � does not imply a diag-
onalization of W .

As shown in Section 5.1, the classical quantizer design
methods assume a diagonal distortion metric. If W is not
diagonal in the selected representation these results cannot
be strictly applied.

This is why, in principle, the standard approach may be
improved taking into account W in the selection of the rep-
resentation.

Therefore, the appropriate representation is the one that
not only diagonalizes �, but also W . In this simultaneous
diagonalization case, the scalar quantization will be eFective
(because the statistical and the perceptual relations will have
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been removed), and the classical quantizer design results
will be strictly applicable (because the distortion metric will
be diagonal).

2.4. Matricial changes under linear mappings

In order to look for the appropriate set of transforms that
diagonalize� andW , it is worth knowing how these matrices
change when a linear transformation is applied.

Let A be the vector mapped into a by a linear transforma-
tion L, a=L ·A. Then, the covariance matrix in the domain,
a, is [2]

�a = L · �A · LT (3)

and the metric in a0 = L · A0 is (see Ref. [25] and the
appendix):

Wa(a0) = (L−1)T ·WA(A0) · L−1: (4)

3. Vision model and perceptual metric matrix

The previous step, before de8ning the perceptual metric
matrix, is to introduce the perceptual model which has been
assumed. The standard model of human low-level image
analysis has two basic stages [22,26,27],

A T→a R→r (5)

in which the input image, A (array of luminances in the
spatial domain), is 8rst transformed into a vector, a= T ·A
(with components af, f = 1 : : : M), in a local frequency
domain (the transform domain) using a linear 8lter bank,
T , and then a set of mechanisms responds to each coeGcient
of the transformed signal giving an output, r = R(a), which
is the image representation in the response domain.

The 8rst linear perceptual transform T is similar to the
class of transforms employed in image coding. The local
DCT has been used here as a model of the perceptual trans-
form T , followed by an amplitude normalization of the
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Fig. 2. Parameters of the vision model and non-linear response functions. The values in these 8gures assume that the amplitude of the
coeGcients is expressed in contrast (amplitude over mean luminance). The response examples of the last 8gure show the basic (sigmoid)
behavior of Eq. (6), but they are not general because the response to one coeGcient depends on the background (it depends on the value of
the neighbor coeGcients). These particular curves were computed for the particular case of no additional masking pattern (zero background).

coeGcients. The transform coeGcients are expressed in con-
trast (amplitude over mean luminance of the block, the DC
coeGcient) [15]. As not all the basis functions of the trans-
form T are equally perceived, additional processing (the
transform R) is included to explain these heterogeneities.
The HVS models assume that all the components of the r
vector are equally important and there is no perceptual in-
teraction between them [12,22,23], therefore the response
domain is Euclidean. The response model that has been used
here is basically the energy-normalization model of Refs.
[12,22,23,27] where the energy of each transform coeG-
cient (in contrast) is normalized by a weighted sum of the
energy of its neighbors. The dependence with the neighbor
coeGcients is given by the convolution with an interaction
kernel h,

ri =
�i

100
|ai| + �i

|ai|2
�i + (h ∗ |a|2)i ; (6)

where the index i corresponds to spatial frequency. Fig. 2
shows the parameters of this non-linear energy normaliza-
tion model and an example of the response for some basis
functions of diFerent frequencies.

The values of � and � have been 8tted to reproduce am-
plitude discrimination thresholds without inter-coeGcient
masking measured at our lab (Legge-like experimental data
[28,29]). A frequency-dependent Gaussian kernel has been
heuristically introduced according to the results of Refs.
[12,22,23,30],

hij = ki · e−(fi−fj)
2=�(fi)

2
; (7)

where fi is the spatial frequency meaning of the coeGcient
ai, �(fi) is the variable width of the kernel, �(fi)= 1

3 |fi|+
0:05, with |f| in cycl/deg, and ki is a constant to obtain a
unit-volume kernel.

Assuming the above T and R transforms and a Euclidean
(identity) perceptual metric in the response domain, the per-
ceptual metric in the local frequency domain can be ob-
tained by using the properties of a Riemannian metric when
a change of co-ordinate systems is considered [14,25].
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Fig. 3. Perceptual metric in the transform (DCT) domain using NJ .
Dark and light pixels indicate positive and negative values, respec-
tively. Notice the non-diagonal nature of W . An exponent has been
applied to enhance the visibility of the oF-diagonal elements.

If J denotes the Jacobian matrix of the transformation R
and

Jij =
9Ri

9|aj| =
�i

100
�ij + 2�i

( |ai|
�i + (h ∗ |a|2)i �ij

− |a2
i · aj|

(�i + (h ∗ |a|2)i)2
hij

)
; (8)

the metric in the corresponding transform domain a is

Wa = J T · J: (9)

16 16x

1 256x

256 256x

Fig. 4. DCT zigzag scanning. A convenient way to scan the 2D DCT is the zigzag scheme used in the JPEG standard [18] because it
groups together coeGcients with similar frequency. In the 8nal vector the frequency progressively increases from the DC component in the
8rst coeGcient, up to the diagonal Nyquist frequency for the last coeGcient, i.e. (32,32) cpd if the sampling frequency in each direction is
64 cpd. In Fig. 4 the kernel for the coeGcient f0 = (18; 12) cpd is zigzag scanned and introduced in its corresponding position in h. In
accordance with this scanning scheme, the coeGcient of frequency f0 is in the position i = 100, so the values that give the relations of a100
with aj for j = 1; : : : ; 256 form a row vector that goes in the row i = 100 to be applied on the input column vectors to give (h ∗ |a|2)100.

Fig. 3 shows the perceptual metric that comes from ex-
pression (9), replacing J with the average of the Jacobian
matrices of a set of images, NJ .

The qualitative meaning of the metric elements, which
give the relations between diFerent coeGcients of the fea-
ture vectors, depends on how the 2D DCTs are scanned to
construct the 1D feature vectors. Fig. 4 explains the zigzag
scanning that has been applied to the 2D DCTs. According
with the zigzag scanning, the frequency meaning of the di-
agonal elements of h, J , W and � progressively increases
from zero to the Nyquist frequency.

From Fig. 3 it is clear that the relative perceptual rele-
vance of the transform coeGcients highly depends on fre-
quency (the diagonal of W has a low-pass shape), i.e. the
frequency domain is perceptually anisotropic. It is also clear
that transform coeGcients are not perceptually independent
because W is not diagonal, i.e. the perceptually privileged
directions of the frequency domain are not aligned with the
axes of the space. This implies that an additional transform
is needed to remove the perceptual (as well as statistical)
correlation between the transform coeGcients and process
them individually afterwards.

A point worth noting is that J (and then the metric) is
input-dependent and to be rigorous, the decorrelation trans-
form should be local. However, only one metric matrix
can be established for representing the rest since the metric
Wa does not vary greatly at this domain. Results shown in
Section 5 corroborate this supposition. This assumption is
analogue to the stationarity assumption in order to consider
a single �. The average of the Jacobian matrices of a set of
images, NJ , has been chosen to calculate the model metric
which has been used in the experiments. Other options such
as the Jacobian matrix of the mean of transformed images
were explored for summarizing the metrics in sole one ma-
trix, but the 8nal results did not change substantially. The



1804 I. Epifanio et al. / Pattern Recognition 36 (2003) 1799–1811

condensation into one metric allows us to design a global
(non-local), linear transform which diagonalizes both co-
variance and perceptual metric matrices. In this way, a
domain where features are statistically and perceptually
uncorrelated is attained.

4. Simultaneous diagonalization of the perceptual metric
W and the covariance matrix �

The idea of a simultaneous diagonalization of both matri-
ces follows the principles behind transformations used for
satisfying the hypotheses which support a well-established
theory, for instance the Box–Cox transforms to normality
[21]: if the data do not meet the assumptions required by the
model (scalar processing) you should transform the data in-
stead of devising a more complex model (vector processing).
In this case the data are 8rst transformed to a perceptually
Euclidean domain before the standard KLT is applied to get
the 8nal statistically and perceptually decorrelated domain.

Let A be a vector in the spatial domain. The diagonaliza-
tion process is as follows:

(1) Firstly, WA is whitened by a perceptual transform
called TP de8ned by

ap = TP · A = J · T · (A− NA); (10)

where NA is the mean of a set of images, T is the 8lter bank of
the vision model of Section 3 (a DCT in our implementation)
and J is the jacobian of the perceptual non-linearity (Eq.
(8)). In this way, �ap is J ·T ·�A ·T T ·J T (Eq. (3) is applied)
and Wap is the identity (Eqs. (4) and (9) are applied). With
this transform the image, A, is mapped into a perceptually
decorrelated domain ap.

(2) Secondly, a statistical orthonormal transformation to
diagonalize �ap is applied: the KLT. That is,

asp = TK · ap; (11)

A2
a2

p

a1
p

Wap

Domain asp

WA

ΣA

ΣAp

a2
sp

a1
sp

Wa
p

ΣAsp

A1

(c) Domain ap(b) Domain A(a) 

Fig. 5. Simultaneous diagonalization of WA and �A. Note that initially A1 and A2 are highly correlated from both, perceptual and statistical,
points of view. The 8rst transform, Tp, implies the complete decorrelation from the perceptual point of view. As TP involves a DCT (J
is formulated in a DCT domain) it also implies some reduction of the statistical correlation because the KLT basis for natural images is
similar to the DCT basis. Strictly speaking the complete decorrelation is only obtained when the second transform, TK , is applied on the ap

domain. (a) Domain A, (b) Domain ap, and (c) Domain asp.

where T T
K and � are the eigenvector and eigenvalue matrices

of �ap as

�ap · T T
K = T T

K · � and TK · T T
K = I: (12)

With this second transform the perceptually decorrelated
vector, ap, is mapped into a statistically and perceptually
decorrelated domain, asp. Thus,

�asp = TK · �ap · T T
K = �; (13)

Wasp = (T T
K )−1 ·Wap · T−1

K = (T T
K )−1 · I · T−1

K = I: (14)

Hence, both matrices are diagonalized. The combination of
the two (perceptual and statistical) steps gives the overall
transformation,

asp = TKP · A = TK · TP · A = TK · J · T · (A− NA): (15)

Fig. 5 shows a two-dimensional (two coeGcients) example
of this process.

5. Compression results

In this section we compare the proposed representation,
TKP , with the standard covariance-based representations
such as the KLT or PCA, TK , and the DCT, T , in image
coding applications.

Transform coding for image compression has two asso-
ciated problems [5]. First you have to select a certain trans-
form for image representation, and then you have to design
the quantizer in this representation domain.

For a fair comparison of the representations, we
use several standard designs for the quantizer. We use
rate-distortion based quantizers with two design criteria: (1)
minimizing the mean square error (MSE) (either Euclidean
or Perceptual) and, (2) restricting the maximum perceptual
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error (MPE). The rate-distortion theory used in transform
quantizer design assume that the global distortion in the
transform domain is given by a weighted sum of the distor-
tions in each coeGcient with no interaction between coeG-
cients (i.e. Eq. (2) in the transform domain with a diagonal
metric).

The results for a DCT-based JPEG are included as a useful
reference. In this case, a bit allocation based on the human
contrast sensitivity function (CSF) is used as recommended
by the JPEG standard [17].

Section 5.1 reviews the optimal results for MSE and MPE
criteria. Implementation details are analyzed in Section 5.2.
Finally, examples of the compression results on some stan-
dard images are presented in Section 5.3.

5.1. Quantizer design

The scalar quantizers applied to the transform vector, X =
(x1; : : : ; xM ), are de8ned by the bit allocation, Ni, the number
of quantization levels to encode the coeGcient, xi, and by the
point densities, "i(xi), the densities of quantization levels to
encode each coeGcient, xi.

The rate-distortion theory used in transform quantizer de-
sign assumes that the global distortion in the transform do-
main is given by a weighted sum of the distortions in each
coeGcient with no interaction between coeGcients,

D2 =
M∑
i=1

D2
i : (16)

The standard quantizer design procedure consists of obtain-
ing the optimal "i to minimize each Di and then choos-
ing Ni to obtain the same error contribution per coeGcient.
This standard procedure may consider amplitude depen-
dent weights in the distortion for each coeGcient [31], but
it cannot deal with interactions between coeGcients (Eq.
(16) must hold). This is why, the distortion metric should
be diagonal to allow a straightforward application of the
formalism.

In this section we review the results for bit allocation and
point densities using two standard design criteria for Di [31]:
(1) minimizing the MSE (either Euclidean or Perceptual)
and, (2) restricting the MPE. The details may be found in
Refs. [5,31–33].

Any input coeGcient, xi, pertaining to the quantization
region, Rij , is represented by the quantization level yij , so
the MSE in each coeGcient is

D2
i;MSE =

Ni∑
j=1

∫
Rij

(xi − yij)
2fxi (xi) dxi; (17)

where Ni is the number of quantization levels, yij is the jth
quantization level for the coeGcient xi, Rij is the quantization
region corresponding to the jth level and fxi (xi) is the PDF
of xi. This widely used distortion can be modi8ed in order

to consider the physical meaning of the coeGcient xi and
hence a perceptual MSE can be de8ned,

D2
i;PMSE =

Ni∑
j=1

∫
Rij

(xi − yij)
2Wi(yij)fxi (xi) dxi; (18)

where Wi(x) is a weight that depends on the input x.
From the asymptotic quantization approach (high resolu-

tion regular quantizers), the point density function that min-
imizes the distortion, D2

i;PMSE , is

"i;PMSE;opt(xi) =
(Wi(xi)fxi (xi))

1=3∫
(Wi(x)fxi (x))1=3 dx

(19)

and the asymptotic expression for the average distortion with
the optimal point density function is

D2
i;PMSE;opt =

�2
xi

12N 2
i

(∫
(Wi(�xi xi)f̃xi

(xi))
1=3 dxi

)3

=
�2
xi

N 2
i
Hi; (20)

where f̃xi
(xi) = �xi fxi (�xi xi) is the normalized unit-variance

pdf. Analogous expressions for MSE can be obtained by
taking Wi = 1.

The optimal bit allocation per coeGcient, bi, is obtained
solving Ni from Eq. (20) and assuming constant distortion
per coeGcient:

bi = log2(Ni) =
B
M

+
1
2
log2(�

2
xiHi)

− 1
2M

M∑
i=1

log2(�
2
xiHi); (21)

where B is the total number of available bits.
The aforementioned average design criterion cannot guar-

antee a satisfactory subjective performance on a particular
image. In order to prevent high perceptual errors on individ-
ual images arising from outlier coeGcient values, the overall
performance could be assessed by a worst-case value dis-
tortion [5]. In order to do so, it has been proposed to restrict
the MPE in each coeGcient [31–33]. The MPE criterion
implies a perceptually uniform distribution of the available
quantization levels. A key factor of a worst-case measure is
that the values depend only on the support of the pdf but
not on the actual distribution [5]. Let us examine the anal-
ogous expressions adopted in the MPE-based approach by
the equations presented above.

If a given coeGcient is represented by Ni quantization
levels distributed according to a density, "i(xi), the maxi-
mum Euclidean quantization error at an amplitude, xi, will
be bounded by half the Euclidean distance between two
levels:

(xi − yij)6
1

2Ni "i(xi)
: (22)
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Assuming a generic diagonal frequency and amplitude-
dependent metric, the MPE at that amplitude will be related
to the metric and the density of levels:

D2
i;MPE(xi) =

Wi(xi)
4N 2

i "
2
i (xi)

: (23)

According to this, the maximum perceptual distortion bound
is constant over the amplitude range only if the point den-
sity varies as the square root of the metric, so the optimal
quantizers under the MPE criterion are given by

"i;MPE;opt(xi) =
Wi(xi)1=2∫
Wi(x)1=2 dx

(24)

and the MPE with the optimal point density function is

D2
i;MPE;opt =

1
4N 2

i

(∫
Wi(xi)

1=2 dxi

)2

: (25)

Fixing the same maximum distortion for each coeG-
cient, D2

i;MPE;opt = k2, the optimal bit allocation is given
by

bi = log2Ni = log2

(
1
2k

∫
Wi(xi)

1=2 dxi

)
: (26)

Although all these expressions only hold in the high
resolution case, they often turn out to be a reasonable
approximation even in the medium to low resolution
cases.

5.2. Experiments and implementation details

The proposed transform with two quantizers was com-
pared with JPEG and a KLT (only statistical) approach.
A set of well-known images (most of them can be found
in http://sipi.usc.edu/services/database/Database.html), 8
bits/pixel has been used as a sample. These images have
been partitioned into 16 × 16 blocks and vectors obtained
by ordering of the pixels within the block have been used
to estimate the covariance matrix. Although for natural im-
ages the DCT is a very close approximation of KLT [9,10],
the KLT has been calculated. The images in Section 5.3
are also segmented into blocks to which the computed KLT
is applied. The transform coeGcients are quantized with a
simple MSE quantizer (Eqs. (19) and (21) with Wi = 1).
This procedure will be referred to as TK -MSE.

Two options for the quantizer design are contemplated
with our transform, TKP . The 8rst one is PMSE quantizer.
The weight Wi(x) that appears in Eqs. (19) and (21) repre-
sents the diagonal element of the perceptual metric matrix
which corresponds with the coeGcient that is being quan-
tized. As the perceptual metric matrix in the asp domain
is the Identity, PMSE is simply reduced to MSE with our
transform. This option will be referred to as TKP-MSE. On

Table 1
Summary of the variation of J

‖J − NJ‖=‖ NJ‖ Mean Median Std. deviation

1.58 0.98 1.83

the other hand, MPE quantizer is also greatly simpli8ed.
As W = I , it is converted into a simple uniform quantizer
with uniform bit allocation. Regarding to bit allocation, the
distribution of the number of quantization levels depends
exclusively on the range of each coeGcient. This later option
will be referred to as TKP-MPE.

Therefore, the comparison between the transforms T , TK

and TKP is made comparing the performance of the schemes
JPEG, TK -MSE, TKP-MSE and TKP-MPE.

The aforementioned results (Section 5.1) are strictly ap-
plicable under the high rate approach [5]. The actual low
resolution MSE quantizers (for TK -MSE and TKP-MSE),
have been obtained using the LBG method [5,34] initialized
with the asymptotic results. The 8nal quantizers were quite
consistent with the asymptotic assumptions. As said above,
for TKP-MPE we just have a uniform quantizer of the asp

domain.
The actual bit allocation for all alternatives was deter-

mined by means of a greedy integer-constrained allocation
algorithm [5] based on the sequential allocation of one bit
to the coeGcient with the largest distortion in each iteration.
Distortions are given by Eqs. (20) and (25), according to
the corresponding case. In all schemes, the DC coeGcient
is separately encoded using DPCM.

As was mentioned in Section 3, the average of the Jaco-
bian matrices (J ) of the sample images ( NJ ) has been used to
compute the perceptual metric matrix. Table 1 shows how
these Jacobian matrices vary. The 2-norm (a matrix norm)
[35] of the diFerence between NJ and the Jacobian matrix of
a set of images (diFerent from those used to compute NJ ) was
calculated. This norm is normalized by the 2-norm of NJ . A
summary of these quantities are displayed in Table 1. These
values are quite small. In addition, the acceptable experi-
mental results in Section 5.3 con8rm that the assumption is
satisfactory.

5.3. Decoded images

In order to evaluate the performance of the schemes, com-
pression results on three standard images (not included in
the training set) are displayed. These images are: Barbara,
Peppers and Baboon. All schemes were used at the same
compression ratio (0:5 bpp).

Goodness of the diFerent schemes was evaluated both
qualitatively and quantitatively. Fig. 6 displays the original
images. Figs. 7 and 8 show the decoded images, using the
diFerent schemes.

http://sipi.usc.edu/services/database/Database.html
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(a) (b)

Fig. 6. Grayscale images used to assess the performance: (a) (a close up of) Barbara and (b) peppers.

(a) (b)

(d)(c)

Fig. 7. Barbara at 0.5 bits/pixel. (a) JPEG, (b) TK -MSE,(c) TKP-MSE and (d) TKP-MPE.
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(b)(a)

(d)(c)

Fig. 8. Peppers at 0.5 bits/pixel. (a) JPEG, (b) TK -MSE,(c) TKP-MSE and (d) TKP-MPE.

These images allow us to get a feeling for the correspond-
ing subjective quality. For comparison purposes, we have
also employed some quality measures. A widely used ob-
jective quality measure is the peak-to-noise ratio or PSNR.
The interpretation of this measure is that the larger the
PSNR, the better the quality of the processed image. How-
ever, this easy computing measure is not always an ad-
equate measure of the subjective quality [12–14,19]. As
seen in Section 3, the visual perception of the HVS is
not as simple. Therefore, two objective quality measures
based on human visual perception have been also consid-
ered (Eq. (2) and [14]). Here, the values �= 2 and ∞ have
been adopted by the so-called summation index. These dis-
tances will be denoted as D2 and D∞. The closer they are
to zero, the better the quality is. Results are displayed in
Table 2.

At this point we will analyze the results. Figs. 7 and 8
show several behaviors. JPEG-images are blurred due to
truncation of high-frequency coeGcients. High-frequency
and high-contrast details (Barbara’s clothes or Barbara’s
armchair are clear examples) are removed. Moreover, the
blocking eFect is quite noticeable (see Fig. 7). On the other
hand, graininess (smooth zones in peppers or the Barbara’s
hand) and somewhat strong blocking eFect can be observed
in KLT-images. The 8rst artifact may be due to coarse quan-
tization of some coeGcients. With regard to the transform
presented here, blocking artifacts are not so easily perceived
and main details are preserved. Slight graininess appears,
but it is not as noticeable as that of the TK -MSE scheme.
In general, both TKP-MSE and TKP-MPE give rise to de-
coded images with superior quality to the ones obtained
by JPEG or TK -MSE. There is not a signi8cant diFerence
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Table 2
Quality measurements for the diFerent approaches at 0.5 bits/pixel

Image Measure JPEG TK -MSE TKP-MSE TKP-MPE

Barbara PSNR 23.48 25.87 25.07 25.48
D2 29.85 64.17 13.91 13.78
D∞ 6.42 24.18 3.87 3.76

Baboon PSNR 23.46 25.34 26.93 27.16
D2 59.12 54.77 14.27 12.49
D∞ 6.55 19.89 3.74 3.71

Peppers PSNR 29.37 32.45 33.41 33.54
D2 22.2 35.07 9.22 8.04
D∞ 5.43 13.42 3.3 2.47

between the use of the MSE-quantizer or the MPE-quantizer,
although the MPE criterion seems to give a slight improve-
ment on the subjective quality (Barbara’s clothes). These
subjective interpretations (based on the observation of the
decoded images) can be also corroborated by the objective
measures displayed in Table 2. The highest values (best
quality) for PSNR are reached by TKP-MPE approach (ex-
cept with Barbara). These values are not greatly diFerent
from the ones with TKP-MSE approach. Perceptual distances
(D2 and D∞) again validate the previous remarks. For all
images and PSNR measure, JPEG gives the poorest results
while if the perceptual distances are considered TK -MSE is
the worst for the most part. TKP-MPE is the best with the
perceptual distances.

6. Conclusions

This paper introduces a linear transform for removing
second-order statistical and perceptual relations between
coeGcients in the transform coding context. The perceptual
correlation between features of an image representation
was formalized through the perceptual metric matrix in the
same way as the statistical correlation is represented by the
covariance matrix. The proposed transform facilitates the
application of scalar quantization and the overall per-
formance of the coding system can be accurately de-
termined from the sum of the mean distortions of each
coeGcient.

In view of the pictures and the distortion results, a sta-
tistical decorrelating transform (KLT) on its own is not
suGcient. However, the joint statistical and perceptual
decorrelation gives rise to a better overall performance on
natural imagery. According to the results presented here,
a transform eliminating higher-order relations may be in-
teresting, although its computation could be too intensive.
It is certain that a non-linear and local (adaptive) trans-
form could obtain better results at the cost of increase in
processing.
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Appendix

In this appendix we review the properties of the Rieman-
nian metrics that are signi8cant to our problem. A more ex-
tensive coverage of this concept is given (for example) by
Dubrovin et al. [25].

De'nition 1. A Riemannian metric in a region of the space
Rn is a positive de8nite quadratic form de8ned on vectors
originating at each point P of the region and depending
smoothly on P.

This de8nition can be stated more explicitly:

De'nition 2. A Riemannian metric in a region of a space,
relative to arbitrary coordinates (z1; : : : ; zn) is a family of
smooth functions gij = gij(z1; : : : ; zn), i; j=1; : : : ; n, with the
following two properties:

(1) the matrix (gij) is positive de8nite,
(2) if (y1; : : : ; yn) are new co-ordinates for the region, and

zi = fi(y1; : : : ; yn), i = 1; : : : ; n, then relative to these
new co-ordinates the Riemannian metric is represented
by the family of functions g′ij = g′ij(y1; : : : ; yn), i; j =
1; : : : ; n, given by

g′ij =
n∑

k=1

9fk

9yi

n∑
l=1

gkl
9fl

9yj
: (A.1)
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The second property can be rewritten in a matricial form:

Gy = J TGzJ; (A.2)

where Gy is the metric matrix in the domain y with coef-
8cients g′ij , Gz is the metric matrix in the domain z with
coeGcients gij , and J stands for the Jacobian matrix of the
(inverse) function z = f(y):

J =




9f1

9y1

9f1

9y2
· · · 9f1

9yn

9f2

9y1

9f2

9y2
· · · 9f2

9yn

...
...

...
...

9fn

9y1

9fn

9y2
· · · 9fn

9yn




: (A.3)

Positive de8niteness of the matrix (gij) means simply that
1TG1 ¿ 0 for non-zero vectors 1, i.e. that the quadratic form
is positive de8nite.
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