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Abstract

k-means algorithm: Minimizes
∑k

i=1

∑
j∈Ci

dE (xj , x̄Ci )
2, where x̄Ci is the

sample mean of each group C1, . . . ,Ck and dE is the Euclidean distance.

Idea: To integrate Procrustes mean and Procrustes distance into
k-means.

Several attempts in that sense (Amaral et al. (2010), Georgescu (2009)):

* Amaral et al. ⇒ Hartigan-Wong k-means algorithm.
* Georgescu ⇒ k-means algorithm similar to Lloyds algorithm.

We will compare the performance of Hartigan-Wong and Lloyds versions
of k-means in the field of Statistical Shape Analysis (SSA).

Both algorithms will be applied to a recently 3D anthropometric female
Spanish data base.
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Motivation

Our application: the apparel sizing system design.

Apparel development process ⇒ To define a sizing system that fits good.

Current sizing systems don’t cover all morphologies.

Causes:

* Old size charts.
* Apparel manufacturers work by trial and error.
* Sizing systems are not standardized.

Consequences: Lack of fitting of the sizing systems.

* Large amount of unsold garments (company competitivity loss).
* High index of returned garments (customer dissatisfaction).

Clothing fit is a problem for both customer and apparel industry.

Anthropometric surveys in different countries (Spain, 2006).
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Anthropometric dataset

A national 3D anthropometric survey of the female population was
conducted in Spain in 2006 by the Spanish Ministry of Health.

Aim: To generate anthropometric data from the fe-
male population addressed to the clothing industry.

Database: Sample of 10.415 Spanish women ran-
domly selected:

- From 12 to 70 years old.

- 95 anthropometric measures.

- 66 points representing their shape.

- Socio-demographic survey.
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Anthropometric dataset
Landmarks

Landmarks

The shape of all the women of our data base is represented by landmarks.
Landmark: Point (x , y , z) of correspondence on each individual that
matches between and within populations.
The configuration is the set of landmarks ⇒ X ∈M66×3(R)
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Landmark Description

1. Head back Most prominent point of the head in the sagital plane
2. Head front Glabela (most promininet point of the forehead)
3. Forearm wrist left Maximum girth of the left forearm
4. Forearm girth left Maximum girth of the left forearm just under the left elbow
5. Forearm wrist right Maximum girth of the right forearm
..... .....
66. Left iliac crest Physical marker on the left of the iliac crest
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Objectives

Sizing system: Divides a population into homogeneous subgroups.

Multivariate approaches proposed to develop optimal sizing systems:

* Clustering ⇒ k-means using anthropometric variables as inputs.

Our case: Clustering objects whose shapes are based on landmarks.

Main objectives:

1 To show how k-means can be adapted to cluster objects based on
their shape in order to build optimal sizes.

2 To compare Hartigan and Lloyds versions in SSA.
3 To analyze the shape variability using PCA.
4 To add a trimmed procedure into the Lloyds algorithm.
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Shape Space and shape distances

Pre-shape of an object: It is what is left after allowing for the effects of
translation and scale.

Pre-shape space: Set of all possible pre-shapes.

Pre-shape space: Hypersphere of unit radius in (k-1)m real dimensions.

Shape of an object: It is what is left after allowing for the effects of
translation, scale, and rotation.

Shape space Σ66
3 : Set of all possible shapes.

Full Procrustes distance, dF (X1,X2): Square root of the sum of squared
differences between the positions of the landmarks in two optimally
superimposed configurations.

Procrustes distance, ρ: Closest great circle distance between pre-shapes
on the pre-shape sphere. ⇒ dF = sin(ρ).

Procrustes mean: The shape that has the least summed squared
Procrustes distance to all the configurations of a sample.
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K-means algorithm in the Shape Space

We apply the k-means algorithm to X1, . . . ,Xn configuration matrices, by
using the Procrustes distance and Procrustes mean.

(i) Given Z = ([Z1], . . . , [Zk ]) [Zi ] ∈ Σ66
3 i = 1, . . . , k, we minimize

with respect to C = (C1, . . . ,Ck) assigning each shape
([X1], . . . , [Xn]) to the class whose centroid has minimum
Procrustes distance to it.

(ii) Given C, we minimize with respect to Z , taking Z = ([µ̂1], . . . , [µ̂k ]),
being [µ̂i ] i = 1, . . . , k the Procrustes mean of shapes in Ci .

Steps (i) and (ii) are repeated until convergence of the algorithm.

We use Procrustes distance, ρ, because a computational time reason.
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Experimental results

Data set (6013 women):

* Not pregnant women. ; Not breast feeding at the time of the survey.
* No cosmetic surgery. ; Between 20 and 65 years.

Computational statistical tool: R package shapes.
Procedure:

* We segment our data set using the European Normative.
* We apply the k-means algorithm to each segment (k = 3).

Bust Height1 Height2
≤ 162 cm [162− 174[ cm

[74− 82[ cm 240 97
[82− 90[ cm 1052 694
[90− 98[ cm 1079 671

[98− 106[ cm 772 311
[106− 118[ cm 446 170
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Lloyds and Hartigan algorithms comparison

Three different sample sizes.
Same random initial values for both algorithms.

Bust in [74-82[ cm and height in [162-174[ cm. (97 women)

Cluster 1 Cluster 2 Cluster 3 Computational time Obj. function
Lloyds version 30 47 20 ≈ 7 min. 0.008931727
Hartigan version 31 50 16 ≈ 20 min. 0.008931948

Bust in [106-118[ cm and height ≤ 162 cm. (446 women)

Cluster 1 Cluster 2 Cluster 3 Computational time Obj. function
Lloyds version 183 113 150 ≈ 30 min. 0.006525749
Hartigan version 175 117 154 ≈ 3 h. 0.006522669

Bust in [82-90[ cm and height ≤ 162 cm. (1052 women)

Cluster 1 Cluster 2 Cluster 3 Computational time Obj. function
Lloyds version 195 539 318 ≈ 1 h. 0.004637619
Hartigan version 295 531 226 ≈ 15 h. 0.004604781

Clustering results (groups and objective function) are very similar.
Computational time increases dramatically for Hartigan version with big
samples.
Lloyds algorithm is more appropriate in SSA.
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Clustering results

Bust ∈ [90-98[ ; Height ∈ [162-174[

671 women
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Rotated data
Mean shape

Procrustes rotated data for cluster 1 
 with its mean shape superimposed

Plane xy
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Analysis of shape variability I

We have calculated the mean shape in each cluster through Procrustes
superimposition.
We want to describe now the variability in shape in each cluster ⇒ PCA:

* Shows similarities and differences as simple scatter plots.
* Returns new variables for further statistical analysis.

Analysis for previous cluster 1 (analogous for the other two clusters).
Dryden and Mardia (1998) propose to evaluate:

v(c, j) = v̄ + cλ
1/2
j γj , j = 1, . . . , p

for a range of values of the standardized PC score c.

* v : Data in tangent space.
* v̄ : Mean shape.
* γj : PC of the matrix covariance of Procrustes residuals.
* λj : Corresponding eigenvalues of γj .
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Analysis of shape variability II

There are several ways to visualize the effect of each PC.

We plot an icon projected in the xy plane for the values c ∈ {−3, 0, 3}.
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Shape at c=−3 sd along the 1th PC
Mean shape (at c=0)
Shape at c=3 sd along the 1th PC

The first PC shows variability at the belly and the iliac crest.
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Analysis of shape variability III

Pairwise plots of (si , ρi , ci1, ci2, ci3), i = 1, . . . , 153.

* si are the centroid sizes of the configuration.
* ρi are the Riemannian distances to the mean shape.
* ci1, ci2, ci3 are the first three standardized PC scores.
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There appears to be one woman more
far away than the rest:
The Procrustes distance serves to find
outliers.

RMS(dF ) = 0.07⇒ shape variability in cluster 1 is quite small.
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Trimmed k-means

Results of k-means can be influenced by outliers.

Garcia et al. (1999) proposed a way of robustify k-means ⇒ trimmed
procedure:

* A proportion α (α ∈ [0, 1]) of the total observations n is removed.

An apparel sizing system is intended to cover only the standard
population ⇒ trimmed version of Lloyds k-means.

* The nα shapes with largest distances are removed.
* The n(1− α) left are assigned to the class whose centroid has

Procrustes minimum distance to it.

Example: Group with bust in [74-82[ cm and height in [162-174[ cm.

Cluster 1 Cluster 2 Cluster 3
Lloyds version (original) 30 47 20
Lloyds version (trimmed) 29 47 20
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Conclusions and future work

It has been shown how k-means can be adapted to SSA.
We have applied it to the Anthropometric data base of Spanish women.
It has been demonstrated that Lloyds version works better than Hartigan
in SSA.
We have used it to define a sizing system.

- We have analyzed the shape variability of the clustering results.

We have added a trimmed procedure to Lloyds algorithm.
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