Probabilistic method for combining internal migration data

Guillermo Vinué Postdoctoral researcher

Wittgenstein Centre for Demography and Global Human Capital (IIASA, VID/ÖAW, WU) Vienna Institute of Demography/Austrian Academy of Sciences

> SYSORM 2017 IEMath-GR, Spain

13-15 November 2017

AUSTRIAN ACADEMY OF SCIENCES

				2/19
Outline				

Introduction

2 Data

Methodology

Introduction •••					3/19
кл· .·	a processione de la composición de la c	c	1 1		

Migration is a big issue for everybody

- Researchers and policy makers require timely and consistent data to understand the causes and consequences of population movements.
- Data on migration is recorded by asking people their place of residence one or five years prior to the current census or survey.
- Migration data sources can vary in their measurement of accuracy, coverage and undercount of population and definitions of a migration event.
- The availability and reliability of current migration data are not completely optimal.

Introduction					5/19
Researc	h on	migration (II)		

- Until innovations in data collection methods reduce measurements errors and increase the comparability of data, probabilistic models should be used to produce valid migration data.
- The most effective strategy to produce high-quality data is to use a model that creates a synthetic database.
- A synthetic database results from the combination of both quantitative and qualitative data from different sources and contains estimates of harmonized "true" migration flows.
- We propose a Bayesian hierarchical model for combining migration data sources between nine USA-census divisions between 1980 and 2016 to provide synthetic estimates of true flows with uncertainty.

	Data ●0000				6/19
USA in	ternal	migration	(1)		

• We focus on USA data because there is plenty of official migration data that can be used to estimate overall population movements.

Data Source	Universe	Duration Migration	Years
Decennial Census	Age $5+$	Residence five-year ago	1980, 1990, 2000
American Community Survey (ACS)	Age 1+	Residence one-year ago	2000:2015
Current Population Survey (CPS)	Age $1+$	Residence one-year ago	1982:1984, 1986:1994, 1996:2016
Current Population Survey (CPS)	Age 5+	Residence five-year ago	1985, 1995, 2005, 2015
Internal Revenue Service (IRS)	Tax filers	Residence one-year ago	1991:2015

• CPS measures migration over both one-year and five-year periods. Census measures over five-year periods. ACS and IRS over one-year periods.

	Data ○●○○○				7/19
USA in	ternal	migration	(11)		

• Nine USA-census divisions:

	Data 00●00				8/19
Data ill	ustrat	ion			

Origin-destination migration flows in 2015 by ACS One-Year

	Data 00●00				8/19
Data ill	ustrat	ion			

Origin-destination migration flows in 2015 by CPS One-Year

	Data 00●00				8/19
Data ill	ustrat	ion			

Origin-destination migration flows in 2015 by IRS One-Year

	Data 00●00				8/19
Data ill	ustrat	ion			

Origin-destination migration flows in 2015 by CPS Five-Year

	Data ○○○●○				9/19
Total n	nigrati	on flows			

Total migration flows between the nine USA-census divisions (1980-2016)

		Research objective ●			11/19
Researc	ch obj	ective			

We observe flow counts z^k_{ijt} from origin i to destination j (i = j = 1,...,9) during year t reported by data source k and duration interval status d = 1,5.

$$z_{ijt}^{k} = \begin{pmatrix} 0 & z_{12t}^{k} & z_{13t}^{k} & \dots & z_{19t}^{k} \\ z_{21t}^{k} & 0 & z_{23t}^{k} & \dots & z_{29t}^{k} \\ z_{31t}^{k} & z_{32t}^{k} & 0 & \dots & z_{39t}^{k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ z_{91t}^{k} & z_{92t}^{k} & z_{93t}^{k} & \dots & 0 \end{pmatrix}$$

• We aim to estimate true migration flows y_{ijt} using the observed z_{iit}^k .

$$y_{ijt} = \begin{pmatrix} 0 & y_{12t} & y_{13t} & \dots & y_{19t} \\ y_{21t} & 0 & y_{23t} & \dots & y_{29t} \\ y_{31t} & y_{32t} & 0 & \dots & y_{39t} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_{91t} & y_{92t} & y_{93t} & \dots & 0 \end{pmatrix}$$

• We choose the Bayesian paradigm because of the flexibility to combine data from different sources and the possibility to incorporate prior knowledge.

			Methodology ●○		12/19
Method	ology	(I)			

• Measurement Model:

$$\log z_{ijt}^k = \log y_{ijt} + \log \lambda^k + \log \gamma^k + \log \delta^k + \epsilon^k$$

where $\epsilon^k \sim \textit{N}(0, au^k_\epsilon)$

• Data Generating Model:

$$\log y_{ijt} = \mu + \alpha_{ij} + \beta_{ij} \log y_{ij(t-1)} + \eta_{ijt}$$

where $\eta_{ijt} \sim N(0, \tau_{\eta})$

• Model Priors:

$$\mu \sim N(0, 10^{-6})$$
 $lpha_{ij} \sim N(0, au_{lpha})$ $eta_{ij} \sim N(\mu_{eta}, au_{eta})$
 $au_{lpha} \sim U(0, 100)$ $\mu_{eta} \sim N(0, 10^{-3})$ $au_{eta} \sim U(0, 100)$
 $au_{\eta} \sim U(0, 100)$

• $N(\mu, \tau)$ is a normal distribution with mean μ and precision (inverse variance) τ .

			Methodology ○●		13/19
Methodology		(II)			

- γ^{k} (coverage): Percentage of people to be interviewed (\approx the population of interest).
- λ^k (undercount): Percentage of people who response to the survey (response rates).
- δ^k (duration): Difference of the duration of movements (one-year, five-year).
- ϵ^k (accuracy): How well the estimate reflects the true value (margin of error).
- For accuracy, coverage and undercount, we derived informative priors from the literature surrounding the data sources.

• The prior for duration comes from the equations of expectation and variance of the log-normal distribution.

			Results ●○		14/19
Results	(I)				

• The model is written in JAGS and run with the R package rjags.

Total migration flows between the nine USA-census divisions (1980–2017). Medians and credible intervals.

			Results ○●		15/19
Results	(II)				

2017 True Flow Forecast, One-Year

				Conclusions •	16/19
Conclus	sions a	and future	work		

- Our method estimates synthetic bilateral migration flows that borrow strength over multiple data sources.
- The resulting estimates allow for a better understanding of people's movement patterns beyond the confines of a single source.
- Migration is forecasted in future periods using past data.
- Use data from Brazil. We aim to create a flexible modelling framework that can be applied to estimate internal migration in any country.
- We will expand the model to incorporate geo-located Twitter data.

				References •	17/19
Referen	ces				

- Nowok, B. and Willekens, F. A probabilistic framework for harmonisation of migration statistics. *Population, Space and Place* 17, 521-533, 2011.
- Raymer, J., Wiśniowski, A., Forster, J.J., Smith, P.W.F. and Bijak, J. Integrated modeling of European migration. *Journal of the American Statistical Association* 108(503), 801-819, 2013.
- Willekens, F. Evidence-based monitoring of international migration flows in Europe. *Eurostat conference "Towards more agile social statistics"*, 1-42, 2016.

In collaboration with:

- Guy Abel (Asian Demographic Research Institute, Shanghai University, China & Wittgenstein Centre for Demography and Global Human Capital (IIASA, VID/ÖAW, WU), Austria)
- Dilek Yildiz (Wittgenstein Centre for Demography and Global Human Capital (IIASA, VID/ÖAW, WU), Austria)
- Arkadiusz Wiśniowski (Cathie Marsh Institute for Social Research, School of Social Sciences, University of Manchester, United Kingdom)

Funding award:

 STE-Projekts 0059 (Jubiläumsfonds der Stadt Wien)
"Combining Traditional and Emerging Big Data Sources to Model Population Movement Patterns (BIGMIG)"

THANKS FOR THE ATTENTION

www.uv.es/vivigui Guillermo.Vinue.Visus@oeaw.ac.at Guillermo.Vinue@uv.es