"Multifunctionality and Nanostructuration in Spin Crossover Materials"

A. B. Gaspar ICMOL, University of Valencia

"WS10-ETOLDs", Valencia 2010

Spin Crossover Phenomenon in Fe(II) compounds

High Spin (HS) ⁵T_{2g} Paramagnetic S = 2

Low spin (LS) ¹A_{1g} Diamagnetic S = 0

Porous SCO polymers Host-guest interactions

[Fe(pz)Pt(CN)₄] (pz = pyrazine)

V. Niel, J. M. Martínez-Agudo, M. C. Muñoz, A. B. Gaspar, J. A. Real, Inorg. Chem., 2001, 40, 3838

Bidirectional Chemo-switching of Spin State in the Microporous Framework [Fe(pz)Pt(CN)₄]

Guest molecule	Class I	Class II	Class III	Class IV
	CO ₂	H ₂ O	benzene	CS ₂
	N ₂	D ₂ O	pyrazine	SO ₂
	O ₂	MeOH	toluene	
	C ₂ H ₂	EtOH	Thiophene*	
		2-PrOH	Pyrrole*	
		acetone	Pyridine*	
			Furan*	
			THF*	
Molecular size	Small	Small/medium	Large	Small/medium
Effect on the spin state	No	High Spin	High Spin	Low Spin

* These clathrates display cooperative spin transitions below 200 K

M. Ohba, K. Yoneda, G. Agusti, M. C. Muñoz, A. B. Gaspar, J. A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, S. Kitagawa, *Angew. Chem. Int. Ed.*, 2009, *48*, 4767

Synergy Between Gas Absorption and Cooperative SCO Properties: Memory in {Fe(pz)[Pt(CN)₄]} (1)

M. Ohba, K. Yoneda, G. Agusti, M. C. Muñoz, A. B. Gaspar, J. A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, S. Kitagawa, *Angew. Chem. Int. Ed.*, 2009, *48*, 4767

Synergy Between Gas Absorption and Cooperative SCO Properties: Switch in {Fe(pz)[Pt(CN)₄]}

M. Ohba, K. Yoneda, G. Agusti, M. C. Muñoz, A. B. Gaspar, J. A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, S. Kitagawa, *Angew. Chem. Int. Ed.*, 2009, *48*, 4767

[Fe(pz)Pt(CN)₄]·CS₂

[Fe(pz)Pt(CN)₄]·pz

The structural data of clathrates and the CCSD(T) calculations point to three key factors as the origins of stabilization of the HS and LS states in {Fe(pz)[Pt(CN)₄]}·G:

-Size and shape of guest -G…pz interaction at site A -G…Pt interaction at site B

Guest of class || and |||

Size and shape of guest

Guest of class IV

-G…pz interaction at site A -G…Pt interaction at site B

Oxidative Addition of Halogens on Open Metal Sites in the Microporous Framework [Fe(pz)Pt(CN)₄]

G. Agustí, R. Ohtani, K. Yoneda, A. B. Gaspar, M. Ohba, J. F. Sánchez-Royo, M. C. Muñoz, S. Kitagawa, J. A. Real *Angew. Chem. Int. Ed.*, 2009, *48*, 8944

Oxidative Addition of Halogens on Open Metal Sites in the Microporous Framework [Fe(pz)Pt(CN)₄]

G. Agustí, R. Ohtani, K. Yoneda, A. B. Gaspar, M. Ohba, J. F. Sánchez-Royo, M. C. Muñoz, S. Kitagawa, J. A. Real *Angew. Chem. Int. Ed.*, 2009, *48*, 8944

Oxidative Addition of Halogens on Open Metal Sites in the Microporous Framework [Fe(pz)Pt(CN)₄]

G. Agustí, R. Ohtani, K. Yoneda, A. B. Gaspar, M. Ohba, J. F. Sánchez-Royo, M. C. Muñoz, S. Kitagawa, J. A. Real *Angew. Chem. Int. Ed.*, 2009, *48*, 8944

Nanocrystals / Nanoparticles of SCO polymers

Nanocrystals of [Fe(pz)Pt(CN)₄] (reverse micelle)

Nanocrystals of [Fe(pz)Pt(CN)₄] (reverse micelle)

[Fe(3F-py)₂M(CN)₄] (M(II) = Ni, Pd, Pt and 3F-py = 3-fluoropyridine)

V. García, A. B. Gaspar, M. C. Muñoz, G. Bukin, G. Levchenko, J. A. Real, Chem. Eur. J., 2009, 15, 10960

[Fe(3F-py)₂Pd(CN)₄]

V. García, A. B. Gaspar, M. C. Muñoz, G. Bukin, G. Levchenko, J. A. Real, Chem. Eur. J., 2009, 15, 10960

[Fe(3F-py)₂Ni(CN)₄]

Nanocrystals (reverse micelle)

Nanoparticles (PVP coating polymer)

Mean: 399.708 StdDev: 61.978

Bins: 10

Min: 192.270 Max: 519.140 Mode: 400 (90) Bin Width: 100

400x400x30 nm

210x140 nm

70x30 nm

Count: 186 Mean: 209.628 StdDev: 54.274 Bins: 12

Min: 89.902 Max: 351.340 Mode: 155.261 (29) Bin Width: 21.786

Count: 335 Min: 19.959 Mean: 33.251 Max: 49.687 StdDev: 5.706 Mode: 29.868 (65) Bin Width: 2.477 Bins: 12

Count: 326 Min: 45.414 Mean: 73.863 Max: 115 StdDev: 13.006 Mode: 68.333 (62) Bins: 12 Bin Width: 6.667

Count: 335 Mean: 33.251 StdDev: 5.706 Bins: 12

19 959

49 68 Min: 19.959 Max: 49.687 Mode: 29.868 (65) Bin Width: 2.477

300 nm

Min: 21 Max: 45 Mode: 30 (14) Bin Width: 6

[Fe(3F-py)₂Ni(CN)₄]

V. Martínez, I. Boldog, A. B. Gaspar, V. Ksenofontov, A. Bhattacharjee, P. Gütlich, J. A. Real, 2010, submitted.

[Fe(3F-py)₂Pd(CN)₄]

Nanocrystals (reverse micelle)

Bin Width: 100

Bins: 10

W

L

480x480x30 nm

480x480x30 nm

[Fe(3F-py)₂Pt(CN)₄]

Nanocrystals (reverse micelle)

Count: 46 Min: 263.360 Mean: 481.088 Max: 1000 StdDev: 146.020 Mode: 500 (11) Bins: 10 Bin Width: 100

250x180 nm

Count: 501 Mean: 183.842 StdDev: 32.238 Bins: 18

140 Count 503

Bins: 16

Min: 100.440 Max: 300 Mode: 190 (88) Bin Width: 12.222

Nanoparticles (PVP coating polymer) W

290x180 nm

2D polymer [Fe(3F-py)₂Ni(CN)₄]

3D polymer [Fe(pz)Pt(CN)₄]

* from F. Volatron et al. Inorg. Chem. 2008, 47, 6584

Particle size reduction causes:

T^{av} (K)

-Displacement of Tc's to lower temperatures

-Decrease of hysteresis width

-Appearance of HS and LS residual fractions

Fe(II) spin crossover metallomesogens (metal containing liquid crystals)

Fe^{II}-trenH-C_n-(CI)-0.5H₂O

tren = tris(2-aminoethyl)amine

Seredyuk, Gaspar, Ksenofontov, Galyametdinov, Kusz, Gütlich, J. Am. Chem. Soc., 2008, 130, 1431

Gaspar, Seredyuk, Gütlich, Coord. Chem. Rev., 2009, 253, 2399

Fe^{II}-trenH-C₁₆-(CI)-0.5H₂O

Seredyuk, Gaspar, Ksenofontov, Galyametdinov, Kusz, Gütlich, J. Am. Chem. Soc., 2008, 130, 1431

Fe^{II} -trenH- C_n -(CI)·0.5H₂O, n = 16, 18, 20

Phase transition Cr → S_A "switches on" spin-crossover: Coupled systems

Polarizing optical microscopy

Polymeric one-dimensional metallomesogens of iron(II)

Fe^{II}-tba-C_n-(anion)

 C_n -tba = 3,5-bis(alkoxy)-*N*-(4*H*-1,2,4-triazole-4-yl)benzamide

Fe^{II}-tba-C₁₀-(tosylate) (dehydrated)

Fe-tba-C_n-(tosylate), *n* = 8, 10, 12

- Influence of the glass transition;
- Evolution of the hysteresis width in the homologues;
- Similar behavior found for Fe-tba- C_n -(BF₄), n = 8, 10, 12 and Fe-tba- C_n -(CF₃SO₃), n = 8, 10, 12

Coupled transitions

Chem. Mater. 2006, 18, 2513

Inorg. Chem. 2008, 47, 10232

Prof. J. A. Real Prof. M. C. Muñoz

Dr. I. Boldog

Dr. V. Martínez

Dr. G. Agustí

F. Muñoz

SMOLMAT, ICMOL Valencia http://www.uv.es/smolmat/

Thanks

Prof. P. Gütlich, University of Mainz (Germany)
Dr. V. Ksenofontov, University of Mainz (Germany)
Dr. M. Seredyuk, University of Mainz (Germany)
Prof. E. Rentschler, University of Mainz (Germany)
Prof. Y. Galyametdinov, Kazan Physical Technical Institute, Russian Academy of Science (Russia)

Prof. G. Levchenko, Donetsk Physico-Thechnical Institute, NAS of Ukraine

Prof. S. Kitagawa, University of Kyoto (Japan) Dr. M. Ohba, University of Kyoto (Japan)

MICINN, Ministerio de Ciencia e Innovación GVA, Generalitat Valenciana DFG, Deutsche Forschungsgemeinschaft MAGMANET, European Network of Excellence AvH, Alexander von Humboldt Foundation