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ABSTRACT

This paper presents a novel rotation-invariant image re-
trieval scheme based on steerable pyramid transforms. First,
we model the subband coefficients as sub-Gaussian random
vectors to capture their non-Gaussian behavior. Then, we
apply a normalization process in order to Gaussianize the
coefficients. As a result, the feature extraction step con-
sists of estimating the covariances between the normalized
pyramid coefficients. The similarity of two distinct images
is measured by minimizing the Kullback-Leibler Divergence
(KLD) between their corresponding multivariate Gaussian
distributions, where the minimization is performed over a
set of rotation angles. We provide analytical expressions for
the minimum KLD and we demonstrate the effectiveness of
our proposed method using a set of real texture images.

1. INTRODUCTION

The search of large digital multimedia libraries, unlike the
search of conventional text-based digital databases, cannot
be realized by simply searching text annotations. But the
design of completely automatic mechanisms that extract
meaning from multimedia data and characterize the infor-
mation content in a compact and meaningful way is a chal-
lenging task. Accordingly, efficient content-based informa-
tion retrieval systems must be developed on the basis of
automatically-derived features that accurately specify the
information content of the items in the database.

In a typical content-based image retrieval (CBIR) sys-
tem, we can distinguish two major tasks, namely feature
extraction (FE) and similarity measurement (SM). In the
FE step, a set of features, constituting the so-called image
signature, is generated to accurately represent the content
of a given image, creating a better correlation of the pixel
representation with image semantics. This set has to be
much smaller in size than the original image while captur-
ing as much as possible of the image information. During
the SM step, a distance function is employed, which mea-
sures how close to a query image each image in the database
is, by comparing their signatures.
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In recent work, we have shown that by employing a 2D
wavelet decomposition on a given image, successful model-
ing of the wavelet subband coefficients is achieved by taking
into consideration the actual heavy-tailed behavior of their
marginal densities [1]. Specifically, we have shown that the
subband decompositions of many texture images have non-
Gaussian statistics that are best described by families of
distributions with algebraic tails, such as the Symmetric
Alpha-Stable (SαS) [2]. After extracting the SαS model
parameters, we analytically derived and employed the KLD
as the distance measure between two SαS distributions.
Our formulation improved the retrieving performance of the
system, resulting in a decreased probability error rate for
images with distinct non-Gaussian statistics. However, this
approach does not take into account the possible interde-
pendencies between different subbands of a given image,
which can be exploited in order to provide a more accurate
representation of the texture image profile. More accurate
modeling can be achieved by taking into account the corre-
lation structure between the raw coefficients, their magni-
tudes, and other statistics [3].

An important property of a CBIR system is rotation in-
variance. Recently, a rotation-invariant image retrieval sys-
tem based on steerable pyramids was proposed by Beferull-
Lozano et al. [4]. In this system, the correlation matrices
between the basic orientations at each level of the pyra-
mid are chosen as the energy-based texture features. Then,
the similarity measure between two images is defined as the
minimum Frobenius norm, over all possible rotations θ, of
the difference between the correlation matrix of the original
(query) image and that of each image in the database.

In the present work, we proceed first by defining a “neigh-
borhood” for each transform coefficient and then by consid-
ering its components as a sample of a sub-Gaussian random
process. Within the framework of sub-Gaussian processes
we use the notion of covariation, pertaining to lower-than-
two order correlation, in order to extract possible interde-
pendencies between coefficients at different image orienta-
tions and scales. As a second step, we apply a Gaussianiza-
tion procedure to normalize the distribution of the raw sub-
band coefficients [5]. The normalization procedure is justi-
fied by the fact that the KLD between Gaussian densities
has a closed-form expression. The similarity measurement
between a given query and a rotated image in a database,



is performed by minimizing the KLD between multivariate
Gaussian distributions over a set of rotation angles. We de-
rive an analytical expression for the rotation invariant KLD
between a given query image Q and a database image I and
we describe a numerical method for its computation.

2. JOINT STATISTICAL MODELING IN THE
TRANSFORM DOMAIN

2.1. Variance-adaptive local modeling using multi-
variate sub-Gaussian distributions

The local dependencies of the coefficient magnitudes at a
given subband and the associated marginal distributions,
can be modeled using a homogeneous random field with a
spatially changing variance. This requirement can be real-
ized by modulating each coefficient (node of the field) with
hidden scaling random variables.

A representative example of such a field is the Gaussian
scale mixture (GSM) [6], which is the product of a Gaussian
random vector and a hidden scalar random variable (mul-

tiplier). By definition, a random vector ~X follows a GSM

distribution if and only if it can be written as ~X
d
=
√

A ~G,

where ~G is a zero-mean Gaussian vector and A a positive

scalar variable independent of ~G (
d
= denotes equality in dis-

tribution). Two basic assumptions are made in order to
reduce the dimensionality of these models:

(i) the probability structure is defined locally. In par-
ticular, the probability density of a coefficient when
conditioned on a set of neighbors, is independent of
the coefficients outside the neighborhood,

(ii) all such neighborhoods obey the same distribution
(spatial homogeneity).

The construction of a global probabilistic model for im-
ages, based on these local descriptions, needs the specifica-
tion of a neighborhood structure for each subband coefficient
and the distribution of the multipliers. In this paper, we ex-
tract the interdependencies between coefficients at different
subbands and levels by utilizing their joint statistics, ex-
pressed by a GSM model in which the multiplier A is drawn
from a SαS distribution. This results in a specific model,
namely the α-sub-Gaussian (α-SG) model.

As an example of a neighborhood, we can define the
neighbors of a coefficient to be the m ×m adjacent coeffi-
cients at the same subband, the J-1 coefficients of the other
subbands (orientations) at the same spatial location plus
the coefficient at the same subband of the next level placed
at the corresponding location. Then, the vector represent-
ing this neighborhood is supposed to be a sample of an
α-sub-Gaussian process, which is a variance mixture of a
Gaussian process, defined as follows [2]:

Definition: Let {G(t), t ∈ T} be a Gaussian process with

covariance function R(u,v) and A ∼ Sα/2((cos πα
4

)2/α, 1, 0)
be a positive α

2
-stable random variable where α < 2. As-

sume that the random variable A is independent of {G(t), t ∈
T}. The symmetric alpha-stable (SαS) process {X(t) =

A1/2G(t), t ∈ T} is a sub-Gaussian process with an under-
lying Gaussian process {G(t), t ∈ T}.

The finite dimensional projections, (X(t1), ..., X(td)),
d ≥ 1, are α-SG(R) random vectors with underlying co-

variance matrix R. So, the vector ~Xl
k = [x1, x2, ..., xN ],

representing the N -dimensional neighborhood of coefficient
cl

k at level l, is supposed to be drawn of an α-SG(Rl) pro-
cess, where Rl denotes the underlying covariance matrix of
the lth-level. The notion of covariance between two ran-
dom variables plays an important role in the second-order
moment theory. However, covariances do not exist for the
family of SαS random variables, due to the lack of finite
variance. Instead, a quantity called covariation, which un-
der certain constraints plays an analogous role for SαS ran-
dom variables to the one played by covariance for Gaussian
random variables, has been proposed [2]. Specifically, let X
and Y be jointly SαS random variables with α > 1, zero lo-
cation parameters and dispersions γX and γY respectively.
The covariation of X with Y is defined by

[X, Y ]α =
E{XY <p−1>}

E{|Y |p} γy (1)

where for any complex number z and a ≥ 0 we use the nota-
tion z<a> = |z|a−1z̄, with z̄ denoting complex conjugation.

Let the set of vectors { ~Xk = [xk
1 , xk

2 , ..., xk
N ]T }k=1,...,K

represent independent realizations of an α-SG(R) process.
Then, by discretizing (1), we can estimate the covariation
between two components xm, xn of an α-SG(R) vector,
denoted as cmn = [xm, xn]α, as follows:

ĉmn = (c(p, α))
−α

p

[ 1

K

K∑

k=1

xk
m(xk

n)<p−1>
][ 1

K

K∑

k=1

|xk
n|p

] α
p
−1

(2)
where c(p, α) is a constant with 0 < p < α (cf. [2]). We

define the estimated covariation matrix Ĉ as the matrix
with elements [Ĉ]mn = ĉmn. The relation between the
covariation matrix C of the sub-Gaussian vector and the
underlying covariance matrix R of the Gaussian vector is [2]

[C]mn = 2−
α
2 [R]mn[R](α−2)/2

nn (3)

resulting in the following estimators of the covariances

[R̂]nn =
(
2

α
2 [Ĉ]nn

) 2
α , [R̂]mn = 2

α
2

[Ĉ]mn

[R̂]
(α−2)/2
nn

, (4)

which are consistent and asymptotically normal.

2.2. Normalization of the sub-Gaussian model

An important property of a GSM model is that the density

of ~X is Gaussian when conditioned on A, i.e., the normal-

ized vector ~X/
√

A follows a Gaussian distribution:

p( ~X|A) =
exp(− ~XT (AR)−1 ~X/2)

(2π)N/2 |AR|1/2
. (5)

From (5), it can be seen that the maximum likelihood esti-
mator for the multiplier A is

Â( ~X) =
~XT R−1 ~X

N
, (6)

where the estimator is viewed as a function of a neighbor-

hood ~X to emphasize the assumption of locality. This sim-
plifies the computational procedure, as we assume that the
multipliers associated with different neighborhoods are es-



timated independently, even though the neighborhoods are
overlapping.

Summarizing, the “Gaussianization” of a given decom-
posed image proceeds as follows. For each subband (except
the low-pass residual):

i) Estimate the underlying covariance matrix R using (4).

ii) For each coefficient ck:

• Construct the corresponding neighborhood ~Xk.

• Estimate the associated multiplier Âk( ~Xk) using (6).

• Compute the normalized coefficient c̃k = ck/
√

Âk.

From (6), it is obvious that the estimation accuracy depends
on the underlying covariance matrix and the neighborhood
structure. We evaluated the performance of the above esti-
mator in terms of the neighborhood size N and the value of
characteristic exponent α, by running 500 Monte-Carlo sim-
ulations on a set of K = 1000 generated α-SG(R) vectors
with known covariance matrix (R = σ2I, where I denotes
the N × N identity matrix). We concluded that a neigh-
borhood size N between 11 and 15 is adequate to achieve
an appropriately small mean squared estimation error.

3. IMAGE RETRIEVAL

3.1. Feature Extraction

Following the normalization procedure, the marginal and
joint statistics of the coefficients at adjacent positions, ori-
entations, and levels are close to the Gaussian distribution.
In the FE step, we compute the J ×J covariance matrix at
each decomposition level. Thus, for a given image I decom-
posed in L levels, the corresponding signature S is given by
the set of the L covariance matrices:

I 7→ S = {Σ1
I ,Σ2

I , . . . ,ΣL
I },

where Σl
I is the covariance matrix of the l-th decomposition

level. Due to the symmetric property of the covariance

matrix, the total size of the above signature equals J(J+1)L
2

.

3.2. Similarity Measurement

After the Gaussianization procedure, we model the distribu-
tion of each decomposition level using a multivariate Gaus-
sian density (MvGD). The similarity between two images is
measured by employing the KLD. In particular, let Ql, Il

be the l-th decomposition level of two images Q and I,
following MvGDs with zero-mean vectors and covariance
matrices ΣQl and ΣIl , respectively. The KLD between the
two images in the l-th level is given by:

D(Ql‖Il) =
1

2
tr(ΣQlΣ

−1

Il − I)− 1

2
ln |ΣQlΣ

−1

Il | (7)

Making an assumption of independence between scales, the
overall KLD between images Q, I is given by the sum:

D(Q‖I) =

L∑

l=1

D(Ql‖Il) (8)

Considering databases that may contain rotated ver-
sions of a given image, the following relation of equivalence
exists [4]:

ΣIl
θ

= F(θ)ΣIlF
T (θ), (9)

where ΣIl , ΣIl
θ

are the l-level covariance matrices of image

I and its rotated version at an angle θ, Iθ, respectively, and
F(θ) is an appropriate steering matrix. Consider Q to be

the query image and Ĩ = Iφ to be a counter-clockwise rota-
tion, by an angle φ, of the original image I in the database.
Obviously, in actual applications the value of φ is unknown.
Thus, the distance between the lth-levels of Q and Ĩ (Ql and

Ĩl, respectively) is defined as the minimum KLD between

Ql and Ĩl
−θ, where the minimization is over a set of rota-

tions Θ. By noticing that ΣĨl
−θ

= F(−θ)ΣĨlF
T (−θ) and

substituting (9) into (7), we get that the KLD between Ql

and Ĩ−θ is

D(Ql‖Ĩl
−θ) =

1

2
tr

(
ΣQlF

T (θ)Σ−1

Ĩl F(θ)− I
)−

− 1

2
ln(|ΣQl ||Σ−1

Ĩl |). (10)

Finally, the overall KLD between Q and Ĩ is defined as:

D(Q‖Ĩ) = min
θ∈Θ

L∑

l=1

D(Ql‖Ĩl
−θ)

= min
θ∈Θ

[1

2

L∑

l=1

tr
(
ΣQlF

T (θ)Σ−1

Ĩl F(θ)
)]− JL

2
−

−1

2

L∑

l=1

ln(|ΣQl ||Σ−1

Ĩl |). (11)

Note that in the above analysis, we have assumed equis-
paced basic orientations, which results in orthogonal matri-
ces F(θ), i.e., FT (θ) = F−1(θ) = F(−θ).

4. EXPERIMENTS AND CONCLUSIONS

In order to evaluate its efficiency, the proposed retrieval
scheme was applied on a set of 14, 512 × 512 texture im-
ages, obtained from the USC SIPI database1. We divided
each image into 4 (256 × 256) non-overlapping subimages.
Then, each subimage was associated with 4 physically ro-
tated versions at 30o, 60o, 90o, and 120o degrees, resulting
in a database containing 280 images. We implemented a
3-level steerable pyramid decomposition, by employing the
following oriented basis (steering) functions:

f1(θ) =
1

2
[cos(θ) + cos(3θ)] f2(θ) = f1(

π

4
− θ)

f3(θ) = f1(
π

2
− θ) f4(θ) = f1(

3π

4
− θ)

with basic angles φ1 = 0, φ2 = π/4, φ3 = π/2, φ4 = 3π/4,
resulting in 4 oriented subbands at each level. Since the
steering functions have only odd harmonics which oscillate
at some finite speed, the number of local extrema of (11)
(as a function of theta) can be at most equal to twice the
number of independent harmonics (which happens to be
equal to the number of basic harmonics). In addition, the
distance between any two consecutive local extrema is lower
bounded making it possible to search for them in a few non-
overlapping angular intervals [7].

The Gaussianization process for a coefficient ck is cur-

1http://sipi.usc.edu/services/database



Computational Complexity
Method Gaussianization step FE step SM step

1. - M2J(J + 1)(1− 4−L) KL(6J3 − 2J2 + J + 1)

2. LJ · O(N3) + JM2[8N2 + N + 1](1− 4−L)/3 M2J(J + 1)(1− 4−L) KL(6J3 − 2J2 + J + 1)

3. LJ · O(N3) + JM2[8N2 + N + 1](1− 4−L)/3 M2J(J + 1)(1− 4−L) KL[O(J3) + 6J3 + 3J2 + J + 1]+
+L[O(J4) + 3]

Table 1. Computational complexity of the retrieval schemes.

Methods
1. Non-Gaussianized 2. Gaussianized 3. Gaussianized

+ + +
Frobenius Frobenius KLD

88.62 89.26 94.01

Table 2. Average retrieval rate (%) in the top 16 matches.

ried out by forming its neighborhood consisting of the 3×3
adjacent coefficients at the same subband, the 3 coefficients
of the rest of the subbands at the same level, placed at the
same position and the 1 coefficient of the same subband at
the next level, placed at the corresponding location accord-
ing to a quad-tree structure.

In the following, we compare the performance of our
proposed rotation invariant KLD and Gaussianization ap-
proach (denoted as ”method 3”), with the performances ob-
tained by minimizing the Frobenius norm of the differences
between the corresponding covariance matrices [4] with and
without Gaussianization (methods 2 and 1, respectively).
The relevant images for each query are defined as the other
15 subimages obtained from the same original image.

Table 1 presents a rough estimation of the computa-
tional complexity of the above three methods, where M×M
is the dimension of the original image, N is equal to the
neighborhood size and K is the dimension of the discrete
grid of angles, Θ, for the minimization of the overall Frobe-
nius and KLD similarity measures. In the above implemen-
tation, we discretized the [0, π] interval using a step equal to
1o. From this table, it is clear that the main computational
cost is due to the Gaussianization step, while the complex-
ity of the two similarity measures is similar, since in real
applications the values of L and J are small (usually 3 or
4). The computational complexity can be reduced by em-
ploying an efficient implementation of the Gaussianization
process, as well as a fast algorithm for the minimization of
the similarity function. Table 2 shows the comparison in
performance in average percentages of retrieving relevant
images in the top 16 matches. Figure 1 depicts the average
percentages of retrieving relevant subimages as a function of
the number of top matches. The performance improvement
achieved by our proposed method is evident.

As a conclusion, we observe that the implementation of
a Gaussianization procedure on the original coefficients of a
multi-orientation, multi-scale steerable pyramid decompo-
sition of the images in a given database, combined with the
application of a rotation invariant version of the Kullback-
Leibler divergence as a measure of similarity, results in a
decreased probability of retrieval error. The key feature
of the proposed scheme is that the Gaussianization process
considers a heavy-tails modeling of the original subband
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Fig. 1. Retrieval performance according to the number of
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coefficients, resulting in an improved performance.
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