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Abstract We study the Multi-Depot Multiple Traveling Salesman Problem (MDMTSP), which is a variant of the 

very well-known Traveling Salesman Problem (TSP). In the MDMTSP an unlimited number of salesmen have to 

visit a set of customers using routes that can be based on a subset of available depots. The MDMTSP is an NP-

hard problem because it includes the TSP as a particular case when there is only one depot and the distances 

satisfy the triangular inequality. The problem has some real applications and is closely related to other important 

multi-depot routing problems, like the Multi-Depot Vehicle Routing Problem and the Location Routing Problem. 

We present an integer linear formulation for the MDMTSP and strengthen it with the introduction of several 

families of valid inequalities. Certain facet-inducing inequalities for the TSP polyhedron can be used to derive 

facet-inducing inequalities for the MDMTSP. Furthermore, several inequalities that are specific to the MDMTSP 

are also studied and proved to be facet-inducing.   

 

Keywords Multiple depot traveling salesman problem, polyhedral study. 

 

1 Introduction 

Multi-Depot Multiple Traveling Salesman Problem (MDMTSP) is a generalization of the well-

known Traveling Salesman Problem (TSP), which consists of determining a set of routes for 

the salesmen that jointly visit a set of given clients, such that each salesman starts from and 

returns to one depot among a set of available depots and the total cost of the routes is 

minimized. We denote the set of clients by J and the set of potential depots by I . Let 

( ),G V E=  be an undirected graph with V I J= ∪ , and ( ){ },  : , E i j i V j J= ∈ ∈ . The cost of 

any edge ( ),i j E∈  is denoted by ijc . Costs are assumed to be symmetric, i.e. ij jic c=  and 

routes visiting only one client, called return trips, are allowed. This problem has some 

applications as in the motion planning of a set of unmanned aerial vehicles (Yadlapalli et al. 

2007 and 2009, Malik et al. 2007, Rathinam et al. 2007) and the routing of service technicians 

where the technicians are leaving from multiple depots (Parragh 2010). If costs satisfy the 
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triangular inequality, it is easy to show that there is always an optimal solution in which at most 

one route will start and end at each depot. Therefore, in this case the TSP reduces to the 

MDMTSP with | | 1I = , so this problem is NP-hard.   

The TSP is undoubtedly one of the most widely studied problems in the area of combinatorial 

optimization and there are a lot of literature reviews on it, see for example Gutin and Punnen 

(2002) and Applegate et al. (2006). We concentrate here on reviewing the literature on 

problems nearer to the MDMTSP. 

As far as we know, there is no reference in the literature that deals with the MDMTSP as we 

define it in this paper, and the literature on similar problems is very scarce. The nearest 

problem to the MDMTSP is the Generalized Multiple Depot, Multiple Traveling Salesman 

Problem (GMTSP), studied by Malik et al. (2007), in which there are m  salesmen, located at 

different depots, but at most p  of them can be used. They assume that the costs are symmetric 

and satisfy the triangular inequality and propose a 2-approximation algorithm. Yadlapalli et al. 

(2009) study a variant of the GMTSP where each route must contain at least three nodes and 

propose a formulation for the GMTSP using binary variables and a lagrangean relaxation in the 

same spirit as Held-Karp's method for the TSP. This method combined with subgradient 

optimization allows them obtaining an improved lower bound. A lagrangean heuristic based on 

this method is also proposed. They present computational results for instances with a number of 

nodes between 15 and 45 and a number of salesmen between 3 and 10. Yadlapalli et al. (2007) 

study the same problem with asymmetric costs and allowing trips with two nodes. They also 

present a binary formulation, a similar lagrangean relaxation and lagrangean heuristic that is 

applied to a set of instances with up to 50 nodes and 7 salesmen. 

Bektas (2006) presents an overview of the Multiple Traveling Salesman Problem (mTSP) and 

some of its variants, including the multi-depot case. In the mTSP there are m salesmen that 

have to visit a set of customers from a single depot and every salesman must visit at least one 

customer. Bektas (2006) reviews the applications, exact and heuristic solution procedures and 

transformations to the TSP for these problems, although the review concentrates on the mTSP.  

Kara and Bektas (2006) propose integer formulations with a polynomial number of constraints 

for the mTSP and for a multi-depot mTSP that is denoted by MmTSP. In the MmTSP there are 

im  salesmen located at each depot i , all the salesmen have to be used and the number of 

customers visited by a salesman must lie between given upper and lower bounds. They study 

two variants of the MmTSP: the fixed destination MmTSP in which the salesmen have to return 

to their original depots, and the nonfixed destination MmTSP in which the salesmen do not 

have to return to their original depots but the number of salesmen at each depot should remain 
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the same as it was at the beginning. The proposed formulations are tested on a large set of 

randomly generated instances with the number of nodes being 100 or 120, the number of depots 

3, 4 or 5 and up to 2 salesmen at each depot. All the instances were optimally solved with a 

time limit of 3 hours. Kara and Bektas (2006) have also tried to use this transformation to solve 

the MmTSP and conclude that it is preferable to solve the MmTSP directly.  

The MDMTSP can also be considered as a special case of other routing problems in which the 

vehicles have limited capacities. Multi-Depot Vehicle Routing Problem (MDVRP) consists of 

finding a set of routes based at a set of given depots to serve the demand of a set of customers 

with vehicles of limited capacity.  

The Location Routing Problem (LRP) also generalizes the MDVRP in the sense that there are 

opening costs for the depots and, in addition to the vehicles, the depots can also have a limited 

capacity.  

As far as we know, there is no polyhedral study of any of these multi-depot problems. In this 

paper we present an integer formulation of the MDMTSP and study the associated polyhedron.  

The remainder of this article is organized as follows. Section 2 presents a polynomial 

transformation of the MDMTSP into a TSP, in Section 3 the MDMTSP is formulated as an 

integer lineal program, and the notation and some basic results that will be used throughout the 

paper are introduced. In Section 4 we define the polyhedron associated with the MDMTSP and 

derive some facet-defining results including the study of the inequalities present in the 

formulation, the inequalities derived from the TSP, and two new families of valid constraints.  

 

2 A polynomial transformation of the MDMTSP to the TSP 

In this section we present a polynomial transformation of the MDMTSP into the Generalized 

TSP (GTSP), assuming that the costs satisfy the triangular inequality. This transformation 

allows to transform the MDMTSP into the TSP using the already known polynomial 

transformations of the GTSP into the asymmetric TSP, and then to the TSP (see Jonker and 

Volgenant, 1983, and Noon, 1988). GuoXing (1995) proposed a polynomial transformation of 

the MmTSP with asymmetric costs into an asymmetric TSP, but this transformation cannot be 

adapted easily to the MDMTSP because it uses the fact that in the MmTSP the number of 

salesmen used at each depot is known. 

Given a complete and weighted graph with vertex set V  and a partition of V  in 3m ≥ subsets 

1,..., mC C , called clusters, the GTSP consists of finding a minimum cost cycle that visits each 

cluster exactly once.  
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Let us consider the MDMTSP such that edge costs satisfy the triangular inequality. In this case, 

it is easy to see that there always exists an optimal solution of the MDMTSP that consists of at 

most p routes and each depot contains at most one route. 

Given a MDMTSP instance with a set of p  depots, { }1,..., pI i i= , and a set of q  customers,  

{ }1,..., qJ j j= we transform it in a GTSP instance as follows: 

• The set of vertices V  of the GTSP contains p  copies of each client, lj J∈ denoted by  

1,..., p
l lj j (one per depot), and two copies of each depot ki I∈ , denoted by 'ki  and ''ki .  

• The costs of the edges ( , ' )k
s kj i  and ( , '' )k

s kj i  are set equal to the cost of edge ( , )s kj i  in 

the MDMTSP, for all 1,...,s q= , and all 1,...,k p=  while the costs of edges ( , )k k
s lj j  are 

set equal to the cost of edge ( , )s lj j  in the MDMTSP, for all , 1,...,s l q= , and all

1,...,k p= . Edges among any pair of copies of depots have all zero cost. All the 

remaining edges have cost equal to M, a large number.  

• Clusters of the GTSP are defined as follows. Each customer lj  has an associated 

cluster, 
lj

C , containing all the copies of client lj , i.e, { }1,...,
l

p
j l lC j j= . Each copy of 

any depot is also a cluster. Thus, there are in total 2q p+  clusters. 

Let us denote by { }1 ,...,k k k
qJ j j= , for all 1,...,k p= , i.e, kJ denotes the set of vertices whose 

super-index corresponds to the depot ki . Note that the costs of the edges incident with vertices 

in kJ  are all equal to M except those for which the other endpoint belongs to { }' , ''k
k kJ i i∪ .  

Let us denote by 'G  the resulting GTSP graph that has 2pq p+  vertices and 2q p+  clusters.  

• Given a MDMTSP solution s such that there are no two routes based at the same depot, 

we construct an associated GTSP solution with the same cost as follows. For each route 

1( , ,..., , )k r ki j j i  of s in the MDMTSP we consider a path 1( ' , ,..., , '' )k k
k r ki j j i  in the GTSP 

with the same cost. For each depot li  not used in s we consider the path with only one 

edge ( )' , ''l li i , which zero cost. Then, it is easy to form a cycle that contains all the 

above defined paths by adding edges with zero cost between copies of different depots 

(see Figure 1).  

• On the other hand, given a GTSP solution *s  with cost less than M (the above 

construction shows that those solutions exist), we may construct as follows a MDMTSP 

solution with the same cost. For each 1,...,k p= , let us consider the solution *s  
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restricted to the subgraph induced by the set of vertices ( )' , ''k
k kJ i i∪ . There are two 

possibilities: a) *s  does not use any edge inside kJ  or between kJ  and { }' , ''k ki i , or b) 

this part of the solution is a path, ( )1' , ,..., , ''k k
k k r kP i j j i=  (recall that edges with one 

endpoint in kJ  and the other in { }( )\ ' , ''k
k kV J i i∪  have all M-cost). In case of a) depot 

ki  has no route in the MDMTSP solution, while in case of b) we build the MDMTSP 

route  ( )1, ,..., ,k r ki j j i . It is easy to see that this set of routes so constructed constitutes a 

feasible MDMTSP solution with the same cost than *s  (each customer is visited 

exactly once because *s  visits each cluster exactly once).   

 

 

 

 

 

 

 

 

 

    Figure 1 

The above correspondence between MDMTSP and GTSP solutions shows that the optimal 

solution of the GTSP provides the optimal solution of the MDMTSP (see Figure 1). 
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3 Integer formulation of the MDMTSP 

Recall that the MDMTSP is defined on a set of clients J  and a set of potential depots I . 

Unless otherwise stated, we will denote: J q= , and I p=  and assume that 1p ≥  and 1q ≥ . 

Let ( ),G V E=  be an undirected graph where V I J= ∪ , and ( ){ },  : , E i j i V j J= ∀ ∈ ∀ ∈  (note 

that E  does not include any edge between depots). The cost of edge ( ),e i j=  is denoted by  

ij ec c= . A set of routes such that each route contains exactly one depot and each customer is 

visited exactly once by the set of routes is called a MDMTSP solution. Each route is assumed 

to be performed by a salesman or, equivalently, by a vehicle. Throughout the paper, the 

MDMTSP defined on the set of potential depots I  and set of clients J  will be denoted by 

MDMTSP ( ),I J . 

For each edge ( ),e i j= , ,i j J∈ , we define one binary variable ijx  which takes the value 1 if 

the edge e  is traveled by one route and 0 otherwise. For each edge ( ),e i j= , ,i I j J∈ ∈  we 

define a variable ijx  which takes the value 2 if one vehicle does a trip between depot i  to client 

j  and immediately comes back to the depot (this is called a return trip), the value 1 if the edge 

e  is traveled once by one vehicle, and 0 otherwise. For two node subsets , 'S S V⊆ , define 

( ) ( ){ }: ' , : , 'S S i j i S j S= ∈ ∈ . Given a node subset, S V⊆ , let us denote ( ) ( ): \S S V Sδ =  

and ( ) ( ){ },  : ,S i j E i j Sγ = ∈ ∈ . If { }S v= , we simply write ( )vδ  instead of ( ){ }vδ . Finally, 

for F E⊆ , define ( )
( ),

ij
i j F

x F x
∈

= ∑ . We simply write ( )':x S S  instead of ( )( )':x S S . We 

propose the following formulation for the MDMTSP: 

 

Minimize   
( , )

ij ij
i j E

c x
∈
∑   

s.t.  

( )( ) 2  x j j Jδ = ∀ ∈           (1) 

( )( ) 1   x S S S Jγ ≤ − ∀ ⊆          (2) 

{ }( )( )
' \ '

2 , 2 3ij kl
i I k I I

x x S j l x Sγ
∈ ∈

+ ∪ + ≤ +∑ ∑      ,j l J∀ ∈    

\{ , }, ; 'S J j l S I I⊆ ≠∅ ⊂          (3) 
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' \ '
3 4     , ,  'ij jl kl

i I k I I
x x x j l J I I

∈ ∈
+ + ≤ ∀ ∈ ⊂∑ ∑        (4) 

{ }0,1,2       ijx i I j J∈ ∀ ∈ ∀ ∈          (5) 

{ }0,1       ijx i J j J∈ ∀ ∈ ∀ ∈          (6) 

 

Degree equations (1), ensure that all the clients are visited exactly once by the set of tours.  

Inequalities (2) are the very well-known subtour elimination inequalities. Inequalities (3), 

called path elimination constraints, were introduced by Laporte et al. (1986) and modified by 

Belenguer et al. (2011). These inequalities prevent solutions that include a path starting at one 

depot and ending at a different one. Thus, a solution including a path 1 1 2, , , , ti j j i… , where 

1 2, i i I∈ , and 1, , ,  3tj j J t… ∈ ≥  violates inequality (3) with 1' { }I i= ,  { }2 1, , tS j j −= … , 1j j= , 

and  tl j= . Let us show that these inequalities are valid for the MDMTSP. Note first that any 

feasible MDMTSP solution satisfies ( )( ){ , } 1x S j l Sγ ∪ ≤ +  because a subtour that only 

contains customers is forbidden. Consider two cases: 

a) If ( )( ){ , } 1x S j l Sγ ∪ = +  then the solution contains a path where all the customers in 

{ , }S j l∪  are consecutive. Therefore, neither j  nor l are visited by return trips,  so 
'

1ij
i I

x
∈

≤∑  and 

\ '
1

k I
l

I
kx

∈
≤∑ . Note that 

' \ '
1klij

i I k I I
x x

∈ ∈
= =∑ ∑  cannot hold, because it would mean that the solution 

contains a path starting at a depot in 'I  and ending at a depot in \ 'I I , which is forbidden. 

Then, 
' \ '

1klij
i I k I I

x x
∈ ∈

+ ≤∑ ∑  holds and the inequality (3) is satisfied. 

b) Let us assume that ( )( ){ , }x S j l Sγ ∪ ≤ . Then, if 
' \ '

3klij
i I k I I

x x
∈ ∈

+ ≤∑ ∑  the inequality (3) is 

clearly satisfied.  On the other hand, if 
' \ '

4klij
i I k I I

x x
∈ ∈

+ =∑ ∑ , it means that customers j and l are 

visited by different return trips, so there exists no edge in the solution with one endpoint in S

and the other in { },j l , so ( )( ) ( )( ){ , } 1x S j l x S Sγ γ∪ = ≤ − and (3) is satisfied. 

Inequalities (4) are in the same spirit as (3) that are not valid if { }S = ∅ . It can easily be 

checked that they are valid and avoid solutions containing a path that connects two different 

depots and visits only two clients.  

This formulation allows solutions with paths connecting two depots and visiting only one 

client, called 2-paths. However, if one solution of the MDMTSP contains a 2-path 1 2, , i j i , 

where 1 2, i i I∈ , and j J∈ , then the solution which visits the client j  by a return trip from the 
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nearest depot does not have a greater cost, so this kind of solutions will never appear in an 

optimal solution. 

4 The MDMTSP polyhedron 

Denote by ( , )I JP  the polytope defined by the convex hull of feasible solutions of the MDMTSP

( , )I J . That is: 

                      { }| |
( , ) :   satisfies (1) to (6) and contains no 2-pathE
I JP conv x x= ∈  . 

Let nK  denote the complete graph on n  vertices and let nE  be its set of edges. Given a subset 

of edges nA E⊆ , we denote by | |nEAx ∈  the incidence vector associated with A , that is, 

1A
ex = , if e A∈ , and 0A

ex =  if e A∉ . Then the polytopes associated to the Traveling Salesman 

Problem, ( )TSP nP , and the Hamiltonian Path Problem, ( )HP nP , are defined as follows: 

               { }| |
( ) :  is the set of edges of a hamiltonian cycle of   nEA

TSP n nP conv x A K= ∈  

                  { }| |
( ) :  is the set of edges of a hamiltonian path of   nEA

HP n nP conv x A K= ∈  

Grötschel and Padberg (1979) proved that ( )( ) ( 1)dim
2TSP n

n nP n−
= −  for all 3n ≥ , while 

Queyranne and Wang (1993) proved that ( )( ) ( 1)dim 1
2HP n

n nP −
= − . A null vector of any 

dimension will be denoted by 0  and given a  set of vectors R , ( )aff R  will denote the affine 

hull of R .  

 

Theorem 1. ( )( )
2

,dim
2I J

q qP pq q−
= + − . 

 

Proof: The number of variables is 
2

2
q q pq−

+  and all solutions satisfy the q  linearly 

independent degree equations (1), so ( )( ),
( 1)dim

2I J
q qP pq q−

≤ + − . Let us denote this quantity 

by d , then we have to find 1d +  affinely independent (or linearly independent, because 

( , )0 ( )I Jaff P∉ ) MDMTSP solutions. 

The first solution, denoted by 1B , consists of visiting each client with a return trip from depot 

1d I∈ . If 1q > , there are ( 1)
2

q q −  affinely independent Hamiltonian paths on the set of clients 
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J  and these paths are also linearly independent because ( )( )0 HP qaff P∉ . By joining the 

terminal vertices of each path to depot 1d  we obtain the same number of MDMTSP ( , )I J  

solutions. Let us denote this set of solutions by 2B . 

If 1p > , for each { }1\id I d∈  and each j J∈ , we may build a solution that visits client j  by a 

return trip from id  and all the other clients with a unique route from 1d . Thus, we may build 

( )1q p −  additional MDMTSP ( , )I J  solutions. Let us denote this set of solutions by 3B . Thus, 

in total we have constructed 1d +  solutions. These solutions are depicted as the block matrix of 

Figure 2 whose rows correspond to the solution blocks and whose columns correspond to 

subsets of edges (for simplicity, the number of depots is assumed to be two in Figure 2).  A 

constant in a cell corresponds to a submatrix of the appropriate dimensions with all its entries 

equal to the constant. Note that the matrix is block-triangular and the diagonal blocks are non 

singular, so the whole matrix has full rank, thus proving that the 1d +  solutions constructed are 

linearly independent.  ■ 

 
 1( )δ d  ( )γ J   2( )δ d  

1B  2 0 0 

2B  1A  2A  0  

 
3B  

 

3A  4A   
2 0 0
0 0
0 0 2
  

 

Figure 2: MDMTSP solutions of Theorem 1 

4.1 Trivial inequalities 

In this section we study which trivial inequalities are facet-inducing inequalities for the 

MDMTSP ( , )I J polyhedron. 

 

Theorem 2  If 4q ≥ , the inequality 0ex ≥  defines a facet of ( , )I JP  for each ( )e Jγ∈ . 

 

Proof: Let us consider the TSP defined on the set of clients plus depot d I∈  and their 

corresponding polyhedron ( 1)TSP qP + . It is known that inequality 0ex ≥  is a facet-inducing 

inequality for ( 1)TSP qP +  if 4q ≥  (Grötschel and Padberg 1979), so there are ( )1
1

2
q q−

−  linearly 
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independent TSP solutions satisfying 0ex = . All these solutions can also be considered as 

MDMTSP ( , )I J solutions by simply assuming that the other depots have no associated route. 

Let us now consider another solution, satisfying 0ex = , which visits all the customers by a 

return trip from depot d . This solution is affinely independent with the former set of solutions 

because they satisfy ( )( ) 2x dδ =  and the new solution satisfies ( )( ) 2x dδ > . Given that 

( )( , )0 I Jaff P∉ , they are also linearly independent.  

If 1p = the proof is complete; otherwise, new solutions are built in a similar way to that of 

Theorem 1. For each ,i I∈  i d≠ , and each client j J∈  we build one solution with two routes, 

a return trip to visit the client j  from depot i  and one tour from depot d  visiting all the clients 

in { }\J j  and not using edge e  (this tour is possible if 4q ≥ ). Thus, we have built 

( ) ( )1
1

2
q q

p q
−

+ −  linearly independent solutions satisfying 0ex =  and the proof is completed. 

■ 

 

Inequalities ( )1,  ex e Jγ≤ ∈  are a particular case of subtour elimination constraints (2) with 

2S = , and are studied in Subsection 4.4.  

 

Theorem 3 If 4q ≥ , the inequality 0ex ≥  defines a facet of ( , )I JP  for each ( ):e I J∈ . 

 

Proof: Let ( ), , , e d j d I j J= ∈ ∈ . If 1p > , we may use the proof of Theorem 1 defining depot 

2d d= , and excluding the only solution of those considered in that proof that does not satisfy 

0ex = . On the other hand, if 1p = , given that 0ex ≥  defines a facet of ( 1)TSP qP + , there are 

( )1
1

2
q q−

−  affinely independent solutions satisfying 0ex = . One additional solution is built as 

follows: let { }1 2, \j j J j∈  and consider a trip beginning at depot d , visiting customers 1, j j  

and 2j  in this order and returning to the depot. All the other clients are visited by a return trip 

from the depot. This solution satisfies ( )( ) 2x dδ >  while all the former solutions satisfy 

( )( ) 2x dδ = , so they are affinely independent.      ■ 
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For any ( )( , ) :e i j I J= ∈ , the inequality 2ex ≤  does not define a facet of ( , )I JP  because any 

solution satisfying 2ex =  also satisfies 0jlx = , for all l J∈ , which implies that the dimension 

of the face induced by the inequality  2ex ≤  is less than ( )( ),dim 1I JP −  .  

4.2 Depot lifting 

Let 0f x f≥  be a valid inequality for MDMTSP ( , )I J . An inequality *
0f x f≥  for the 

MDMTSP ( ', )I I J∪ , with ' 1I ≥ , is said to have been obtained from 0fx f≥  by lifting depot  

0d I∈  to the set of depots 'I , if: 

( )
0*

          , ( ' : )  

             ( , ) ( ' : )
d j

l j
l j

f l j I J
f

f l j I J

 ∀ ∈= 
∀ ∉

 

Note that the edges incident with the new depots have the same coefficients in the lifted 

inequality as the corresponding edges incident with depot 0.d   

The lifted inequality *
0f x f≥  is valid for the MDMTSP ( ', )I I J∪  because if a solution *y  

existed such that * *
0f y f< , we could build a solution y  for the MDMTSP ( , )I J  by changing 

all the edges incident with depots in 'I  by the corresponding edges incident with depot 0d , and 

* *
0fy f y f= < , which contradicts that 0fx f≥  is valid. We prove in Theorem 6 that the 

property of being facet-inducing is also inherited by the lifted inequality. We first prove a 

previous result in Lemma 5. 

 

Remark 4 Let us consider the MDMTSP { }( )0 ,d J and the set { }*\S J k=  where *k J∈  is a 

given client. It is easy to check that the subtour elimination inequality ( )( ) 2x Sδ ≥  can also be 

written as { }( ) *
0

0 : 0
d k

x d S x− ≥  (use the degree equation (1) for client *k ). 

 

Lemma 5 Let 0fx f≥  be a non-trivial facet-inducing inequality for MDMTSP ( ),I J  different 

to the one described in Remark 4. Let 0d I∈ , { }1, , sj j J… ⊆  with 2s ≥ , and 1, , sα α… , such 

that { } { }1, 1 , 1, ,k k sα ∈ − ∀ ∈ … . Then, there is a MDMTSP ( ),I J  solution satisfying 0fx f=  

and 
0

1
0

k

s

k d j
k

xα
=

≠∑ . 
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Proof: Let us suppose, on the contrary, that every MDMTSP ( ),I J  solution satisfying 0fx f=  

also satisfies 
0

1
0

k

s

k d j
k

xα
=

=∑ . Given that 0fx f≥  is facet-inducing, this implies that 
0

1
0

k

s

k d j
k

xα
=

=∑  

is a linear combination of equation 0fx f=  and the degree equations (1). We may suppose, 

without loss of generality, that the coefficient of equation 0fx f=  in this linear combination is 

positive. Then, by using the same linear combination with inequality 0fx f≥  and equations (1), 

we conclude that 
0

1
0

k

s

k d j
k

xα
=

≥∑  is a valid inequality for MDMTSP ( ),I J .  

Given that all MDMTSP ( ),I J  solutions satisfying 0fx f=  also satisfy 
0

1
0

k

s

k d j
k

xα
=

=∑ , there is 

at least one { }*
1, , sj j j∈ …  such that * 1

j
α = − ; otherwise, all solutions satisfying 0fx f=  

would also satisfy 
0

0
kd jx = , for all { }1, ,k s∈ …  and we  suppose that  0fx f≥  is a non-trivial 

facet-inducing inequality. We differentiate three cases: 

a) If 1I > , let { }0' \i I d∈ . Then the solution x̂  in which client *j  is visited by a return trip 

from 0d  and all the other clients are visited by return trips from 'i  satisfies 
0

1
ˆ 2

k

s

k d j
k

xα
=

= −∑ , thus 

contradicting that 
0

1
0

k

s

k d j
k

xα
=

≥∑  is valid. 

b) If 0{ }I d=  and { }1\ , , sJ j j… ≠∅ , let { }1\ , , sl J j j∈ … . Consider a solution x̂  that contains 

only one tour based at depot 0d  that visits all the clients and where l  and *j  are the first and 

last clients visited, respectively. Then 
0

1
ˆ 1

k

s

k d j
k

xα
=

= −∑ . 

c) If 0{ }I d= , { }1, , sJ j j= …  and there is another client { } *
1, , ,sl j j l j∈ … ≠   such that 

1lα = − , then a solution constructed as in b) will satisfy 
0

1
ˆ 2

k

s

k d j
k

xα
=

= −∑ . 

The case where 0{ }I d= , { }1, , sJ j j= …  and *j
α  is the only coefficient equal to 1−  is 

precisely the exception described in Remark 4.       ■

  

Theorem 6 Let 0ax a≥  be a non-trivial inequality that defines a facet of ( , )I JP . Then, an 

inequality obtained from 0ax a≥  by lifting depot 0d I∈  to the set of depots 'I  defines a facet 

of ( ', )I I JP ∪ .  
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Proof: We prove the theorem by assuming that { }'I h= , and the general result can be obtained 

by recursively applying this case. Let y  be a vector whose variables correspond to the edges in 

( )hδ  and let 0ax by a+ ≥  be the lifted inequality. Let aF  denote the facet induced by 

inequality 0ax a≥  in ( , )I JP , and let abF  denote the face induced by inequality 0ax by a+ ≥  in 

( ', )I I JP ∪ . Since 0ax a≥  is facet-inducing of ( , )I JP , there are 
2

2
q q

pq q
−

+ −  linearly independent 

MDMTSP ( ),I J  solutions satisfying 0ax a= . These solutions can also be considered as 

MDMTSP ( )',I I J∪  solutions satisfying 0ax by a+ =  by adding the new depot h  as an 

isolated vertex. To prove the theorem we build q  additional linearly independent MDMTSP

( )',I I J∪  solutions that, contrary to the preceding ones, use edges incident with the new depot 

h . 

Note that every edge of 0( )dδ  is used by at least one solution of the face aF  because it is 

assumed that 0ax a≥  induces a non-trivial facet of the MDMTSP ( ),I J  polyhedron. In what 

follows, we build a partition of the set of clients J . For each subset of the partition, we 

construct a set of solutions of abF  in such a way that the parts of these solutions that correspond 

to the edges in ( )hδ  form a matrix which is block-triangular and each block in the diagonal is 

non singular (see Figure 3). 

The following transformation is often used in the proof. Let x  be a MDMTSP ( ),I J  solution 

containing a route that uses two edges incident with depot 0d , say 0( , )d l  and 0( , ')d l , then we 

transform x  into a MDMTSP ( )',I I J∪  solution, denoted by ( )ˆ ˆ,x y , by replacing these edges 

with ( ),h l  and ( ), 'h l . Note that if ax F∈  then ( )ˆ ˆ, abx y F∈  and this solution contains only two 

edges, ( ),h l  and ( ), 'h l , incident with depot h  . 

Let { }0

1 : there is a solution  with 2j j
a d jS j J x F x= ∈ ∈ = ; for each 1j S∈  we build a MDMTSP

( )',I I J∪  solution from solution jx , changing the return trip to j  from depot 0d  for a return 

trip from depot h . We recursively define the sets rS , for 2r ≥  as follows: rS  is the set of 

clients j , 
1

1
\

r
t

t
j J S

−

=
∈



, for which there is a client 
1

1

r
j t

t
l S

−

=
∈


 and a solution j
ax F∈ , containing 

a route that uses edges 0( , )jd l  and 0( , )d j  (note that such solution j
ax F∈  allows us to 
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construct a MDMTSP ( )',I I J∪  solution ( )ˆ ˆ,j j
abx y F∈ ). Solutions ( )ˆ ˆ,j jx y  for rj S∈ , and 

1,r >  are all linearly independent because each one uses one edge incident with depot h  that 

was not used by any of the previously constructed solutions (see Figure 3). 

Let *r  be the largest integer such that 
*rS ≠ ∅ . If 

*

1

r
t

t
S J

=
=



, the proof would be completed; 

otherwise define 
*

1
\

r
t

t
H J S

=
=



. Given a client 1j H∈ , there is a solution, say 1x , in aF  using 

edge 0 1( , )d j  and another edge, say 0 2( , )d j , in the same route as 0 1( , )d j ; by construction 

2j H∈ , because otherwise 1j  would belong to 
*

1

r
t

t
S

=


. From 1x  we construct the corresponding 

MDMTSP ( )',I I J∪  solution ( )1 1ˆ ˆ, abx y F∈ . Note that ( )1 1ˆ ˆ,x y  satisfies the equation 

1 2
0hj hjy y− =  and 1 x  satisfies the equation 

0 1 0 2
0d j d jx x− = . Therefore, by Lemma 5 there is a 

solution, say 2x , in aF  not satisfying this equation, so it will use exactly one edge ( )0 , td j , for 

{1,2}t∈ ; let 0 3( , )d j  be the other edge incident with 0d  in the same route as 0( , )td j ; for the 

same reason as before, 3j H∈ . Solution 2  x satisfies the equation 
0 1 0 2 0 31 2 3 0d j d j d jx x xα α α+ + = , 

where 1 21,  1α α= = − , and 3 tα α= − . The corresponding solution ( )2 2ˆ ˆ, abx y F∈  is linearly 

independent with ( )1 1ˆ ˆ,x y  because it does not satisfy equation 
1 2

0hj hjy y− = . Note that solution 

( )2 2ˆ ˆ,x y  satisfies the equality
1 2 31 2 3 0hj hj hjy y yα α α+ + =  that is also satisfied by ( )1 1ˆ ˆ,x y  because 

it contains only two edges, 1( , )h j  and  2( , )h j , incident with depot h , so 
3

1ˆ 0hjy = . 

In general, let us assume that in this way we have generated r  clients 1{ , , }rj j H… ⊂ , 3r ≥ , 

1r −  equations and 1r −  solutions 1 1, , rx x −… , where 1rx −  violates the equation 

0 1 0 2 01 2 1 1 0d j d j r d rx x xα α α − −+ +…+ =  and satisfies the equation 
0 1 0 2 01 2 0d j d j r d rx x xα α α+ +…+ = .  

Therefore, by Lemma 5 there is a solution in aF , say rx ,  not satisfying this last equation. Two 

cases may arise: (a) this solution contains a route that uses only one edge 0( , )td j , with 

1{ , , }t rj j j∈ … , or (b) this solution contains a route using two edges 0( , )td j  and 0 '( , )td j , with 

, ' {1, , }t t r∈ … . 

In case (a), let us denote 0 1( , )rd j +  as the other edge incident with 0d  in the same route as 

0( , )td j ; therefore we obtain a new set 1 1{ , , , }r rj j j +…  and a new equation 

0 1 0 2 01 2 1 1 0d j d j r d rx x xα α α + ++ +…+ = , by defining 1r tα α+ = − . The corresponding MDMTSP
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( )',I I J∪  solution ( )ˆ ˆ, ab
r rx y F∈  satisfies equation 

1 2 11 2 1 0
rhj hj r hjy y yα α α
+++ +…+ = , which is 

also satisfied by all the previously constructed MDMTSP ( )',I I J∪  solutions, but violates the 

equation 
1 21 2 0

rhj hj r hjy y yα α α+ +…+ = , so it is linearly independent with those previous 

solutions. The construction may then continue because Lemma 5 guarantees the existence of a 

solution in aF  not satisfying 
0 1 0 2 01 2 1 1 0d j d j r d rx x xα α α + ++ +…+ = . 

In case (b), the set 1{ , , }rj j…  is not enlarged, but the corresponding MDMTSP ( )',I I J∪  

solution ( )ˆ ˆ, ab
r rx y F∈  can also be constructed and does not satisfy equation 

1 21 2 0
rhj hj r hjy y yα α α+ +…+ = . Therefore, we have constructed r  solutions of abF , each one 

using exactly two edges in the set 1{( , ), , ( , )}rh j h j… . Note that the matrix whose rows contain 

the part of these solutions that correspond to this set of edges is of full range because each row, 

from the second one, violates an equation of the form 
1 21 2 0

shj hj s hjy y yα α α+ +…+ =  that is 

satisfied by all the preceding rows (see Figure 3). Let 1 1{ , , }rH j j= … , if 1H H=  the proof is 

complete, otherwise we may continue the construction by selecting a solution in aF  that uses an 

edge 0( , )d j , with 1\j H H∈ ; then it may be that the other edge incident with depot 0d  in the 

same route as 0( , )d j  is incident with a client in 
*

1
1

\ ( )
r

t

t
J S H

=
∪



, or not. In the first case we 

continue the construction of solutions such as those associated with sets 2 3, , S S … In the second 

case we continue the construction of solutions in the same way as those associated with 1H . 

And so on, until q  linearly independent MDMTSP ( )',I I J∪  solutions satisfying 0ax by a+ =  

have been built. 

Finally note that the proof is also valid in the case described in Remark 4. This corresponds to 

the subtour elimination constraint { }( )( )*\ 2x J kδ ≥  in the MDMTSP { }( )0 ,d J . In this case 

there is a solution with *
0

2
d k

x =  in aF  which consists of a return trip visiting client *k  from 

depot 0d , and another route serving the remaining clients from the same depot, so 1 *{ }S k= . 

Furthermore, it is possible to construct, for every *\{ }j J k∈ , a MDMTSP { }( )0 ,d J  solution 

using edges *
0( , )d k  and 0( , )d j  in a route that contains all the other clients, and all these 

solutions satisfy the subtour elimination constraint with equality. Therefore, 2 *\{ }S J k=  and 

H =∅  in this case, so the application of Lemma 5 is not needed. ■ 
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 0  
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1 1 0
0 1 1
1 0 1

 
 

       
   

Figure 3 
 

4.3 Path elimination constraints 

In this section we prove that path elimination constraints (3) define facets of ( , )I JP . Path 

elimination inequalities (4) are also facet-inducing for ( , )I JP , but the proof is very similar and is 

omitted here.  

In the proof of the next and subsequent theorems, we use a similar strategy: most of the 

solutions are generated by blocks, where each block ,  1, 2,kB k = … , contains a set of solutions 

that use the edges of a set, say kE , which is not used by the solutions of the preceding blocks. 

Furthermore, each solution of block kB  uses a single edge of kE  that is not used by any other 
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solution of the same block, thus making it evident that all the solutions are linearly 

independent. We denote by kr  the rank of the matrix formed by the corresponding solution 

vectors of block kB  restricted to kE . To facilitate understanding, a representative solution of 

each block is depicted in a figure (like Figure 3). We use the following convention in the 

pictures: solid edges correspond to edges that are fixed in the block, while pointed and dashed 

edges may change in each solution of the block; a dashed edge indicates an edge that belongs to 

only one solution of the block. Finally, return trips are depicted by a line with a double arrow.  

 

Theorem 7  Let ,j l J∈ , 'I I⊂ , and \{ , }S J j l⊆  such that S ≠ ∅ , 'I ≠ ∅  and \ 'I I ≠ ∅ . 

Then the path elimination inequality { }( )( )
' \ '

2 , 2 3ij kl
i I k I I

x x S j l x Sγ
∈ ∈

+ ∪ + ≤ +∑ ∑  defines a facet 

of ( , )I JP . 

 

Proof: Thanks to the depot lifting Theorem 6 we may assume that 2I = , with ' 1I =  and 

\ 'I I =1. Let d  and h  be the depots in 'I  and \ 'I I  respectively, and define { },T S j l= ∪ , 

and 'q T=  (note that ' 3q ≥ ). We will prove the theorem by assuming that \J T ≠ ∅ , in the 

case where J T=  the proof is very similar and is omitted here. Let F  be the face induced by 

the path elimination inequality (3). We have to build  
2

2
q q+  linearly independent MDMTSP

( ),I J  solutions of F .  

To build the first block 1B , we consider solutions where all the clients in \J T  are visited from 

depot d  by return trips and clients in T  are visited from depot d  in the same route. Inequality 

1djx ≤  induces a facet of the polytope associated with the TSP of node set { }T d∪  (Grötschel 

and Padberg 1979). Then there are 
2

1

' '
' 1

2
q q

r q
+

= − −  linearly independent routes using the 

edge ( ),d j  and visiting all the clients in T  (see Figure 4). Note that each one of these 

solutions are in F  because they use the edge ( ),d j  and satisfy { }( )( ), 1x S j l Sγ ∪ = + . In 

this block { }( )1E T dγ= ∪ . 

The next block of solutions 2B  uses one of the routes used in 1  B containing the node set  

{ }T d∪ , and different ways of visiting the clients in \J T  from depot d  (see Figure 4 ( 2B )). 
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Note that the solutions in 1B  do not use any edge of ( / )J Tγ . Given that \ 'J T q q= − , there 

are ( )
2

' ( ' 1)
2

q q q q
r

− − −
=  linearly independent Hamiltonian paths on the node set \J T , which 

can be converted into routes by connecting their extremes nodes to depot d . Note that 

2 ( / )E J Tγ=  and that the components of these solutions that correspond to edges in 2E  form a 

non-singular matrix. 

Block 3B  contains solutions that each use a different edge ( ), l t  for every \t J T∈ . See Figure 

4 ( 3B ). These solutions are all in the face F  and the restriction to the set of edges 

{ }3 ( : / )E E l J T=  is the identity matrix, so 3 'r q q= − .  

The next block, 4B , uses edges with one endpoint in S  and the other in \J T . For every pair of 

clients s S∈ , and \t J T∈  we may build a solution such as the one depicted in Figure 4 4( )B . 

In this case 4 ( : / )E S J T=   and ( )( )4 ' 2 'r q q q= − − . Block 5B  contains solutions as depicted 

in Figure 4 ( 5B ).  In each solution a client in \J T  is visited with a return trip from depot h  

while the remaining clients in \J T  are visited by return trips from depot d . For this block, 

{ }5 ( : ( \ ))E h J T=   and 5 'r q q= − . Block 6  B contains only one solution where client l  is 

visited by a return trip from depot h  so 6 {( , )}E l h=  and 6 1r = . 

Note that all the solutions in blocks 1B  to 6B  satisfy the equation 1djx = . The next solution is 

depicted in Figure 4 (x*) and satisfies 2djx = ; therefore, it is affinely independent of them (and 

linearly independent, because ( )( )0 MDMTSP ,aff I J∉ ). Up to now we have built 

2

1 2 3 4 5 6

2
1

2
q q

r r r r r r
− +

+ + + + + + =  affinely independent solutions. 
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Figure 4 

 

The next block, 7B , contains 7 ' 1r q= −  solutions each one using an edge of 

{ } { }( )7 :E h S j= ∪ . Finally, the 8 'r q q= −  solutions of block 8B  use different edges of 

{ }( )8 \ :E E J T j=  (see Figure 4 ( 7B  and 8B ). It can easily be checked that 

2 2

7 8

2
2 2

q q q q
r r

− + +
+ + = , so the proof is completed.       ■ 
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4.4 TSP derived inequalities  

Given the great similarity between the MDMTSP and the classical TSP it is natural to ask if 

valid and facet-inducing inequalities for the TSP can be used to derive valid and facet-inducing 

inequalities for the MDMTSP. In this section we show that the answer is indeed affirmative, in 

particular, facet-inducing inequalities of the TSP polytope written in tight triangular form (TT 

form) (see Naddef and Rinaldi 1993) can be used to derive facet-inducing inequalities of the 

MDMTSP polytope ( , )I JP . 

Given a TSP instance, we will denote its corresponding node set by TSPV . We say that a valid 

inequality 0ax a≥  for the TSP is written in TT-form if for all , , TSPi j k V∈ , ik ij jka a a≤ + , and 

for all TSPi V∈ , there are , TSPj k V∈  such that jk ij ika a a= + . 

Consider the MDMTSP ( ),I J , and let 1d I∈ . Let 0'a x a≥  be a valid and non-trivial inequality 

for the TSP defined on the node set { }1J d∪ , then the MDMTSP inequality 0ax a≥ , where 

'   ,ij ija a i j J= ∀ ∈ , and 
1

'     ij d ja a i I and j J= ∀ ∈ ∈  is said to be an extended inequality from 

0'a x a≥ .  

 

Theorem 8  Let 0ax a≥  be an MDMTSP extended inequality from 0'a x a≥ , which is a valid 

and non-trivial inequality for the TSP written in TT form. Then the inequality 0ax a≥  is valid 

for the MDMTSP. 

 

Proof: Suppose that 0ax a≥  is not valid for the MDMTSP, so there is one solution *x  

satisfying *
0ax a< . Given that 

1
'   ; ij d ja a i I j J= ∀ ∈ ∀ ∈ , we can assume that the solution *x  

uses only the depot 1d I∈ , because if *x  used other depots we can change the edges incident 

with these depots for edges incident with 1d . Furthermore, we can assume that *x  uses only 

one route: if, for instance, *x  contains two routes ( )1 1 1, , , ,rd j j d…  and ( )1 1 ' 1, , , ,rd l l d… , we 

could merge them into a single route ( )1 1 1 ' 1, , , , , , ,r rd j j l l d… …  that would also violate the 

constraint 0ax a≥  because the coefficients satisfy the triangular inequality. However, if we 

discard the depots 1\{ }I d  in *x , we obtain a solution for the TSP defined on the node set 

{ }1J d∪  that violates 0'a x a≥ , which is a contradiction.  ■  
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Theorem 9  Let  0ax a≥  be an MDMTSP extended inequality from a non-trivial inequality for 

the TSP written in TT form, 0'a x a≥ , that defines a facet of the TSP polytope. Then 0ax a≥  

defines a facet of ( , )I JP .  

 

Proof: Thanks to the depot lifting Theorem 6 we can assume that { }1I d= . Recall from the 

definition of extended inequality that 0'a x a≥  is an inequality for the TSP instance with 

1{ }TSPV J d= ∪ . Then, by hypothesis, 0'a x a≥  defines a facet of ( )1TSP qP + , so there are 

( 1) 1
2

q q q+
− −  linear independently TSP tours satisfying 0'a x a= . These tours are also 

MDMTSP { }( )1 ,d J  solutions satisfying 0ax a= , and these solutions also verify equation 

( )( )1 2x dδ = . Given that inequality 0'a x a≥  is written in TT form, there are two nodes, say k  

and l , such that 
1 1

' ' 'kl d k d la a a= + . Let x  be a TSP solution satisfying 0'a x a=  such that 1klx =  

(such a solution exists because 0'a x a≥  is non-trivial). If we substitute edge ( , )k l  by edges 

1( , )d k  and 1( , )d l  in x , we obtain a MDMTSP { }( )1 ,d J   solution, say 'x , with two routes 

based at depot 1d . This solution satisfies 0'ax a=  and ( )( )1' 4x dδ = , so it is affinely 

independent with the preceding ones and given that ( )
1({ }, )0 d Jaff P∉ , it is also linearly 

independent. Thus we have 
( 1)

2
q q

q
+

−  linearly independent solutions of 
1({ }, )d JP  and the proof 

is complete.           ■ 

 

Note that the condition stating that the TSP inequality is in TT form is too restrictive; in fact the 

extended inequality is facet-inducing for the MDMTSP ( ),I J  if the TSP inequality is facet-

inducing for the TSP polyhedron and there is an MDMTSP ( ),I J   solution satisfying 0ax a=  

and ( )( ) 2x dδ >  for a depot d I∈ .  

There are many families of valid and facet-inducing inequalities for the TSP that can be written 

in TT form and that can be used to derive valid and facet-inducing inequalities for the 

MDMTSP. In particular, it is known that TSP subtour elimination inequalities can be written in 

TT form and are facet-inducing of ( )TSP nP  if 4n ≥ . The corresponding extended inequalities for 
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the MDMTSP are, in fact, the subtour elimination inequalities (2). Therefore, as a consequence 

of Theorem 9, inequalities (2) are facet-inducing for ( , )I JP  if 3q ≥ .  

Comb inequalities are other facet-inducing inequalities for the TSP that are very important, 

especially when solving the TSP by Branch-and-Cut. They were introduced by Chvátal (1973), 

and Grötschel and Padberg (1979), and can be written in TT form. A comb inequality is usually 

defined by a set TSPH V⊂ , called handle, and an odd number 3t ≥  of vertex subsets { }1, , tT T…

, called teeth, such that:  

(C.1)    1, ,iH T i t∩ ≠∅ ∀ = …  

(C.2) \       1, ,iT H i t≠ ∅ ∀ = …  

(C.3)    1 i jT T i j t=∅ ≤ < ≤∩  

Conditions (C.1), (C.2) say that every tooth iT  intersects the handle H  and condition (C.3) that 

no two teeth intersect. The corresponding comb inequality in TT form is: 

                                  
( )( ) ( )( )

1
3 1

t

j
j

x H x T tδ δ
=

+ ≥ +∑
      

(7) 

Grötschel and Padberg (1979) showed that (7) define a facet of ( )TSP nP  if 6n ≥ . Given the 

instance MDMTSP ( ),I J , let 1, , , tH T T…  be the handle and teeth, respectively, that define a 

comb inequality in the associated TSP instance with 1{ }TSPV J d= ∪ . The corresponding 

extended inequality for the MDMTSP ( ),I J   can be written as in (7) and is facet-inducing for 

( , )I JP . We will call these inequalities TSP- combs. Depending on which part of the comb 

contains node 1d  in the original TSP inequality, different types of TSP- combs are obtained for 

the MDMTSP: 

• If ( )1
1

t

i
i

d H T
=

∉ ∪


, then all the depots will be outside the TSP-comb, that is 

( )
1

( 
t

i
i

I H T
=

∩ ∪ = ∅


. 

• If ( )1
1

\
t

i
i

d H T
=

∈


, then all the depots will be in the handle but in no tooth in the TSP-

comb, that is ( )
1

\
t

i
i

I H T
=

⊆


. 

• If 1 id T H∈ ∩  for some {1, , }i t∈ … , then all the depots will be in iT H∩  in the TSP-

comb, that is iI T H⊆ ∩  for some {1, , }i t∈ … . 

• If 1 \id T H∈  for some {1, , }i t∈ … , then all the depots will be in \iT H  in the TSP-

comb, that is \iI T H⊆  for some {1, , }i t∈ … . 
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4.5 New comb inequalities for the MDMTSP 

As stated above, in the TSP-combs the whole set of depots I  is contained in the same part of 

the structure of the comb. In this subsection we present two new families of inequalities that are 

also defined by a handle and a number of teeth, so they can be considered a kind of comb, but 

in these new combs, the depots may be simultaneously in different parts of the comb structure. 

These new constraints are closely related to the multi-depot characteristic of our problem and 

have been shown to be very useful when they have been used to solve the MDMTSP by 

Branch-and-Cut. 

H-comb inequalities 

This new inequality has the same expression as the usual comb inequality (7), but in this case 

the handle must contain at least one depot and at least one depot must be outside the comb.   

More precisely, the H-comb inequality is defined by a subset H I J⊂ ∪ , called a handle, 

satisfying H I∩ ≠∅  and \I H ≠ ∅ , and an odd number of subsets of J , 1, , tT T J… ⊆ , 1t ≥ , 

called teeth, satisfying conditions (C.1), (C.2) and (C.3). The corresponding H-comb inequality 

for the MDMTSP ( ),I J   is (7).  

Note that if  \I H =∅  and 3t ≥ , then the inequality is in fact a TSP-comb. On the other hand, 

if \I H =∅  and 1t = , then the inequality (7) is not facet-inducing as all the solutions 

satisfying ( )( ) ( )( )1 4x H x Tδ δ+ =  also satisfy the equation  ( )( ) 2x Hδ = , that cannot be 

generated as a linear combination of the degree equations (1) and the equation 

( )( ) ( )( )1 4x H x Tδ δ+ = . This is the same situation for the TSP in which a comb with one 

tooth is not a facet-inducing inequality. 

 

Theorem 10  H-comb inequalities are valid for the MDMTSP. 

 

Proof: Let H  be the handle and 1, , tT T…  be the teeth of the H-comb and let x  be the vector 

associated with an MDMTSP solution. For each 1, ,i t= … , we define: 

  
1  if   contains at least one edge between  and \ ,

0 otherwise.
i i

i

x H T T H
c

∩
=




 

Obviously, 1
t

ii c t= ≤∑ , and given that the teeth are pairwise disjoint, it holds that 

( )( ) 1 i
t
ix H cδ =≥ ∑ . Then ( )( ) 1 1 12 2t t t

i i ii i ix H c c c tδ = = =≥ − ≥ −∑ ∑ ∑ , and, since ( )( )x Hδ  must 
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be even and t  is odd, we conclude that ( )( ) 12 1t
iix H c tδ =≥ − +∑ . On the other hand, for each 

tooth iT , if 0ic = , then ( )( ) 4ix Tδ ≥ , because both iH T∩  and \iT H  contain at least one 

client and no depot, we therefore conclude that ( )( ) 4 2i ix T cδ ≥ − . Adding these inequalities 

for all 1, ,i t= …  to the above derived inequality for ( )( )x Hδ , we obtain inequality (7). ■ 

 

Note that the number of teeth can be equal to one in the H-combs. We first prove that H-comb 

inequalities with at least three teeth are facet-inducing for the MDMTSP polyhedron.  

 

Theorem 11 H-comb inequalities (7) with at least 3 teeth ( 3t ≥ ) define facets of ( , )I JP . 

 

Proof: Let H V⊂  be the handle and { }1, , tT T…  the teeth of the H-comb. Thanks to the depot 

lifting Theorem 6 we can assume that there is only one depot in the handle, say d H I∈ ∩ , and 

another one outside the comb, say \h I H∈ , so 2I = .  Therefore we have to find 
( 1)

2

q q
q

−
+  

linearly independent solutions satisfying (7) with equality to complete the proof. 

Note that if we remove from inequality (7) all the variables corresponding to edges with one 

endpoint in d , we obtain a TSP-comb inequality for the MDMTSP { }( ),h J   where all the 

depots (in fact the only one) are outside the comb. This inequality is facet-inducing for the 

MDMTSP { }( ),h J  so there are 1

( 1)
2

q q
r

−
=  linearly independent solutions satisfying (7) with 

equality. Obviously, these solutions are also solutions for the MDMTSP { }( ), ,d h J   and satisfy 

(7) with equality. Let us denote this first block of solutions, that also satisfy ( )( ) 0x dδ = , by 

1B , The second block, 2B , contains for each client 
1

\
t

k
k

j H T
=

∈


, one solution such as the one 

depicted in Figure 5 ( 2B ): a route starts at depot h  and visits the clients in the comb in the 

following order: 1 \T H , 1H T∩ , 2H T∩ , 2 \T H , 3 \T H , 3H T∩ , and so on; given that t  is 

odd, the route will finish by visiting the last teeth in tH T∩ , then it visits the clients in 

1
( \{ }) \

t

k
k

H j T
=


 and then comes back to depot d . Client j  is visited by a return trip from d  

while the clients in ( )
1

\
t

k
k

J H T
=

∪  
 



 are visited by return trips from h . It can easily be checked 
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that these solutions satisfy (7) with equality. Note that the components of these solutions that 

correspond to edges in { }( )2
1

: \
t

k
k

E d H T
=

=


 form the identity matrix multiplied by 2, and 

2
1

\
t

k
k

r H T
=

=


. The third block, 3B , contains solutions using exactly one edge ( , )d j , for all 

1
( ) \ { '}

t

k
k

j T H j
=

∩∈


 where 'j  is a fixed client of 1T H∩ . If rj H T∈ ∩ , with 1r ≠ , we build a 

solution like the one depicted in Figure 5 ( 3B ). If 1( ) \{ '}j H T j∈ ∩ , the solution is like the one 

in Figure 5 ( 3B  bis). All the solutions of this block use the edge ( , ')d j , but the part 

corresponding to the edge set { }3
1

( : ( ) \{ '})
t

k
k

E d T H j
=

= ∩


 forms an identity matrix, so 

3
1

| ( ) | 1
t

k
k

r T H
=

∩= −


. 

Note that all the solutions considered up to now satisfy the equation 

( ) { }1
'  \ ' 0t

kk
d j dss H T jx x

=
∈ ∩− =∑



. Block  4B  contains only one solution, depicted in Figure 5 ( 4 )B , 

that does not satisfy this equation so it is linearly independent with all the previous solutions. 

Therefore, we have so far built 1 2 3

( 1)
1 | |

2

q q
r r r H

−
+ + + = +  solutions. 

Block 5B  contains solutions that use edges between the depot d  and any customer in \ , kT H

for 1,k t= … , see Figure 5 ( 5 )B , so 5
1

\
t

k
k

r T H
=

=


. Finally, we include in block 6B  solutions 

that use edges between d  and the clients in ( )
1

\
t

k
k

J H T
=

∪  
 



, so ( )
1

6 \
t

k
k

r J H T
=

= ∪  
 



, see 

Figure 5 ( 6 )B . It is easy to check that we have generated 
( 1)

2
q q

q
−

+  linearly independent 

solutions, so the proof is complete. ■ 
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Figure 5 

 
H-comb inequalities with only one tooth are also facet-inducing of the MDMTSP ( ),I J  

polyhedron under mild conditions. Here we present the proof for the case where the tooth 

contains only one client outside the handle, the proof in the case that this condition is not 

satisfied follows the same lines (see Martínez 2009). 

 

Theorem 12 H-comb inequalities with one handle H  and one tooth T , such that \ 1T H =  are 

facet-inducing for ( , )I JP . 

 

Proof: Let us denote the only client in  \T H  by k . Thanks to the depot lifting theorem we 

can assume that there is only one depot in the handle, say d , and one depot outside the handle, 

B
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d 

H 
 

B

 

h d 
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 j’ 
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h d H 
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say h . Then we have to build 
2

2
q q+  linearly independent MDMTSP solutions satisfying (7) 

with equality.  

Let us denote by 'q  the number of clients in ( )\J H T∪ . The first block 1B  contains solutions 

where clients in H T∪  are visited from depot d  and the clients outside the comb are visited 

from depot h . Taking into account the dimension of the polyhedron { } ( )( , \ )h J H TP ∪ , there are 

( )
1

' ' 1
' 1

2
q q

b
−

= +  linearly independent solutions that visit the clients in ( )\J H T∪  using edges 

in ( )({ } \ )h J H Tγ ∪ ∪ , and these solutions can be completed with a fixed route based at depot 

d  that visits the clients of H T∪ , like the one depicted in Figure 6 1( )B . On the other hand, if 

we assume that 2T H∩ ≥ , given that the subtour inequality ( )( ) 2x T Hδ ∩ ≥  is facet-

inducing for the polytope { } ( )( , )d J H TP ∩ ∪ , there are ( )
1

' ( ' 1)
''

2
q q q q

b
− − −

=  linearly independent 

solutions that use edges from ( )H Tγ ∪ ; all of these solutions can be completed with a fixed 

route visiting all the clients in ( )\J H T∪  from depot h . It is easy to see that by combining 

these two sets of solutions we obtain 1 1 1' '' 1r b b= + −  linearly independent solutions that satisfy 

(7) with equality. Note that in the case where 1T H∩ = , every solution in the polyhedron 

{ } ( )( , )d J H TP ∩ ∪  can be used to visit the clients of ( )J H T∩ ∪ , so in this case we have in fact one 

more solution, 1 1r + . 

In 2B  we build 2 ' 1r q= +  solutions using exactly one edge in the set { } ( )( )2 : \E k V H T= ∪ . 

The first solution visits k  with a return trip from h , and the remaining solutions use edge 

( , )k h  and one edge ( ) ( ), , where \k t t J H T∈ ∪  (see Figure 6 2( )B ). Block 3B  contains 

3 ( ' 1)r q T H= + ∩  solutions, one solution for each edge with one endpoint in T H∩  and the 

other in  ( )\V H T∪ , see Figure 6 3 ( )B . Block 4B  contains solutions using edges of 

( )4 \ : \ ( )E J H T V H T= ∩ ∪ , that is 4 '( 1) \r q H T= +  solutions (note that 2 3 4r r r+ + =  

( ) ( )' 1 'q q q+ −  solutions). Finally, block 5B  contains 'q  solutions using edges of 

( )5 { }: \ ( )E d J H T= ∪ , see Figure 6 ( 5 )B . Note that all the solutions constructed so far satisfy 

the equation ( )( ) 2x T Hδ ∩ = . If 2T H∩ ≥ , we can construct an additional solution 'x  that 
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satisfies ( )( ) 4x T Hδ ∩ = , see Figure 6 ( 'x ), so it is linearly independent with all the previous 

solutions (if 1T H∩ =  this solution is not needed, as stated before).  Therefore, we have 

( ) ( )
2

1 1' '' ' 1 ' '
2

q q
b b q q q q

+
+ + + − + =  and the proof is complete.  ■ 

 
Figure 6 

T-comb inequalities 

These inequalities also have a similar structure to the combs but in this case all the teeth must 

contain at least one depot. The T-comb inequality is defined on a subset of clients H J⊂ , 

called the handle, and 1t ≥  subsets of I J∪ , 1, , tT T… , called teeth, satisfying conditions (C.1), 

(C.2), (C.3), and: 

(C.4)    {1, , }iT I i t≠ ∅ ∀ ∈ …∩ , 

(C.5) 
1

\
t

i
i

H T
=

≠ ∅


, and 

(C.6) 
1

\
t

i
i

I T
=

≠ ∅


. 

The T-comb inequality is: 

x’ 
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B2 
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                                  ( )( ) ( )( )
1

2 2
t

j
j

x H x T tδ δ
=

+ ≥ +∑       (8) 

Note that the number of teeth can be even and the right-hand side of the inequality is different 

to that in the preceding comb inequalities.  

 

Theorem 13 T-comb inequalities are valid for the MDMTSP. 

 

Proof: We prove the validity by induction on t , the number of teeth. If 1t =  the inequality is 

the same as the H-comb inequality with one tooth which has been shown to be valid. Let us 

assume that the inequality is valid for H-combs with less than t teeth, and let us show that it is 

valid for an H-comb with t teeth, like in (8). Consider a feasible solution that satisfies

( )( ) 2tx Tδ ≥ , then, given that the comb inequality with the same handle and the first 1t − teeth 

is valid, it is obvious that (8) is satisfied by this solution. Let us now consider a feasible 

solution for which ( )( ) 0tx Tδ =  holds, and consider now a comb with the first 1t − teeth and 

handle ' \ ( )tH H T H= ∩ . Note that ( )( ) ( )( )' ( : \ ') ( : ')t tx H x H x T H V H x T H Hδ δ= + ∩ − ∩ ; 

if ( )( ) 0tx Tδ = , then ( : ') 0tx T H H∩ = and all the clients in tT H∩  will be visited from a 

depot in \tT H  so ( ): \ ' 2tT H V Hx ≥∩  which implies that ( )( ) ( )( )' 2x H x Hδ δ≥ +  and by 

the induction hypothesis ( )( ) ( )( )
1

1

' 2
t

j
j

x H x T tδ δ
−

=

+ ≥∑ , so this feasible solution also satisfies (8). 

■ 

 

The next theorem proves that T-comb inequalities with at least two teeth are facet-inducing for 

the MDMTSP polyhedron in the case where 
1

\ 1
t

i
i

H T
=

=


. The proof in the case where 

1
\ 1

t

i
i

H T
=

>


 is similar and can be found in Martínez (2009).  

 

Theorem 14 T - comb inequalities (8) with handle H  and teeth 1, , ,  2tT T t… ≥ , where 

1
| \ | 1

t

k
k

H T
=

=


, are facet-inducing for ( , )I JP . 

 

Proof: Note that T-combs with one tooth are equivalent to H-combs with one tooth by 

changing the role of the tooth and the handle. Therefore, the case 1t =  has already been proved 
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by Theorem 12. For 2t ≥  we use induction, let us suppose that T-combs with 1t −  teeth 

satisfying the hypothesis of the Theorem are facet-inducing, and let us consider a T-comb 

inequality with t  teeth. Thanks to the depot lifting Theorem we may assume that there is only 

one depot in each tooth and in ( )
1

\
t

k
k

V H T
=

∪  
 



. Let us denote the depot of kT  by kd , for 

1, ,k t= … , the depot in  ( )
1

\
t

k
k

V H T
=

∪  
 



 by h , and let l  be the only client in 
1

\
t

k
k

H T
=


. We 

have to build  
( 1)

2
q q

tq
−

+  linearly independent MDMTSP ( ),I J  solutions satisfying (8) with 

equality (note that 1)I t= + .  

Let us denote tA T H= ∩ , \tB T J H= ∩ , and a A= , b B= .  By the induction hypothesis, 

the T-comb inequality that results from removing the tooth tT  is facet-inducing of the 

MDMTSP { } { }( )\ , \tI d J A B∪  polyhedron, so there are 

( ) ( )1

( 1)
' 1 ( )

2
q a b q a b

b t q a b
− − − − −

= + − − −  linearly independent MDMTSP

{ } { }( )\ , \tI d J A B∪  solutions. Note that the right-hand side of this T-comb inequality is 2t . 

We can complete each of these solutions with a route that visits all the clients in tT  from depot 

td  (see Figure 7 ( 1B )), thus obtaining 1'b  MDMTSP ( ),I J  solutions that satisfy with equality 

the complete T-comb inequality (with right-hand-side 2 2t + ). On the other hand, if we assume 

that 2a ≥ , given that the subtour inequality ( )( ) 2x Aδ ≥  is facet-inducing for the polyhedron 

{ }( , )t td J TP ∩ , there are ( )
1

( 1)
''

2
a b a b

b
+ + −

=  linearly independent solutions that use edges from 

( )tTγ ; all of these solutions can be completed with any fixed solution for the MDMTSP

{ } { }( )\ , \tI d J A B∪  used above. It is easy to see that by combining these two sets of solutions 

we obtain 1 1' '' 1b b+ −  linearly independent solutions that satisfy (8) with equality. We call  to 

this first block of solutions 1B , see Figure 7. Note that if 1a = , ( )( ) 2x Aδ =  is in fact a degree 

equation, so we can use in this case 1'' 1b +  linearly independent solutions of { }( , )t td J TP ∩ . 
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Block 2B  contains a  MDMTSP ( ),I J  solutions all using edge ( , )td l  and a different edge of 

the set { }( ):A l  (see Figure 7 ( 2B )). Block 3B  contains solutions using an edge of ( ): rA T , 

1, , 1r t= … − , while block 4B  contains solutions using an edge in ( )
1

: \
t

k
k

A V H T
=

∪      


.  

 

 
 

Figure 7 
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Typical solutions of these blocks are depicted in Figure 7 ( 3B ) and ( 4B ); the reader can easily 

check that such solutions are possible in all the cases and satisfy (8). In total there are 

( )a q a b t− − +  solutions in blocks 2 B  to 4B . 

Note that all the solutions in the blocks defined so far satisfy the equation 

{ }( ) { }( )( ): : \ , 0
td l tx A l x x A V B d l− − ∪ = . We now add a new solution, say 'x  depicted in 

Figure 7 ( 'x ), that is linearly independent of the previous solutions because it does not satisfy 

this equation. Each solution of blocks 5B  and 6B  uses a different edge of ( ): \ tB V T  (see 

Figure 7 ( 5B ) and ( 6B )). The number of solutions in blocks 5B  and 6B  is ( )b q a b t− − + . 

Furthermore, 1q a b− − −  similar solutions to those in the blocks 5B  and 6B can be constructed 

by using the edges of  ( )( : \ { } )t td J T l∪ . Note that all the solutions constructed so far satisfy 

the equation ( )( ) 2x Aδ = . If 2a ≥ , the solution depicted in Figure 7 ( ''x ) does not satisfy this 

equation so it is linearly independent of them. If 1a = , this solution is not needed, as noted 

before. Therefore, the total number of solutions shown is 

( ) ( )1 1

( 1)
' '' 1 1

2
q q

b b a q a b t b q a b t q a b tq
−

+ + − − + + + − − + + − − − = + , and the proof is 

complete.            ■ 

5 Conclusions 

We have presented what we believe to be the first polyhedral study of a multi-depot routing 

problem. An integer linear programming formulation including several classes of facet-defining 

inequalities was proposed.  
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