```
ID = KK + J
       IF (J \cdot GT \cdot K) ID = JJ + K
      DIST = D(ID)
       IF (DIST. LT. U(K)) U(K) = DIST
       IF (A .LE. U(K)) GOTO 2
       A = U(K)
      NEXT = K
    2 CONTINUE
       J = NEXT
      P(I) = NEXT
      W(I - 1) = U(NEXT)
       IND(J) = 1
    3 CONTINUE
C
C
C
          COMPUTE THE ULTRAMETRIC DISTANCES BY FINDING THE MAXIMUM OF
          EACH ADJACENT PAIR OF PREVIOUSLY COMPUTED DISTANCES IN W( ).
      N1 = N - 1
      DO 5 I = 1, N1
      N2 = N - I
       DO 4 J = 1, N2
       K = J + I
       L = MAXO(P(J), P(K))
      M = MINO(P(J), P(K))

IU = ((L-1) * (L-2)) / 2 + M
       U(IU) = W(J)
IF (J .EQ. N2) GOTO 4
       IF (W(J + 1) \cdot GT \cdot W(J)) W(J) = W(J + 1)
     4 CONTINUE
     5 CONTINUE
       RETURN
       END
```

Algorithm AS 103

Psi (Digamma) Function

By J. M. BERNARDO

University College London, Britain

Keywords: PSI; DIGAMMA; BETA DENSITIES; GAMMA DENSITIES

LANGUAGE

ISO Fortran

DESCRIPTION AND PURPOSE

A routine is presented to compute

$$\psi(x) = d\{\log \Gamma(x)\}/dx = \Gamma'(x)/\Gamma(x)$$

the psi or digamma function, for real positive values of x.

While the functions $\Gamma(x)$ and $\log \Gamma(x)$ are provided in most systems, this is not so with $\psi(x)$ which nevertheless often occurs in statistical practice, particularly when Beta or Gamma densities are involved.

METHOD

For real positive x, $\psi(x)$ is a concave increasing function of x which satisfies the following relations (Abramowitz and Stegun, 1964, pp. 258–259):

$$\psi(1) = -\gamma \simeq -0.5772156649,\tag{1}$$

$$\psi(1+x) = \psi(x) + \frac{1}{x},\tag{2}$$

$$\psi(1+x) = -\gamma + \sum_{n=1}^{\infty} \frac{x}{n(n+x)} \quad (x \neq -1, -2, -3, ...),$$
(3)

$$\psi(x) = \log x - \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6} + O\left(\frac{1}{x^8}\right) \quad (x \to \infty). \tag{4}$$

Moreover, using (1), (2) and (3)

$$\psi(x) = -\gamma - \frac{1}{x} + O(x) \quad (x \to 0).$$
 (5)

The routine is presented in *FUNCTION* form with two parameters. The first parameter, called X, is the independent variable. A second parameter called IFAULT is set to 0 if X is positive and to 1 otherwise. In the latter case, the function DIGAMA is set to the (arbitrary) value 0.

DIGAMA is computed from (5) if $0 < x \le S$ and from (4) if $x \ge C$. The values of the constants S and C that we have chosen are S = 1.0E - 5 and C = 8.5. This makes the relative error committed by truncation smaller than 1.0E-10 in both cases.

If S < x < C, equation (2) is repeatedly used to express $\psi(x)$ in terms of $\psi(x+n)$ with $(x+n) \ge C$. The value of $\psi(x+n)$ is then computed, as before, using the Stirling expansion (4). This is remarkably more efficient than the direct computation of $\psi(x)$ from one of its series expansions.

STRUCTURE

FUNCTION DIGAMA (X, IFAULT)

Formal parameters

real

input: parameter of the function

output: fault indicator *IFAULT* integer

Failure indications

IFAULT = 0 if the parameter is positive

IFAULT = 1 otherwise

TIME AND ACCURACY

Both accuracy and consumed time will depend on the computer used. In an IBM 370/158, five correct digits are obtained with an average consumed time per calculated value of 3.1×10^{-3} sec.

ACKNOWLEDGEMENTS

I am indebted to Mr D. Walley, to the editor and to one referee for many helpful comments.

REFERENCE

ABRAMOWITZ, M. and Stegun, I. A. (eds) (1964). Handbook of Mathematical Functions. New York; Dover.

```
FUNCTION DIGAMA(X, IFAULT)
С
С
         ALGORITHM AS 103 APPL. STATIST. (1976) VOL.25, NO.3
С
         CALCULATES DIGAMMA(X) = D(LXG(GAMMA(X))) / DX
С
С
         SET CONSTANTS. SN= NTH STIRLING COEFFICIENT, D1=DIGAMMA(1.0)
С
     DATA S, C, S3, S4, S5, D1 /1.0E-5, 8.5, 8.333333333E-2, 
* 8.333333333E-3, 3.968253968E-3, -0.5772156649/
С
          CHECK ARGUMENT IS POSITIVE
С
      DIGAMA = 0.0
      Y = X
      IFAULT = 1
      IF (Y .LE. O.O) RETURN
      IFAULT = 0
С
С
          USE APPROXIMATION IF ARGUMENT . LE. S
C
      IF (Y .GT. S) GOTO 1
      DIGAMA = D1 - 1.0 / Y
      RETURN
C
С
          REDUCE TO DIGAMA(X+N), (X+N) .GE. C
    1 IF (Y .GE. C) GOTO 2
      DIGAMA = DIGAMA - 1.0 / Y
       Y = Y + 1.0
      GOTO 1
С
          USE STIRLING IF ARGUMENT .GE. C
С
    2 R = 1.0 / Y
      DIGAMA = DIGAMA + ALOG(Y) - 0.5 * R
      R = R * R
       DIGAMA = DIGAMA - R * (S3 - R * (S4 - R * S5))
       RETURN
       END
```

Algorithm AS 104

BLUS Residuals

By R. W. FAREBROTHER

University of Manchester, Britain

Keywords: THEIL'S BLUS RESIDUALS

LANGUAGE

Algol 60

DESCRIPTION AND PURPOSE

This paper is concerned with the estimation of the $n \times 1$ matrix of disturbances ε in the standard linear model

$$y = X\beta + \varepsilon$$
, $E\varepsilon = 0$, $E\varepsilon\varepsilon' = \sigma^2 I_n$,

where y is an $n \times 1$ matrix of observations on a random variable, X is an $n \times k$ full column