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SUMMARY

For a very common statistical problem, wnference about the mean of a
normal random variable, some inadmissible consequences of the left Haar mvartant
prior measure, which 15 that recommended as a suitable prior by Jeffreys
muitivanate rule and by the methods of Villegas and Kashyap, are uncovered
and 1ivestigated.

Somae key woras: Improper prior distributions: Enference about the normal means; Multivanate
Jeffreys' rule; Non mformative priors.

1. Introduction.

The difficulties in finding a consistent scheme for the selection
of ‘objective’, usually improper priors, for Bayesian mference with
‘no 1nitial mformation’ are well known. Thus, although Jeffreys’
(1939/67 ¢h.3) prior is often accepted 1n the one dimensional conti-
nuous case, no similarly acceptable results seem to exist 1n the case
of several paramenters. Key references are Dawid, Stone .and Zidek
(1973) and Stone (1976) and ensuing discussions.

However, m some situations, improper priors may be used to
produce suitable approximdtions to proper posterior distributions



(see e.g. Lindley, 1965, $5.2) and, as a matter of fact, this 1s sistema-
tically done 1n most Bayesian textbooks, like Box and Tiao {1973)
and Zellner (1971). Therefore, it seems important to explore critically
the implcations of the different improper priors that have been
proposed.

Perhaps the more common statistical problem 1s that of making
ififerences about the mean g of a random vanable x distributed as
N (u, 6*). Several so-called ‘non-informative’ prior measures have been
proposed in this case, usually within the class of relatively invariant
measures { dudo/or*!, —eo <X\ < ool With A = i one obtamns anda/o?,
the left Haar measure, which is the one recommended by Jeffreys’
multivariate rule, and by Villegas (1971) and Kashyap (1971) methods.
We present here a conseqilence of the use of such a prior which, In
our opinion, casts serious doubts on it reasonableness and, consequently,
on the methods which produce it.

2. The example.

Let x,,x, be two observations of a random vanable x which 1s
distributed as N (y, 0*), and consider the probability of the event 4
that x, < p <x, after x; and x, have been observed, i.c. p (A|x,,x,),
where for conventence, it is assumed that x, < x,. If the prior measure
15 dudo/o™?, then
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s0 that the posterior distribution of u is
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a Student ¢ with X\ + 1 degrees of freedom.
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Now, p(4d|x,,x,) may be computed by direct mtegration: for,
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With the *usual’ pnior dudo/e, obtained for X = 0, the integral (1)
reduces to
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while with the left Haar measure dpdo/o®, obtained for A =1, the
integral (1) becomes
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Let us now consider the problem conditionally to ¢. In such case,
asuming ¢ known and the uniform prior measure du for u,
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P (X1, x2) < p(xy, Xyl 0) p () < exp ! — gr(x“#)”f

so that the posterior density of u 18 N (x, 0%2). Agam, the postertor
probability of 4 ={x, <u <xp|{ given x, and x, may be computed
by direct integration, for
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making # = (u —X) Vv 2/o. at = du V' 2/o.
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where 1, = |x; —x,|/o V2.

As one would expect, (4) depends on the datax, and x,. However,
ore may obtain an upper limit for the expected value of (4). Indeed,
2®(t,)—1 15 a concave function of #;, for ®(s) 1s the standanzed
normai distribution function and #; = 0. Thus, taking expectations with
respect to the random varnable #;,
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But ¢ =x, —x, 15 distributed as N (G, 20%) so that the probability
density function of & = |d|=lx, —x,} given ¢ 138
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whose expected value is easily seen to be 20/4/7, so that
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independently of . Therefore,we have an upper bound for the expected
valve of p (A |x,,x,) given by

E p(Alxy, x) <28V @/m) t—1=0.575

This is certainly compatible with the result (2) obtamned with the
prior measure dudo/o but 1t makes unacceptable the result (3)
obtamed with the left Haar measure dudo/o® as a prior. We believe
this is a serious objection to the use of such a prior and, consequently,
to the methods which recommend it.

E(tilo) =

3. Discussion.

The argument in the preceeding Section suggests that, in the absence
of other sources of information, one should have probability 1/2 that
the mean of a normal random variable of unknown variance lies
between the first two observations.

One may try to mvestigate whether the natural extension of the
measure dudo/o to the multinormal homocedastic model, ie. du,
dita, . .., duzdofo 1s consistent with this result. For simplicity, we
shall concentrate in the case £ = 2. Thus, Iet us consider the bivanate
random vanable z = (x,y) which is normally distributed with mean
(i;, #2) and covamance matrix o%7; let z; = (x4, ¥y) and 2, = (x4, y,5)
be two observations from z and let us.compute. pe{A4|x;, x,) where A
1s the event that u, lies between x, and x,. Cleariy, ,
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an expression which, if all densities involved were proper, would reduce
to that computed in Section 2, and we would obtain again the value
1/2. However, the ‘predictive’ densily p (¥, ya2lx:,%,) of the p's
given the x’s 18 wmot proper and thus one cannot be sure that the
argument goes through.

Nevertheless, we next prove that indeed, with the prior du, du, da/o,
and only with that prior, one obtains again p {4 |x,, x;) = 1/2.

Omitting the details for brevety, the posterior distribution of u,

given x;,x.,y; and ¥, is the Student # with two degrees of freedom
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where 52 = (df-ﬁ-df)/2 with ¢, =x; —x, and d, =y, ~y,. Thus,
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where ¢, = |d1|/(df+d§)”2. The value of (5) changes from V/2/2
to 0 as |d;| = |y —y,| increases.

Moreover, contitionally to o, r = dZ? 1s gamma distributed with
parameters 1/2 and 1/4 6% 1e.

,
4
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and the posterior distribution of ¢ after x, and x, have been
observed is T
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Hence, the posterior density of r =d2, after x, and x, have been
observed is the inverted beta

s d, s
p(rix;, xs) zfo p(rloyp (olxy, x2)do = ——r 2 (r + d7)

so that the posterior density of ¢, = |d,|/(d? + r)l'fz is
dt, 2 1
p(tllxlaxz)_p(r|x1>x2)/! dr ‘_— i \Y4 ].__l-]2 (6)
which is independent of x, and x,. Combimng (5) and {(6),
plAlx,,x;)= = df =
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as we expected. It may be verified that this result cannot be obtained
with any other prior of the relatively invariant class.

The content of this paper may be mterpreted as an argument
for the use of du,,duMz,...,du,dofo as a formal prior measure
if one tries to make inferences about one of the means of a multinormal
homocedastic model without making use of any information other
than that provided by the data.
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