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Spanish Socialist Victory:
A Bayesian Analysis

An estimate of how people intended to vote was obtained
four weeks before the Spanish general elections of Oc-
tober 1982. The evolution of opinion was followed during
the campaign. Using a small sample of polling stations,
the victory of the Spanish Socialist Party was predicted
with great accuracy only two hours after the polls closed.
A Bayesian hierarchical model was used.
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1. INTRODUCTION

The general elections held in Spain on October 28, 1982,
gave the power to the Spanish Socialist Party, in an im-
pressive landslide victory, for the first time since the Civil
War.

This article describes the following methods used to
predict the outcome of the election: (a) monitoring how
people intended to vote throughout the electoral cam-
paign and (b) producing early predictions of the final re-
sults, only two hours after the polls closed, preceding by
several hours any other accurate description of the elec-
tion outcome.

The argument lies entirely within the Bayesian frame-
work and presents three aspects that are novel compared
with published analyses of electoral results. Specifically:

1. Rather than using randomly selected polling sta-
tions, the team used a logarithmic information measure
to identify a number of polling stations that could be con-
sidered representative of the political behavior of the pop-
ulation under study and took random samples within
them.

2. To distribute the undecided vote obtained in the
opinion polls among all parties taking part in the election,
the team discarded ad hoc procedures in favor of a Baye-
sian logistic regression analysis.

3. To make inferences about the proportion of votes
obtained by each party, and hence about their expected
number of seats, from either the results of the opinion
polls or the early electoral returns, we made a Bayesian
analysis of an appropriately chosen hierarchical model.

* José M. Bernardo is Professor and Head, Department of Biostatis-
tics, Facultad de Medicina, Ave. Blasco Ibafiez 17, Valencia~10, Spain.
The implementation of the methods described was the work of a team
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Sanjuan, and M. Sendra. The author acknowledges illuminating dis-
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This permitted a probability distribution over the possible
configurations of the Parliament to be obtained, an im-
possible task from a classical viewpoint.

In Section 2, I outline the Spanish electoral system.
Section 3 discusses the problem of data selection. In Sec-
tion 4, I present the model used, and the Bayesian anal-
ysis for it is described in Section 5. Section 6 deals with
the classification of undecided votes. In Section 7, I il-
lustrate the method with the results obtained in the prov-
ince of Valencia, and I conclude with some final remarks
in Section 8.

2. THE SPANISH ELECTORAL SYSTEM

The Spanish Parliament consists of two Houses. The
lower house, the Congreso de los Diputados, consists of
350 seats; the leader of the party or coalition that has a
plurality of the seats is appointed by the King to be Pres-
ident of the Government. The upper house has no role in
this context.

The country is divided into 52 electoral units, or prov-
incias (provinces), each of which elects a number of di-
putados (members of the lower house) that is roughly
proportional to its population, with a correction to en-
hance the representation of the less populated areas. Thus
Valencia, a comparatively heavily populated provincia
(with 6% of the country’s population) elects 15 diputados
rather than 20, which would be its proportional share.

The seats in each province are divided among the par-
ties that obtain at least 3% of the vote in the province,
according to a corrected proportional system usually
known as the d’Hondt rule. (This is a requirement of the
electoral law negotiated by all political parties after the
death of the dictator.) The Jefferson-d’Hondt rule, in-
vented by Thomas Jefferson nearly a century before Vic-
tor d’Hondt rediscovered and popularized the system
(Balinski and Young 1980, p. 18), is also used in Argen-
tina, Austria, Belgium, Finland, Switzerland, and West
Germany; a variation is used in Denmark, Norway, and
Sweden.

According to the d’Hondt rule, to distribute s seats
among the, say, m parties that have overcome the 3%
barrier, one (a) computes the m X s matrix of quotients
with general elements

ij = ni/j’
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where n; is the number of valid votes obtained by the ith
party; (b) selects the s largest elements; and (c) allocates
to party i a number of seats equal to the number of these
s largest elements found in its corresponding row.
Clearly, to apply the d’Hondt rule, one may equivalently
use the proportion of valid votes obtained by each party,
rather than the absolute number of votes.

Thus if, for example, 15 seats are to be distributed
among four parties A, B, C, and D, which have obtained
53%, 29%, 6%, and 4%, respectively, of the valid votes
(the rest being distributed among parties with less than
3% of the vote), one forms the matrix

1 2 3 4 5 6 7 8 9 10 11

A 53 2.5 17.7 133 106 88 7.6 6.6 59 53 —
B 29 145 97 73 58 48 —

C 6 3 —

D 4 2 —

from which A, B, C, and D would obtain 9, 5, 1, and 0
seats, respectively.

It is not difficult to verify that the d’Hondt rule provides
a corrected proportional system that enhances the rep-
resentation of the big parties to the detriment of the
smaller ones, the correction being larger when the num-
ber of electoral districts increases. Indeed, in the pre-
ceding example, a proportional representation would
yield 8.64, 4.73, .98, and .65, which are not far from the
9,5, 1, 0 provided by the d’Hondt rule. A party such as
D, however, with similar results in all provinces, would
not have representation in the Parliament despite its 4%
of the vote, which would imply, proportionally, 14 of the
350 seats.

Each electoral unit or province is divided into a vari-
able number of polling stations, each containing between
500 and 2,000 electors living in a small, roughly homo-
geneous geographical area. An important feature of the
Spanish electoral system is that the votes are counted in
public in each polling station just after its closing time (8
p.m.). This means that at about 9 p.m., someone attend-
ing the counting may communicate by telephone to the
analysis center the returns of about the first 200 scruti-
nized votes. These data are used to make early predic-
tions of the results.

The mechanics of seat allocation imply that any sen-
sible statistical analysis of Spanish electoral data has to
proceed province by province, only combing in a final
step the predictions of the number of seats to be won by
each of the competing parties in each of the 52 provinces.
Indeed, because of important regional differences deeply
rooted in history, electoral data in a given region are only
mildly relevant to a different one; for instance, the elec-
toral results in Catalonia or the Basque Country are vastly
different from those of Andalusia or Valencia. Conse-
quently this model focuses on obtaining electoral predic-
tions for a single province, although I shall later comment
on the results of predicting for the provinces in combi-
nation. For purposes of illustration I shall use the 1982
electoral data from the province of Valencia, which elects
15 seats.
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3. DATA SELECTION

Each province is divided into a large number of polling
stations, averaging about 1,000 electors each. The prov-
ince of Valencia is divided into 1,774 polling stations, for
which the team of analysts had the electoral results, by
polling station, obtained in the March 1979 general elec-
tions.

I wanted to identify which stations returned more rep-
resentative results, in the sense of yielding estimates of
the percentages of votes for each party that would be
similar to those finally obtained for the whole area. This
would eliminate possibly atypical areas and would rein-
force the plausibility of the assumptions of a simple
model. Thus I needed an appropriate distance among the
corresponding probability distributions.

A number of related arguments suggested the use of
the directed divergence. Indeed, a sensible measure
(Kullback 1968, p. 6; Bernardo 1979a) of the loss to be
expected if one uses an approximate distribution Q =
{q1, ..., qx}, @i = 0, 2 q; = 1, rather than the true
distribution P = {py, ..., pa}, pi =0, 2p;i = 1, to
predict the proportion p; of the vote that the ith party will
obtain is given by

LQ|P) = Ep,-log’qif,
i=1 1

which is easily shown to be nonnegative. A more so-
phisticated loss function could be defined in terms of the
differences in parliamentary seats provided by P and Q
through the d’Hondt rule.

For each of the polling stations of a given province
where m parties with electoral possibilities took part, we
traced the corresponding 1979 results {n.o, ni1, . . . , Rim},
where n;; is the number of 1979 votes of party j in polling
station i and n, the aggregate number of votes obtained
by small parties. By the argument given in Section 4, a
Bayesian estimate of the probabilitiy 6;; that an elector
with characteristics similar to those living in the area cov-
ered by polling station i will vote for party j is

0= (ny + U2IN: + (m + D2), j=0,1,...,m,

where
m
N,' = 2 nij.
Jj=0

For each of the polling stations, we then computed

li = 2 Oj l()g (Oj/éij),

Jj=0

where 0; was the proportion of votes obtained in the prov-
ince by party j in the 1979 general elections. The smaller
I; was, the more representative the polling station i would
be, according to this particular criterion. We assumed
that this representativity would remain essentially un-
changed and, accordingly, limited sampling to the areas
covered by the more representative polling stations.
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Some computer simulations using the 1979 results sug-
gested that random samples of 50 electors within each of
the 20 more representative polling stations in each prov-
ince would produce predictions sufficiently accurate for
purposes of this study.

If the 1982 results have a linear regression on the 1979
results, then stations should be chosen with a large var-
iance for the 1979 results to ensure a good estimate of
the slope of 1982 on 1979, which is precisely the opposite
of the design we used. Empirical evidence on political
data strongly suggest, however, that a single regression
function of the results of one election on those of a pre-
vious one cannot be expected to hold over the entire pop-
ulation; on the contrary, the evolution in voting patterns
may be expected to be different in sociologically diverse
areas. On the other hand, the same empirical evidence
also suggests that representative areas remain represen-
tative, thus allowing accurate predictions based solely on
them.

4, THE MODEL

Let us consider a particular province in which m parties
compete for s seats. Let 6;; be the (unknown) probability
that a citizen from the area covered by polling station i
will vote for party j. Naturally these probabilities will
change from one area to another, but, using the data se-
lection procedure outlined above, those changes should
be dramatic.

Let us assume that a random sample of size N; is taken
among citizens of polling station i, and let n;; be the num-
ber who vote for party j, so N; = ni + niy + -+ + nim,
where n; is the number of votes for small parties (not
considered in the analysis). The data may be either (a) the
result of an opinion poll of size N; in the area covered
by polling station i, in which the vote intention is deter-
mined directly or indirectly for all the N; citizens ap-
proached, or (b) the returns of the first N; votes scruti-
nized in polling station i on election night.

I shall assume that (ns, . . . , 1) is a random sample
from a multinomial distribution with parameters 8, . . .,
0im, 0;; =0, >,;0;; = 1. From a Bayesian viewpoint, the
information provided by (ny, . . . , n:») about the 0;;’s
is encapsulated in the corresponding posterior distribu-
tion of the 6;;’s. Prior information on the 6;;,’s is difficult
to specify because of (a) the large number of variables
involved and (b) the complicated structure relating the
0;/’s to one another. A Dirichlet prior is mathemati-
cally convenient and not difficult to assess (Bunn 1978),
but it cannot usually accommodate (b); a feasible alter-
native may be to assume a logistic normal multivariate
distribution (Aitchison and Shen 1980) and an appropriate
hyperprior on its parameters. In our role as consultants,
however, we were specifically asked by the politicians to
avoid the use of prior subjective information and to report
only conclusions that could be derived from the data.
Thus we used the standard reference uninformative prior
m(0) « [T 6,,7'2, i € {polling stations}, j = 1, . .., m
(Jeffreys 1967, p. 184; DeGroot 1970, p. 174; Bernardo
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1979b). The corresponding reference posterior distribu-
tion is Dirichlet with parameters (n;; + 1/2,j =1, . . <
m); hence the expected value of 6;; given the data is 0;;
= (ni; + 1/2)/(N; + m/2), and the corresponding log odds
would be lOg{O,J/(l - 0,,)}

This motivates the following definition and assump-
tions.

Definition 1. The posterior log odds x;; that correspond
to a vector (n, . . . , n;y,) are defined to be

Xij = log(é,,/(l - éij))

= log((n;; + 3)/(N; — ni; + (m — 1)/2)),

ji=1,...,m,

1

where N; = n, + -+ + nu,. Note that we only need to
define the log odds for the m parties actually considered
in the analysis; the proportion 0;, of votes for the small
parties may be finally estimated, if desired, from the re-
lation >, 0,; = 1. Clearly, in a log odds scale, x;; describes
the sample strength of party j in polling station i.

Assumption 1. The vectors x; = (x;1, . . ., Xim) Of pos-
terior log odds are approximately normally distributed
within area i around a vector of means w; (which depends
on the area), with a common precision matrix Hy; that.
is,

p(x; | i, Ho) = Np(x; | i, Ho). V)]

I am intuitively assuming that (a) the x;;’s may be seen
as measures of political strength with an approximate nor-
mal distribution and (b) the statistical consequences of
the relative political positions of the different parties, as
described by the precision matrix, are constant through-
out the electoral province.

This assumption will be only approximately true if all
of the N; are equal and if for all i, 8,; = 6; (i.e., if the
sample size chosen within each polling station was the
same and if the vote distribution within each polling sta-
tion was similar). Indeed, this was the case with our final
design, where a random sample of fixed size was taken
in each polling station and the polling stations themselves
were chosen (as described in Section 3) so that their vote
distributions would be roughly similar.

Assumption 2. The vectors w; = (it . .. , Pim) Of
means are approximately normally distributed within the
province; that is,

p(wi| 8, Hi) = N(p: | 8, Hv),. 3

where & describes the electoral behavior of the province
in log odds.

I am intuitively assuming that the variations in the po-
litical behavior of similar areas within a given province
are the consequence of a large number of small, inde-
pendent causes so that the central limit theorem may be
invoked.

Assumptions 1 and 2 together produce a hierarchical
model (cf. Lindley and Smith 1972) and may easily be
combined. Indeed, if ¢ is the total number of polling sta-
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tions considered,
p(xl9 o Xt I 8’ HO’ H)

=ff...fi=1£[1Nm(x;| Wi, Ho)

X Nm(“'i ' 8’fll)dl“fl dp'm

t
=11 me(xil Wi, Ho)
i=1

X Nm(wi | 8, Hy) dpi

t
= [I Nom(x: | 8, Ho(Ho + Hy) "' H)), “4)
i=1
so the vectors xy, . . . , x, of sample log odds may be
seen as a random sample from an m-variate normal dis-
tribution centered in a vector 8 = {3;, ..., 3,} that
describes the global electoral behavior of the province

and has an unknown precision matrix H = Ho(H, +
Hy)~ 'q 1.

5. BAYESIAN ANALYSIS

The proposed model contains a vector of parameters
of interest §, the province log odds, and a matrix of nuis-
ance parameters H. From a Bayesian point of view, one
has to determine the posterior distribution of the param-
eter of interest 8. With the appropriate reference unin-
formative prior w(3, H) « | H | =+ for § and H, the
reference posterior distribution of § is

p@d|data) x| S + (£ - ®FE - d)' |~ (5

(Geisser and Cornfield 1963; Bernardo 1979b)—that is,
an m-variate ¢ distribution with mean %, dispersion matrix
S/(t — m), and t — m degrees of freedom—where

t
X;= inj/t, x = (xg,.. s Xm)
i=1

S = 2} {: — D — )M, S = {s;1-

Posterior probability intervals for the components of &
are readily obtained from the marginal distributions based
on (5). Specifically,

Pr[3; € % * ha V{Sjj/(t - m)}] =1-a, (6)

where A, is the 1 — a/2 quantile of a normalized Student’s
t with t — m degrees of freedom.

Since the §;’s are the province log odds, an appropriate
estimate for the proportion of votes y;; to be obtained by
party j in the province will be obtained using the corre-
sponding inverse transformation, so

U = e¥/(1 + &%), @)

Similarly, probability intervals for the y,’s will be given
by

eYl(1 + ev), eP/1 +e®), j=1,...,m,

ji=1...,m.

®
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where (o, B;) are the extremes of the probability intervals
for the 3,’s defined in (6).

Important as they are, inferences about the proportion
of votes are not the final object of the analysis; we are
interested instead in a probability distribution over the
different possible configurations of the province’s seats.

Let F be the function that associates a configuration
of seats to each distribution of votes by using the d’Hondt
rule over those parties overcoming the 3% barrier. Thus

F{(¢la'~~a¢m)}= (sl,...

s Sm),
5:=0,2s: =5, (9

means that were the m parties to obtain proportions of
votes given by Y, . . . , ¥, in the province analyzed,
then they would get, respectively, s, . . . , §,, of the s
seats corresponding to that province.

Then the probability of a given configuration (sq, . . .,
sm) will be given by

Pr{si, . .., Sm}

=ff...fmp(¢l,. c U | data)diy, . . ., dy,,

=H...L2p(sl,. . ,8, | data)ddy,. . .,d5,, (10)

where Ry = {U1, . - ., Um), W1, ..., Up) € F~1(sy,
.« «» 8m)}, Rz is the image of R, by §; = log{i;/(1 — ()},
and p@3;, . . . , d,, | data) is given by (5). The multiple
integral in (10) does not have an analytic solution and was
calculated in simulation. Thus 1,000 vectors (34, . . . ,
3.,.) were generated according to (5), transformed to (s,
.5 Um) by U = e%/(1 + e®)), and further transformed
to (s1, . . ., §») by (9); the probability of each configu-
ration of seats was then estimated as its corresponding
relative frequency.

Once the probability distribution over the possible con-
figurations is obtained using (10), it is easy, and inform-
ative, to compute the marginal distributions over the
number of seats to be won by each party.

6. UNDECIDED VOTE: PROBABILISTIC
CLASSIFICATION

If the model described is to be used to analyze an opin-
ion poll, it is necessary to know how every citizen in the
sample intends to vote. Only a proportion (about 80%)
of the people asked made clear how they intended to vote,
so the problem arises of how to classify the undecided
vote.

Naturally, the questionnaire included not only intended
vote but also other indicators such as age, sex, educa-
tional level, profession, leadership preferences, political
position in a general spectrum, vote in past elections, and
so on. As a consequence, we had (a) a data bank that
consisted of the indicators and the preferred party of a
number of citizens and (b) the indicators of a (smaller)
number of undecided voters. We then used a Bayesian
probabilistic classification procedure (Bernardo 1983;
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Bernardo and Bermudez 1984), based on the complete
data, to determine the probability distribution of the vote
of each undecided citizen, given his or her associated
attributes. We assumed that citizens with the same pro-
file, as defined by their indicators, would have the same
political behavior, as described by their probabilities of
voting for the various parties. This seems a reasonable
assumption, provided sufficiently rich profiles are used.

If a particular undecided person with indicators y,, . . .,
v« provided the probability distribution over the parties
{P1, . . ., Dm}, Where p; = Pr{voting party j | y1, . . .,
y«}, then we would add p; (j = 1, . . ., m) to the number
of citizens expressing their intention of vote for party j.
This procedure not only provides a sensible, complete
(probabilistic) classification of the undecided vote, which
takes into account the obvious fact that people with sim-
ilar profiles (i.e., similar indicators) should have similar
probability distributions, but it also produces interesting
information about the voting tendencies of segments of
the population.

7. EXAMPLE: PROVINCE OF VALENCIA

The team of analysts conducted two opinion polls
based on domiciliary visits to 50 citizens randomly chosen
from the electoral census in each of the 20 most repre-
sentative areas of the province.

The polls were taken on October 8 and October 21,
1982; 77% of the people interviewed in the first poll and
81% in the second expressed how they intended to vote.
The remaining, still undecided citizens were probabilist-
ically classified, using logistic regression on sex, political
tendency (in a spectrum from 1, extreme left, to 9, ex-
treme right), and vote in the 1979 election, because this
was the combination of indicators found to minimize the
expected loss of misclassification.

We found, for instance, that a man with political ten-
dency 3 who voted socialist in 1979 had a probability .12
of voting PCE (communist), .47 of voting PSOE (so-

Table 1. Evolution Through the Electoral Campaign
of the Percentages of Valid Votes Predicted for
Each of the Parties Considered

Party
PSOE AP ucob CDS PCE

Poll 1

Prediction 43.9 15.7 10.2 5.6 6.9

90% Cl 39.0,489 126,194 79,132 40,78 5.1,9.2
Poll 2

Prediction 50.7 18.4 7.7 9.2 5.2

90% Cl 473,542 133,249 50,118 70,119 40,67
Oct. 28, 1982

Prediction 53.4 27.2 3.3 1.8 5.0

90% Cl 49.0, 57.7 23.5,31.2 23,46 11,29 4.0,6.2
Oct. 29, 1982

Prediction 53.8 29.5 3.9 2.2 4.6

90% ClI 50.1, 56.8 26.6, 32.6 3.3,4.6 18,27 3.7,5.6
Final Results 53.3 29.4 4.4 23 5.3

NOTE: 90% Cl = 90% Bayesian confidence interval. See text for explanation of other
abbreviations.
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Table 2. Evolution Through the Electoral Campaign
of the Probability Distribution Associated With the
Allocation of the 15 Valencia Seats Among the
Parties Considered

Distribution by Party

Probability of

Configuration PSOE AP uco CcDS PCE

Poll 1
.27
18
16
Poll 2
.40
.23
13
Oct. 28, 1982
A7
.58
16
.03
.06
Oct. 29, 1982
74
a2
a2
.02
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NOTE: Italicized entries are the final election results.

cialist), .06 of voting UPV (nationalist), .05 of voting CDS
(center—left), .05 of voting UCD (center, in government),
and .08 of voting AP (conservative), the rest being dis-
tributed among smaller options.

On October 8 and October 21 (four weeks and one
week, respectively, before election day), we provided ac-
curate estimates of how people intended to vote at that
time, thus producing useful political information within
the campaign.

On election night, we used the returns of the first 100
valid votes in the 20 selected representative polling sta-
tions to produce results at 10 p.m. and the final results
of the same polling stations to produce our definitive fore-

70
e |
se | M
48
30
20 | AP
1e r " PCE
* — *
1 1 e
e 21 28
October

Figure 1. Evolution of the expected values as a function of time.
The arrows indicate the final official results of the three main parties.
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Table 3. Evolution Through the Electoral Campaign
of the Probability Distribution of the Number of
Seats in Valencia Obtained by Each Party

Party Seats Poll 1 Poll 2 Oct. 28 Oct. 29
PSOE 8 44 .06 — -
9 .48 .62 19 .24
10 .04 .32 74 74
11 — — .06 .02
AP 2 .24 .10 — —
3 74 .68 - —_
4 .02 .20 .23 .02
5 — — 74 .87
6 — — .03 12
uco 0 .01 .04 1.00 1.00
1 .31 .88 - -
2 .68 .08 - —
CDS 0 11 — 1.00 1.00
1 .89 .93 — —
PCE 0 — — .67 .88
1 1.00 1.00 .33 12

NOTE: Italicized entries are the final election results.

casts at midnight, thus providing the media with accurate
estimates of the results several hours before provisional
results were given by anyone else.

The results obtained appear in the adjoining tables.
Table 1 presents the percentages of votes successively
expected for each of the five main political parties com-
peting in Valencia and their .90 highest probability den-
sity (HPD) intervals. Figure 1 is a graph of the evolution
of the voter’s intention through the electoral compaign.

Table 2 gives the probabilities successively attached to
the configurations of the 15 seats of Valencia that were
compatible with the data, and Table 3, those associated
with the number of seats that each party could obtain.
The final official results are given in each table; by com-
paring the predictions with them, it can be verified that
the method worked extremely well.

8. FINAL COMMENTS

Combining the probability distributions of seat config-
urations that correspond to each of the 52 provinces to
plot a probability distribution over the possible configu-
rations of the lower house is theoretically very easy, al-
though computationally difficult because of the large
number of operations involved. An efficient algorithm
was derived, however, that makes use of the Monte Carlo
simulations required by the numerical integrations of (10).
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The final integrated results for the whole country, pre-
dicting an absolute majority for the socialists of about 201
seats of the 350 (the final official result, known one week
later, was 202) was announced at midnight, hours before
any approximate provisional result could be given by
either the government or any other organization.

The model can certainly be improved. A hierarchical
model directly defined over the multinomial probabilities
may be more appropriate, if computationally more in-
volved. Prior information about the relationships among
different regions may be introduced by means of partial
exchangeability assumptions in the second stage of the
hierarchical model. A full decision—theoretical analysis
should be performed to decide the optimal design of the
sample, both in terms of area selection methods and in
terms of sample size.

We believe, however, that the extremely good predic-
tions obtained suffice to prove that the main novel points
of the analysis—namely, the use of representative areas,
the Bayesian analysis of appropriately chosen hierarchi-
cal models, and the probabilistic classification of the un-
decided vote in opinion polls—are certainly important
steps in the right direction.

[Received January 1983. Revised March 1984.]
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