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SUMMARY

A large number of interesting problems may be described by finite mixture models; these
include outlying observations, probabilistic classification, unsupervised sequential learning
and clustering. There are, however, important difficulties with the implementation of those
models: (i) the combinatorial explosion of the likelihood function effectively preveats the
derivation of exact posterior distributions in virtually all practical problems; (i) the lack
of general resulis on the joint asymptotic posterior disiribution of the parameters involved
preciudes the use of asympiotic approximations, even if large samples are available; and
(iii) although it is well known that, in complex models, the posterior distribution of the
parameter(s) of interest may be very sensitive to the joint prior, there are mo results on the
form of sensible reference priors in the context of mixture models In this paper, we explore
the simplest mixture models, those where the mixands are totally specified, in an attempt to
identify possible directions for farther progress

Keywords APPROXIMATIONS; FINITE MIXIURES; LOGARITHMIC DIVERCENCE;
PROBABILISTIC CLASSIFICATION; REFERENCE PRIORS

1. INTRODUCTION

Mixture models are often useful to describe complex statistical problems . Indeed, identification
of outlying observations, probabilistic classification, unsupervised sequential learning, and
clustering are all problems which may naturally be modelled in mixture form; see Everitt and
Hand (1981), Titterington, Smith and Makov {1985), and references therein A mixture model
is a probabilistic model described by the density

E
PEINO) = Np]8),  A4>0, Sox=1 (1)

i=1 J=1

where A = {X;, [\, 0 = {61, ,8:} and % denotes the number of mixands in the
mixture; in this model, p(= |8;) describes the probabilistic mechanism of generating data =
within population F; , which is completely identified by its corresponding parameter 8, and A,
denotes the probability that a random observation comes from population P;. The appropriate
choice of the number of mixands, and of their functional form, depends on the particular
statistical problem: that the statistician intends to model Often, the functional form of all the
terms in the mixture will be the same. For instance, the mixands may all be assumed to be
normal distributions with possibly different location and scale parameters Mixture models
have inherent theoretical and computational difficulties which may deter practitioners from
using them. Indeed, when dealing with mixtures, two important problems typically arise: one
is computational, due to the combinatoriai explosion of terms in the likelihood function and,
hence, in the posterior distribution; the other is more theoretical and refers 1o the difficulties
encountered in the definition of an appropriate joint priot for the unknown parameters, (A, €).
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If 2= {1, ,e,} is a random sample from (1), then the likelihood of = is

n &

TI[3 Oy pla:o]

i=1-j=1
which is a sum of &” individual terms Tt is well known that conjugate families, in the strict
sense, do not exist for mixture models, even if each of the individual mixands does admit a
conjugate family. However, in this case, a weak form of conjugacy still holds: if the priot
belongs to the class of finite mixtures of the usual conjugate family, then the posterior also
belongs to this class For the case of finite mixtures of normal distributions, the corresponding
extended conjugate families are described in Bernardo and Girdn (1986)

Unfortunately, even if we restrict the choice of prior distribution to this extended conjugate
family, the problems that mixtures typically entail do remain; in particular, the derivation of an
appropriate “non-informative” reference prior is less than obvious: reference priors {Bernardo,
1979} depend on the asymptotic behaviour of the relevant posterior distributions, and very
little is known about the asymptotic behaviour of the posterior distribution of the parameters
of mixture models Indeed, although both Kazakos (1977) and Smith and Makov (1978)
have shown that certain recursive estimators are consistent and, more recently, Redner and
Walker (1984) and Hathaway (1985) have stated the limiting properties of maximum likelihcod
estimators in mixture models, the general conditions under which consistent estimators exist
for the parameters of a general mixture model are still unknown.

In this paper, we shall concentrate on mixture models where the mixand distibutions
p(z|8;), 7 =1, , k, are totally specified, so that {&;, . , A} are the only unknown
parameters; this can be viewed as a conditional analysis of the posterior distribution of the
weights to changes in the mixands. Section 2 discusses the learning process within these simple
mixture models and, in particular, the choice of the prior distribution of the A;’s Section 3
presents some new approximation procedures to the corresponding posterior distributions, and
compares them with those advanced by Smith and Makov (1978). Finally, Secticn 4 briefly
outlines interesting problems for further research

2. THE LEARNING PROCESS

2.1 The Model

In this section we consider the problem of fearning from the data about the unknown parameters
{A1,  ,Ax) of the mixture model

B k
ple|N) =>"Nple), X0, > N=1 (2)
i=1 i=1

where the p;(z)’s are totally specified densities with tespect to some dominating measure,

defined on a sample space X, which describe the individual populations P;. Note that the

model (2) may be regarded as a hierarchical medel in two stages:

(i} the observation = has a disuibution p(x |w) where w is a discrete hyperparameter with
possible values {1,2, &}, which identifies the population to which = belongs, so that
p(z |w = j) = p;(z), and

(if) the prior distibution of w is plw = jY=A;, 7 =1, k.
Moreover, the likelihood for a sample z = {z;, .} of size n is given by

n k k k n n
=]y totlon] = ¥ 3 et lmee)  ©

i=15j=1 #{1)=1 j(n)=1i=1
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2 2. Posterior and Predictive Distributions

It follows from (3) and Bayes’ theorem that the posterior distribution of X given the data z is

p(A|2) o p(A) Z Z H{AJ@)}H{PJ(»)(M}

=1 jn)=1 i=1

Note that given the special form of the likelihcod given in (3), if p(A) is a mixture of Dirichlet
distributions, p(A}z) witl also be a mixture of Dirichlet distributions, so that the extended
conjugacy property mentioned above wiil hold

The problem of probabilistic classification of a new observation x into one of the &
populations reduces to the derivation of

p(z|2 € P)Pife c Pz}

Pr{z € Pj|z,2} = —
PR -IC |z € Pj)Pr{z € |z}

__p@Plze by pi(@)E 4
Tiopi(@) Pz e P izt Tiom(a)ERy |4

since

Priz e P;|z} = / Pr{s € F; |AVp(A|z)dA = /‘,\j (M) dA = E[ | 2]

2.3 Reference Distributions

It may be verified that if the densities p; () are linearly independent almost everywhere, then
the model (2) satisfies sufficient regularity conditions to guarantee the asymptotic posterior
normality of X Hence, the reference priot for X is Jeffreys’ prior, thatis, 7(A) o | ()] e
where H () is the matrix whose typical element is given by

. 52
— A — .
/p(M ) o, log p{z | A) dz
Let us now specialize to the case of only two mixands, so that

plzid) = Api(z) + (1= A)pa(=) (4}

In this case, | H{A)| reduces to the real function A(A) defined by

W)=~ [pe13) FlosAn() + (1= Vp()} e

{ps(a) = pa(x)}’ .

[t e ®

and, hence, w(}) {h()\)}l" * which, in general, cannot be evaluated in explicit analytic
form However,
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Proposition 1. For arbitrary density functions py(z) and pa{z) consider the model

ple]X) = Apa(z) + (1~ A pa(z).
Then. the reference prior for A is m(A)  {A(A)}"* where

_ {pi(z) — pa(2))’
AN = Api{z) + (1= A) pa(z)

Moreover,
@} R(X) is a convex function of A
(i) A(A) = 0 iff p:(2) = pa(z). almost everywhere
(i) h(A) € AUL = 27, with equality iff py(z) and palz) have disjoint support almost
everywhere

Proof. The form of the reference prior has been established above; (i) is trivial: it suffices to
check the sign of 8%h(X}/82? The second part is also immediate for, in this case, the model
reduces to p(x | A) = p1(z) almost everywhere.

To prove (iii), consider the following sequence of equalities and inequalities

(1 —1p2)" < (01 +92)? < PP+ +pip2 [Ii_)\ + 1——}5\-]
= [ips o+ (1= W) [+ {2 (®)
30 that,
Ips (@) = pala)]? < @) 4 P2}

Api{z} + (1= A pale) = A (1-=2
and therefore, using (5),

h(A) £ %/Pl(l‘)d-?v‘+ 1—i5\- /pg(z) dz

1,1 __ 1
PR S YE Y

If X} and X, denote almost everywhere disjoint supports of p1(z) and po(2) respectively,
then {p1(z) — pa(2)}* = p}(=) + pi(x), for the product term vanishes (a .); thus,

R+,

M= | o) 0= N A

which, adding the separate integrals in X; and X, reduces to A(}) = A~1(1 - /\)_1.

Conversely, if A(3) = A~1(1 ~ )7, all the inequalities in (6) become equalities and,
hence, [pl(a:)—pg(:c)]z = [pl(a:)-i—pz(x)]2 almost certainly This, in turn, implies that
[p1(x) —p2(2) | = pr(z) 4 pa(z) and, therefore, the supports of py(z) and po(2) are almost
everywhere disjoint. 4

Corollary. The reference prior w{}) is always proper.
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Proaf. Since w(A) {h(,\)}l"2 and, by part (iii) above, {h()\)}-l"2 is bounded above by the
integrable functicn & A~1/2(1 — A)~1/2, for some & > 0,7(A) must be integrable

Proposition 1 (iii) shows that when the two probabilistic models described by py(z) and
p2(z) do not overlap, so that it is known almost surely which of the two populations each
sample element belongs to, model {4) reduces to the usual Beroulli model. Note also, in this
case, that the values of the sample elements =y, .,z, are irrelevant; ail we require is the
number of them belonging to each population, r and n — 7, respectively. Indeed, in this case,
the likelihood is proportional to A" (1 — A)"™"

An alternative way of proving (iii) is to see the mixture model {4) as a problem with
incomplete data: it is not known to which population each sample element belongs to; the
hyperparameters wy, . ,wn are part of the complete data, The upper bound A=1(1 — N
Fisher’s information for the complete data model while A(}) is the corresponding information
for the incomplete data problem, i e the mixture model Since Fisher’s information is always
smaller for the incomplete data problem, the result follows.

The theorem and its corollary suggest that a beta disteibution Be(A | ag, fo) with both
parameters in the range [, 1] may be a good approximation to the reference prior w(A)
regardless of the densities py(z) and pz(z). Indeed, Be(A|L,1) could be expected to be a
good approximation to w(A) for well separated densities p1 () and pa(z) (even if, technically,
their supports overlap), while the uniform distribution Be{A|1,1) would approximate w(A}
when p, (z) and po(z) are very close This, in turn, shows that the reference prior for the
mixing parameter is fairly robust under changes in the specification of the individual mixture
terms .

Example 1. Consider the case of a mixture of two normal densities, so that the model con-
sidered becomes

p(z|2) = AN(z{m, o1} + (1 - A) Nz iy, 02)
Using Proposition 1, we have numerically evaluated the exact reference priors which cor-
respond to various combinations of (p1, 01, e, 02), and found that these are graphically
indistinguishable from appropriately chosen Beta densities; some of those results are shown
in Table 1

Case Population 1 Population 2 Approximate w()

(@ N(z|—2025 N(£]2,025)  Be()|0 500 0 500)
(i) N(z]|01) N(z|001,101) Be(A|1001,0 $89)
(i) N(z]o1) N{z]0,65) Be()\]0 669,0 912)
(tvy N{z|o,1) N{z]0.5,1) Be()[0.954,0.968)

Table 1 Approximate reference priors for the mixture of two normals

It may be appreciated that, as one could intuitively expect from Proposition 1, the refer-
ence prior is virtually leffreys’ Be(| %, £) when the two normal densities are well separated,
as in case (i), and it is practically uniform when the two normal densities are very close, as
in case(ii) Variations in the standard deviation seem to be more important within this context
than variations in the mean, as illustrated in cases (iii) and (iv) 4

Unfortunately the extension of Proposition 1 and its corollary to the case of & mixands
(k > 3) is not readily available. It may be established, however, that for the limiting case
of all the mixands having pairwise disjoint supports, the reference prior approaches the usuat
reference prior #(A) & H;-“:I ;™% while, at the othet extreme, when all mixands converge to
the same distribution, the reference prior tends to the uniform distribution on the k-dimensional
simplex
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3. APPROXIMATIONS

From the preceding results, in a mixture problem where the mixands are totally specified,
it seems reasonable to approximate the, typically propet, reference prior of the unknown
weights {A1, ,Ar} by a Dirichlet distribution with parameters ranging in the interval [-;_—,1].
Of course, any proper prior can be approximated by a finite mixture of Dirichlet distributions
(Diaconis and Ylvisaker, 1985; Dalal and Hall, 1983); the corresponding posterior would then
also be a mixture of Dirichlet distributions, We shall now consider the case of a Dirichlet
prior density; it is clear, however, that the procedures presented may be easily adapted to the
case where the prior is a finite mixture of Dirichlet disttibutions

The standard procedure considered in the literature to avoid the combinatorial explosion of
the likelihood function is to apply Bayes theorem sequentially, with one or more observations
considered at a time, followed by suitable approximations to the resulting posterior in such a
way as to obtain recursive estimates of the parameters characterizing an approximate posterior
within some specified class, typically the class of Dirichlet distributions See, Makov (1980,
Titterington, Smith and Makov (1985) and references therein

We propose, at each step, to approximate the true posterior distribution p(X] z) by the
“closest” tractable distribution, defined as that p*(A) which minimizes, within a given class
P, the logarithmic divergence

plAly)
A

This procedure has an interesting decision-theoretical justification, as that which minimizes
the expecied loss when the decision space consists of all available approximations and the
utility fenction is a proper, Tocal scoring rule (Bernardo, 1987).

Lzt us begin by applying Bayes theorem sequentially, one observation at a time. If p(A)
is a Dirichlet distribution Di{A |a§°), ,ai.o) ), then the posterior distribution after =, has
been observed is

8(p,p*) = /P(MZ) log dx, p*()eP.

k
p(Ales) =3 Pi(as € B {z)Di(A ol + 8y, 0l + &) (1)
S

i=1

.,

where Pr(zy € P;|21) is the probability that observation 2, belongs to population F;, and
&;; is Kronecker’s delta

It is easily verified, by differentiation, that minimization of the logarithmic divergence of
p{A]z1) from a member of the Dirichlet family implies that the parameters of the approxi-
mating distribution Di(A | agl) L ag.l)) are the solutions to the implicit system, defined in
terms of the digamma function ¢(z) = d{log1 (z)}/d=z,

et + +all) — w(e?)

: 1 .
=9V + 4ol +1) - gel?) - P ePla), =1, Lk
at
7
Note from (7) that the mixands which define p(X | 2, ) are Dirichlet densities whose parameters
are such that two of them differ in precisely one component, the rest being identical.
If the approximation Di(Magl),. ,ag)) to the true posterior p(A|z1) is used as a
prior for the next updating, the approximate posterior p* (A |21, z3) replacing p(A |z, x2) is

given by
k

STPr{es € B ley,z)DilalY + 615, ol 4 6y)
j=1
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where the Pr*(z; € P;|z1,%2)’s, the approximate posterior probabilities, given oy and @,
that #, belongs to each of the populations, are given by

PI‘*(EQEPJ‘ |I‘1,$g)0{pj($2)Ep1:,‘f:E1], i=1, . K

Let us denote by am (i) -+ ozii), the sum of the % parameters of a Dirichlet

distribution Di(A |cz(li), , 0, )) ofr,en referved to as its sample size equivalent; then,

Proposition 2 Let z = {z1,. ,zn} be a random sample from the mixture model
&
ZCIRVEDIRITIC
i=l
Then the posterior distribution of A = {A;, , Ay} is approximately given by

k
PP =Y Pt (e, € B DDAV w8y, ol +6y)
j=1

(A3

where the w} "5 are recursively obtained from the system

Bl - (e D) = val) - we - Bh =1k,
o
with
o0
P =P (3 € Pyley, L ®i,Tiga) 0<Pj(3«°i+1)%
a3

andct(o)e[ A i=1, Lk

Proaf. This follows by induction from the preceding arpument 4

No explicit solution to the implicit system of equations in Proposition 2 is known; some
useful approximations are given in Caro, Dominguez and Gir6n (1986) However,

Proposition 3. With the notation established above,

(1} anH) < aﬂf) + 1 with equality if, and only if, one of the classification probabilities
P =Pri{ei € B2y, czimga), j =1, Lk s equal to one.

(i) o (H’l) = cv( Yoreveryj =1, ,kiff Pl o a(i)far everyj =1, k. thatis, if the
classzﬁcatzon probabilities of the i- th observa:wn are proportional to the corresponding
parameters of the current prior.

Proof. Using the recursive property of the digamma function (x + 1) = ¥{x) + (1/2), it
is easily checked that both (i) and (ii) are verified by the solutions to the updating system of
equations described in Proposition 2 4
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The first part of Proposition 3 implies that, at each iteration, one cannot learn more about
the A;’s than in the case of perfect or error free classification; moreover, it is only in this case
where the amount of information obtained is a full one vnit In fact, it can be verified that in
some instances e _f_+1) < cng), so that the “uncertainty” about A may increase This typically
happens when there are “unexpected” observations, abnormaily difficult to identify.

The second part of Proposition 3 also has an obvious intuitive appeal: if the probabilities
of the i-th observation belonging to each of the populaticns are identical to the current expected
values of the A;’s, ag-“) / agf), then no leaming occurs: such a type of observation adds nothing
to the learning process.

We claim that Proposition 3 contains sensible desiderata for any updating procedure;
however the so-called Quasi-Bayesian (QB) procedures considered in the literature (see Makov,
1980, and references therein) do not satisfy them. Indeed, for QB procedures, the equality
a$+l) = cvSf) + 1 always holds, regardless of the classification probabilities

From the viewpoint of correctly classifying observations in the sense of giving highest
probability to the true mixand, the two procedures yield similar results, as shown by extensive
simulation. Yet, the approximate posterior distribution of the weights, derived using QB
procedures may be very misleading when there is some ovetlap in the mixands, as Laird
and Louis (1982) have pointed out In fact the QB procedure is mathematically equivalent
to ignoring the possible overlap of the mixands. As could be expected from (i), and ¢an be
verified by simulation, our procedure does take into account any degree of overlap.

With only two populations {k = 2) and assuming the prior distribution to be Beta, with
parameters «g and Jp, the recursive equations take the form

{ Plaigr + figr) — Pleigr) = $(e + B+ 1) — (o) — p" feu (8)
g1 + Bigr) — ¥(Bipa) = Yl + B+ 1) —$(8) — (1 - p*)/ 6

where p* is the current approximate probability that a 1andom observation (the i-th) belongs
to the first population. Figure 1 provides, as a function of p*, the new values of a1, figr
and a;4q + F;41 which are obtained from both Equation 8 {(convex lines) and QB procedures
(straight lines) when the previous values are o; = 3 and &; = 1.

These illustrate properties (i) and (ii} of Proposition 3, and make apparent the existing
differences with the QB recursive updating rules,

@41 = @ +pt, Biy1=Fi+(1-p"),
and those obtained above.

An obvious improvement over the procedure we have advocated is to update by taking
observations in batches, smatl erough to ensure that the computational requirements of coher-
ent Bayesian updating are within reasonable limits, and then making suitable approximations.
This can be done in a number of different ways. For instance, one may compute the true
posterior distribution of A given 1 and o, p(A |z, 22), i,

k
SN Pr(as € Pym € P ey, e)DiA |al” £ 8 + 8y, ol 484 6),  (9)
i=1i=1

then approximate this by a mixture of & Dirichlet mixands, and finally apply Bayes’ theorem
sequentially replacing, at each iteration, a mixture of &% terms by one of k terms. The prob-
lem of finding the mixture of & Dirichlet terms which minimizes the logarithric divergence
from (9} does not lend itself to analytic treatment Instead, the following procedure may be
considered: write {9) as

0
pA[e1,32) =Y p(A|as € Py 21, 22) Pr(za € Py |71, 29)
=1
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Figure 1. Updating chart (k=2),
for (i) 7NN (i) [3,‘+1 . and ({11) @iy + ,8;'.).1 . when ;=3 and ,5,; =1

where each of the conditional densities of A above may be written as
k
S pler € Py € Pymy, w2} Di(A [ af” + 63 + 61, 0l + 64+ 8g),
i=1

ie, a mixture of k Dirichlet mixands which can be approximated by a single Dirichlet den-
sity by minimizing the logarithmic divergence using the procedure described before; thus,
p(A|z:,ne) may be approximated by

k
STDiA e}, ey Pr{zs € Py | 21, 22)
i=1

Combination of this approximate posterior with the likelihood of the next observation, via
Bayes theorem, produces a new mixture of k% terms which can be handled analogously, We
want to stress, however, that the procedure just described is only one of the many possible
generalizations of the method presented and no claim is made of its overall superiority.

4 CONCLUSION

The combination of a sensible reference prior for the weights, and a tractable, but appropriate,
sequential approximation procedure seems to produce a pragmatic solution to the problem of
making inferences on the weights of a mixture model, when the mixands are totally specified
Interesting as this particular case might be, this barely scratches the surface of the formidable
problems posed by general mixture models. Even in relatively simple cases such as the
mixture of two normal distributions with unknown parameters, progress is difficult; indeed, it
seems clear that the joint posterior distribution of the five parameters involved in that model
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15 not asymptotically normal without further restrictions, its precise form not being known;
hence, a reference prior is not readily available, This is unfortunate, for it is known that the
different marginal posterior distributions dramatically depend on the specification of the prior,
as illusirated by the limiting case provided by Lindley’s paradox We hope that future work
will provide further light on the issues involved
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DISCUSSION

U. E. MAKOV (University of Haifa )
Bayesian treatment of mixture models is often very complex both in terms of the mathematical
analysis involved and in terms of implementation This is clearly reflected in the small number
of papers dealing with the subject The authors are therefore to be congratulated for looking
into this subject and for providing us with new results concerning a mixture model where the
mixand distributions are fully specified

The first tmportant result is to do with reference priors for the mixing parameters. In
most existing work in this area, attention is devoted to the development and study of means
to curb the combinatorial explosion which is inherent in mixture models The authors provide
us with a reference prior and demonstrate that, for a two-category case, this prior can be
approximated by a Beta distribution which is shown to be robust for a particular choice of
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hyperparameters, It will be interesting to see this study extended to the multiple-category
case, both for the purpose of understanding the quality of Dirichtet priors (some doubts about
their adequacy are raised in Brown, 1980) and for the purpose of finding robust priors

The second novel result is the authors’ suggestion to check the combinatorial explosion
by employing an approximate posterior Dirichlet distribution with hyperparameters chosen so
that the logarithmic divergence from the actual posterior distribution is minimized. In order
to give this approach a wider perspective, we shall compare it to other existing methods in
the context of a mixture of two distributions, Ap;(2) + (1 — A)pa(z} {see Makov, 1980, for
details).

Let the Beta prior distribution of A be Be{A|ag, Bo) and let &,, the ‘teacher’ as it is
termed in the engineering literature, be

s oo {10 saEP
"E10 i e € P

When the origin of each observation is known, the posterior distribution of A, given a
sample of size n, 1, T, 18 Be{A|a,, 5), where

wa=m ooty 6, Ba=fotn-
=1 i=1

In the case where the §°s are unknown, the posterior distribution can be approximated
by inputing them, in terms of p}(n) = Pr(z, € Pi|z1, .. ,%a-1) by one of the following
methods:

1. Decision Directed
by = { 1 if p’{(n) > ;—
0 otherwise

2 Probabilistic Teacher

P 1 with probability pi(n)
"~ 10 with probability 1 - pi(n)

3. Quasi Bayes
by = pi(n)

On the other hand, the updating procedure of Bernardo and Girén is an element of the
more general class

n n

O L (10 . e 211}
i=1 i=1

where, typically, Gi{pi(i)} # 1 — m{p3 (i)}

The QB attraction lies in its cautious updating based on the strength of evidence as
reflected by p?{i). Contrary to the authors’ claim, these probabilities do reflect the degree of
overlap between the two underlying distributions The QB has, however, an obvious pitfall.
While it guarantees an approximate posterior distribution with mean identical to that of the
true distribution, its precision is over-estimated In the method suggested by the authors, «
and / are not updated by p}{i) and 1 — p? (i), respestively, but by non-tinear functions of these
probabilities. I am, however, not entirely happy about the fact that ez 41 + i1 € i+ B+1,
Proposition 3(i); indeed, this implies that it is possible that «; or 3; be ‘incremented’ by a
negative number, and hence the total evidence is less than unity An ‘unexpected’ observation,
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as the authors put it, should result in pj(7) close to zero or one and thus »;{p}(i}} should be
positive and similarly close to zero or one Perhaps a small sample simulation study of the
proposed method may reveal whether the reservations made are well founded Tn such a case,
a modification which truncates 7:( ) to only positive values may be considered,

With the interesting results given in this paper in mind, T am looking forward to the
authors® extension of their work to more complicated mixture models,

REPLY TO THE DISCUSSION

We are very grateful to Dt Makov for his comments. However, we would like to point out
that

(i) While Dirichlet distributions seem to provide good approximations to the exact ref-
erence priors in the general case, there is nothing in our argument to support the use of this
particular family of distributions to describe informative prior beliefs; it is only a mathematical
curiosity that those distributions which maximize the expected missing information about X
happen to be well approximated by elements of the Dirichlet family, at least in the case of
two mixands

(if) The amount of information, in the sense of divergence between prior and posterior,
is known to be positive for any model and any data However, we find no support for Dr.
Makov’s assumption that the amount of *evidence’ about the mixing parameter X provided by
each observation should be positive (let alone constant!) for all observations. Indeed, if one
is faitly sure that z; € Py, so that pj(é) ~ 1, then n;{p{(é}} = 1 and hence cryy1 =~ o; + 1
as he suggests; however, if z; is a ‘puzzling” cbservation, unexpectedly difficult to identify,
with p](7) > 0.5, our uncertainty about the true value of A will often increase, and this is
described by a flatter posterior

(iii) The declared objective of Bayesian inference is to provide a posterior distribution of
the parameter of interest. We claim that minimizing the divergence from the exact posterior
gives better final solutions than any other proposed approximations
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