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Suppose that we observe X - N(a ,  1) and, independently, Y - N(P, I), and zre concerned with inference (mainly estimation 
= ap. This problem arises, most obviously, in situations of determining 

area based on measurements of length and width. It also arises in other practical contexts, however. For instance, in gypsy 
moth studies, the hatching rate of larvae per unit area can be estimated as the product of the mean of egg masses per unit 
area times the mean number of larvae hatching per egg mass. Approximately independent samples can be obtained for each 
mean (see Southwood 1978). Noninformative prior Bayesian approaches to the problem are considered, in particular the 
reference prior approach of Bernardo (1979). An appropriate reference prior for the problem is developed, and relatively easily 
implementable formulas for posterior moments (e.g., the posterior mean and variance) and credible sets are derived. Com- 
parisons with alternative noninformative priors and with classical procedures are also given. The motivation for this work was 
in part the statistical importance of the problem and the difficulty in producing reasonable classical analyses, and in part to 
provide an interestingly complex example of a recently developed method of deriving reference priors for problems with 
nuisance parameters. This new method is briefly described. The problem is also of interest because of its mention by Efron 
(1986) as a situation for which standard noninformative prior Bayesian theories encounter difficulties. 
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1. INTRODUCTION Section 6 compares several possible noninformative 

Suppose that we observe X - N(a,  1) and, indepen- priors. Following Efron (1986), some of the comparisons 

dently, Y - N(P, I),  and are concerned with inference are in frequentist terms. 

(mainly estimation and confidence statements) about the 2. CLASSICAL METHODS 
product of means 8 = ap. For the most part, we assume 
that a > 0 and p > 0; Section 4 gives the modifications The unbiased estimator of 8 = aP is, of course, 4" = 

necessary for the unrestricted case. Also, note that if X xy. This could be negative, an annoying possibility since 

and Y have known variances a: and a;, the problem can 8 is positive. Perhaps even worse is that, if (say) x = y = 

be reduced to the aforementioned by considering X* = -3, then 8, = 9, even though a and P must both be very 

xlol, a* = alol ,  Y* = Y/a2, and p* = Plo2; since 8 = close to 0. 

ap = a*P*0102,inferences about a*/?*can be easily trans- The maximum likelihood estimator is BM = x +y + ,where 
+ denotes the positive part. There are no obvious ab- lated into inferences about 8. 

In Section 2, we briefly review classical approaches to 	 surdities with this estimator, but reporting 0 when it is 
known that both a > 0 and P > 0 is awkward. the problem, and indicate their difficulties. Section 3 out- 

-lines noninformative prior Bayesian approaches to the The variance of 8, is V(a, P) = ~ ~ ~ ~ ( 8 ,8)2= a2+ 
problem, including the reference prior approach of Ber- P2 + 1. The variance of 8,,, (and its mean squared error) 

nardo (1979). To apply the reference prior approach here, is fairly complicated, but approximately equal V(a, P) for 

an extension of the theory to deal with nuisance param- moderate-to-large a and P. The difficulty with V is that 

eters was required. Berger and Bernardo (1989) present ~up( , ,~ ,V(a ,P) = m; this makes it difficult to report a 

this extension, an outline of which and application to the standard error. One might consider the estimated fre- 

product-of-means problem is given in Section 5. The quentist approach (see Berger 1987; Kiefer 1977), and 

product-of-means problem is seen to be a particularly report p(x,  y) = x2 + y2 - 1.Since E, ,~[P]  = a2+ P2 
interesting application of the general theory from a foun- + 1 = V(a, p), this report can be claimed to be a valid 

dational perspective. frequentist estimated variance. Even this has problems, 

Efron (1986) mentioned this problem as an example in however; v can be negative, and even V + (which is a 

which standard noninformative prior Bayesian theory en- conservatively valid frequentist report) has the annoying 

counters difficulties. Our motivation for considering this property of often being 0, a reported error that will be 

problem was, in part, to determine whether the reference met with deserved skepticism. 

prior approach would overcome the difficulties mentioned Finding confidence sets for O is also a very difficult prob- 

by Efron. lem. In fact, we do not know of any non-Bayesian ap- 
proaches likely to be successful. 

The point of the previous comments is to indicate the 
difficuliies that a classical approach to the problem faces. 
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3. NONINFORMATIVE PRIOR BAYESIAN ANALYSIS As an estimate, d,,, is perfectly sensible, being always 

The standard noninformative prior for the problem is 
nu(&, P) = 1, since ( a ,  P) is a location vector. Use of this 
prior leads easily to an estimate (the posterior mean) and 
standard error (the square root of the posterior variance). 
Indeed, analogously to example 7 in Berger (1985, pp. 135 
and 138), one obtains 

enu= posterior mean 

= [X + w(x)I[Y + w(Y)I 

and 

Vnu= posterior variance 

where ~ ( z )  = ~ ( z ) / @ ( z ) ,with 4 and @ the standard 
normal density and cdf, respectively. 

positive yet close to-0 if x or y is negative, and being 
approximately equal to xy if x and y are moderate to large. 
Likewise, Vnuis sensible; it is always positive, and increases 
to a maximum of x 2  + y 2  + 1 for large x and y. For 
simplicity and sensibility, one could not hope to do much 
better. 

Unfortunately, this is a problem where there can be 
considerable skewness in the information about 6' (see Fig. 
I),  so an estimate and standard error can be inadequate 
in describing the location of 8. Credible sets (the Bayesian 
version of confidence sets) are thus needed, but the cal- 
culations for such can no longer be done in closed form. 
A pleasant surprise is that, although such Bayesian cal- 
culations involving (a ,  P) might be thought to require two- 
dimensional numerical integration, one-dimensional nu- 
merical integration actually suffices. 

Before proceeding with this development, it is time to 

Figure 1. Posterior Distributions of 8. The posterior distributions corresponding to the three noninformative priors, n,,n,,and n,,are graphed 
for four possible pairs of data. 
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introduce two other noninformative priors that will be 
considered: 

n5 = (a2  + p2)li2 

and 
n, = (a2  + p2)1'21(.p). 

The prior .n, is that which Efron (1986) reports as being 
the best noninformative prior, according to some numer- 
ical work, and was proposed by C. Stein based on rea- 
soning in Stein (1982). This prior will also be seen to be 
the natural reference prior for the problem. The prior n, 
is used in Section 5 for illustrative purposes. Overall, we 
follow Efron and Stein in recommending n,. 

The formulas for calculating with nu, n,, and n, follow. 
For notational convenience, we rewrite the priors as 

thus nu, n,, and n, are zoo, nlO, and 7111, respectively. Also, 
define the functions 

A ( o )  = -
A. + y o ,
W 

B(w) = x o  - -Y ,
W 

C(0)  = w2 + ( 3 - 2  

(which we write A,  B, and C for convenience), 

A A 1 
~ ( o )= l/<C, pl(w) = s, = pj + p, 
and 

Hii(t I x, Y 

x { ~ - 2 j + i ( t ,w ) 4 ( m  - (A/*)) 

+ qi-2j+l[1- ~ ( c c  dm.- (AI<c))]} 

Lemma 1 .  For the prior nij(a, P), the posterior density 
of 6' = a/?, given (x, y ), is 

,(i/2-2 " o - 1 ~ i 1 2 4 ( ~ / G ) 4 ( f l ~A/*)I. - d o  
--

2Hij(O I X, Y )  

(3.2) 

The posterior cdf of 6' is 
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Posterior moments are given by 

[See (A.l) in the Appendix for the definition of arbitrary 
vk and qk . I  

Proof. See the Appendix. 

The important thing to note about Lemma 1is that the 
cdf's, I;),, are expressible as one-dimensional integrals. 
Thus (3.3) can easily be used to determine quantiles of 
the posterior distribution. For instance, Table 1presents, 
for a variety of x and y, quantiles of the posterior for 8 
corresponding to the prior 71,. An equal-tailed 90% cred- 
ible region of 8 when x = 1and y = 1would thus be (.17, 
5.80); note that the posterior median for this data is 1.76, 
highlighting the skewness of the posterior. (The calcula- 
tions were done by quadrature using CADRE on a VAX 
111780 computer; all numbers are accurate through the 
given digits.) 

It is interesting to examine typical posterior densities 
for 6' that result from use of nu, n,, and n,. Figure 1displays 
such posteriors for several possible (x, y) pairs. Note that 
all posteriors have mass piled up near 0 when x and y are 
small, but for larger x and y the posteriors look more 
normal (except that n: will always have a spike at 0). The 
skewness of the posteriors is also clearly revealed by these 
figures. Note finally that n: is to the left of n,*, which is 
to the left of n:. It is interesting simply to look at these 
posteriors and judge which seems most reasonable intui- 
tively; our choice on this basis is n$. 

4. BAYESIAN ANALYSIS FOR UNRESTRICTED a, P 

When a and /3 are unrestricted, that is, assumed only 
to lie in R1, only slight modifications of the formulas in 
Section 3 are needed. The only change needed in the def- 
inition of the priors is that n, be changed to n,(a, P) = 

(a2  + p2)1'2/)CrpJ.Lemma 1 becomes the following after 
defining 

Nij(6' I x, Y )  = Hij(O I x7 y)nij(0 I x, Y)  

and 

Dij(0) = Hij(O I X, Y)  + Hij(O I -X, Y)  

and using the notation of Section 3. 

Lemma 2. For the prior nij(a, p), the posterior density 
of 6' = ap, given data (x, y), is 

fiij(8 1 X, Y )  
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Table 1. The .05, .25, .50, .75,and .95Quantiles of the Posterior Corresponding to x, 

X 

Y -1.5 -1.0 .O 1.0 2.0 3.0 4.0 5.0 8.0 

The posterior cdf of 8 is 

Proof. Each integral can be divided into a sum of in- 
tegrals over the four quadrants in ( a ,  P )  space. Separately 
transform each quadrant into the positive quadrant by sign 
changes on a and/or P. Note that the priors are unaffect- 
ed by sign changes. As for the likelihood, defining (say) 

r = -a yields 

any integral over positive r is now exactly like those in 
Section 3, pretending that -x is the data. The verification 
of Lemma 2 is then just bookkeeping. 

5. REFERENCE PRIORS 

5.1 Development 

Bernardo (1979) introduced the notion of a reference 
prior. The idea, for an experiment with density f(x 1 8) 
and prior density n(8), is to consider the amount of in- 
formation about 8 that the experiment can be expected to 



and w in the usual way, and 6' the blocks corresponding to 
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provide. Bernardo argues for using, as a measure of this 
information, 

I0{f7 = jj f(x  I 8)n(B)log '(' I dB dx. 

The reference prior is the n that maximizes this quantity, 
the rationale being that the larger this information is, the 
less informative the prior. 

For a variety of technical reasons, the reference prior 
is actually defined, not for the experiment f(x I 8), but 
via an asymptotic limit of iid repetitions of the experiment. 
In situations where asymptotic normality of the posterior 
holds, Bernardo (1979) showed that the reference prior 
for 8, providing there are no nuisance parameters, is Jef- 
freys's (1961) prior n(8) = (11(8)1)112; here I(8) is the 
expected Fisher information matrix and ) A )denotes the 
determinant of A .  

Now suppose that 8 is the parameter of interest, but 
that w is a nuisance parameter. Write the expected Fisher 
information matrix as 

assume that asymptotic normality of the posterior holds. 
Bernardo (1979) suggests choosing conditional distribu- 
tions 740 1 8) and then forming the marginal experiment 
for 8 by integrating out over w with respect to n(w I 8), 
and finding the reference prior n(8) in this marginal ex- 
periment. 

The hitch in this plan is the difficulty of choosing n(w 
I 8). Subjective choices are desirable but somewhat defeat 
the motive of trying to be noninformative [though intu- 
ition would suggest that the influence of n(w I 8) might 
be substantially less than n(8)I. A natural choice for 
n ( 0  1 8) is the reference prior for o in the experiment with 
8 assumed to be known. This works well when it turns out 
to be a proper distribution, but runs into normalization 
difficulties otherwise. Berger and Bernardo (1989) pro- 
pose a scheme to circumvent these difficulties, a scheme 
that leads to the following program for determining the 
reference prior. 

Step 1. Let 740 ) 8) be the usual reference prior for 
w with 8 given, defined by 

Step 2. Choose a sequence A1 C A2 C of subsets of 
the parameter space A for (8, o ) ,  such that UiAi = A and 
n(w I 8) has finite mass on 52i,0 = {w : (8, o )  E A,) for 
all 8. Then normalize n ( 0  1 8) on each rCZi,@, obtaining 

where lndenotes the indicator function on 52 and 
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Step 3. Find the marginal reference prior for 8 with 
respect to p i (o  ( 8). This is 

assuming the integral exists (see Berger and Bernard0 
1989). 

Step 4. Define the reference prior for (8, w) when w 
is a nuisance parameter by 

assuming the limit exists; here O0 is any fixed point. 

This program is not easy, supporting the statement of 
Efron (1986) that "the theory of Bayesian objectivity can- 
not be a simple one" (p. 4). The most serious difficulty is 
the need to choose the sequence {A,}. We return to this 
issue after applying the previous theory to the product-of- 
means example. 

5.2 Reference Priors for the Product of Means 

To apply the theory in Section 5.1, the nuisance param- 
eter must first be selected. [It is shown in Berger and 
Bernardo (1989) that the reference prior does not depend 
on the particular parameterization chosen for the nuisance 
parameter.] For consistency with the Appendix, we choose 
w = (Pla)li2 as the nuisance parameter. Note that the 
transformation from ( a ,  P) + (8, w) is one-to-one with 
Hessian 

Since the information matrix for ( a ,  p) in the original 
problem is the identity, it follows that the information 
matrix for (8, w) is 

Thus 

Step 1. Here n(w ( 0) = (122(8, w)(lI2 = G ( l  + 
w-4)112-

Step 2. A natural sequence of sets {AT) to choose in 
( a ,  p) space is a collection of rectangles 

where 1, -t co and ki-,m. Transforming to (8, w) space 
yields, as the required 8 sections, ai,@= (%'elli, 
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k , l f l ) .  Thus (5.3) and (5.2) become 

and 

Step 3.  Using (5.6) and (5.9), (5.4) becomes 

1 k,/%
ni(8) = + w-4)112exp {-ilfii~ i ( ~ ) f l ( l  

Step 4. In the Appendix we show that the limit in (5.5) 
yields 

Transforming back to (a ,  P) and noting that the Jacobian 
of the transformation is (/lla)112, we obtain the reference 
prior (a2  + j32)112= %(a, P). 

It is of considerable interest to investigate how the 
choice of {Ai) affects the final result. The following theo- 
rem shows that general choices of {A,) yield the same 
reference prior here. For simplicity, we state the theorem 
in terms of sequences {AT) in ( a ,  p) space. 

Theorem 1. Let A* be any compact convex set in the 
positive quadrant that contains the origin and a line seg- 
ment of each axis. Define AT = kiA" (i.e., the set formed 
by multiplying each point in A* by k,), where k,+a as 
i + a.Then 71, is the reference prior corresponding to 
{AT). 

Proof. See the Appendix. 

The convexity condition in the previous theorem could 
most likely be eliminated, but the theorem does establish 
that the reference prior is insensitive to the choice of {A,). 
Part of the theoretical interest in this example, on the other 
hand, is that the choice of {A,) is not completely irrelevant. 
To demonstrate that this is so, consider choosing the A, 
to be rectangles in (8, w) space; for instance, choose them 
so that a,,= ( l l i ,  i). Then, since n(w I 8) and II(8, w)l/ 
112,(8, w)l factor into terms involving only 8 and only w, 
it is easy to check that the reference prior is n(0, w) = 
8-112(1+ CI-~)"~. Transforming back to ( a ,  P) yields 
(a2  + P2))""(a/?) = nr(a, P). 

This reference prior is not as arbitrary as it first appears 
to be, precisely because the given (8, w) transformation 
is that in which IIZ2Iand 111111221 factor into terms involving 
only 8 and w. This is thus the transformation in which one 
might argue for independence of (8, w), leading naturally 
to consideration of rectangles for A, in this space. 

Although n(8, w) can depend on the choice of the A,, 
it will not depend on the choice of the nuisance parameter 
w. Thus, if the A, are defined as the appropriate transforms 
of (5.7), then n(0, w) will turn out to be (5.11) no matter 
how w is chosen. This is established in Berger and Ber- 
nardo (1989). 

How is {A,) chosen when the choice matters? (Note that 
this is the first studied example where it does matter.) We 
have no clear-cut answer to this question, precisely be- 
cause a dependence of the solution on the A, is essentially 
an indication that some subjective input is needed; one 
cannot unambiguously define a reference prior. 

One possible interpretation of the Ai is that they should 
reflect one's intuition concerning what is meant by "non- 
informative." For a normal mean p ,  one will rarely be 
truly noninformative between p = 5 and p = 10loO,but 
one might be willing to model noninformative by saying 
that for some unknown large interval one wants to be 
noninformative. This notion would lead to choosing the 
A, to be a series of nested intervals for p that converge to 
R1. Similar reasoning can be applied to the (a ,  P) situation, 
leading to the AT in (5.7). Indeed, most frequently it would 
probably be natural to choose the A, to be simple sets 
(rectangles, spheres, etc.) in the original parameterization 
of the problem; initially chosen parameterizations are 
often ones in which the analyst is roughly noninformative 
over natural sets. And note that Theorem 1 shows n, to 
be the reference prior for any choice of such natural sets 
in the original parameterization. In this light, it is inter- 
esting to note that rectangles in (8, w) space (that lead to 
n,) transform into wedges in ( a ,  P) space; wedges are 
rather unnatural, implying that the boundaries ( a  = 0 or 
/? = 0) are somehow at infinity. 

6. COMPARISON OF NONINFORMATIVE PRIORS 

The three noninformative priors, nu, n,, and n,, all have 
some type of justification. The case for nu is simply that 
the constant prior for ( a ,  p) is standard. Many counter- 
examples have by now been created, however, that indi- 
cate that a good noninformative prior for the full 
parameter need not be good for lower dimensional func- 
tions of it. Thus Efron (1986) observed: "The correct ob- 
jective prior seems to depend on which parameter we want 
to estimate" (p. 4). Note that reference priors explicitly 
depend on which function of ( a ,  P ) one desires to estimate. 

The case for 71, (argued here) is that it is the natural 
reference prior when 8 is the parameter of interest (natural 
in the sense that it corresponds to natural sequences {A,)). 
The alternative reference prior n,corresponded to a rather 
strange sequence {A,) [when considered in ( a ,  P) space], 
and was mainly included to indicate the dependence of 
the reference prior on {A,). All in all, we would expect 71, 
to perform best. 

What does "best" mean here? One interpretation is 
simply that it should yield the most intuitively appealing 
results. To judge whether this is so, one might look at 
typical posteriors for each prior, as given in Figure 1. 
Examination of these figures reveals that n: is highly coun- 
terintuitive; the spike as 8 + 0 [n,*(8) grows at least as 
fast as a multiple of 8-lI2 as 8 -t 0] makes little intuitive 
sense. This spike exists because n, itself blows up as 8 = 
ap-t 0, so one cannot justify the spike as being somehow 
indicated by the data. A referee has observed, however, 
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that if log 8 were the parameter of interest, and if log a 
and log P were the natural parameters in which to be 
noninformative [which might arise, for instance, if it were 
natural to think in terms of the orders of magnitude of a ,  
p, and 81, then n, might be quite reasonable. In particular, 
a transformation to log 8 removes the spike in n,, and 
natural regions {Ai)in (log a ,  log P) space result in n, as 
the reference prior. Although it would be hard to settle 
this issue outside of a clear practical context, we are cer- 
tainly sympathetic to the underlying idea: In different con- 
texts, different {A,)(and hence possibly different reference 
priors) might indeed be reasonable. 

Comparison of n: and n: is more difficult. Looking at 
the data and the posteriors, one might judge that the n: 
are shifted too far to the left, but this is not unarguably 
the case. Thus other criteria are needed to help distinguish 
between the two. 

Various frequentist criteria have proved helpful in eval- 
uating noninformative priors. The basic idea is to use the 
prior to generate a statistical procedure, and investigate 
the frequentist properties of the procedure. If the proce- 
dure resulting from one prior has substantially better prop- 
erties than that resulting from another prior, then the latter 
prior is suspect. There is, of course, no guarantee that this 
approach to comparing priors will work. Note also that 
one cannot typically expect the procedure developed from 
the noninformative prior to have uniformly good frequen- 
tist properties; sensible conditional behavior and uniform 
frequentist properties are often simply not compatible. 

The most common frequentist comparison of noninfor- 
mative priors is via admissibility or risk dominance of re- 
sulting estimators (see Berger 1985). Another method is 
to compare confidence properties of sets arising from the 
posteriors. Indeed, Stein (1982) actually used this ap- 
proach to suggest good noninformative priors. Efron 
(1986) reported that ns is the result for the product-of- 
means problem. 

To compare nu and 71, in this fashion, we follow the lead 
of Efron (1986) and investigate the yth posterior quantile, 
8,, defined by F(8,) = y, where F is the posterior cdf as 
given in (3.3). In particular, we calculate P,(a, P) = 
Pr,,D(8 IO,), the frequentist probability that 8, (which 
depends on X and Y) is larger than the actual 8. Table 2 
presents P,,,(a, p) and 1 - P,,,(a, p) for various values 
of ( a ,  p). A frequentist would want P,(a, P) to be close 
to y, indicating that 8, exceeds 8 the correct proportion of 

Table 2. Frequentist Coverage Probabilities of .05 and .95 

Posterior Quantiles 
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the time. Note that this table differs from that of Efron 
(1986) in that we are considering the problem with a > 0 
and p > 0, whereas he considered the unrestricted case; 
his numbers were also an approximation arising from 
a slightly different problem. The calculations in Table 2 
were done by simulation, generating 4,000 (X, Y) pairs 
for each (a ,  p), calculating the indicated posterior quan- 
tiles for each pair, and determining the proportion that 
exceeded 8 = @. This was done on a VAX 11/780 com- 
puter; the standard error of the entries in Table 2 is about 
.0035. 

First, note that when a = /? = 0 so that 8 = 0, the 
posterior quantiles perform poorly in frequentist terms. 
But this is clearly an unavoidable conflict, and is of no 
help in choosing between nu and 71,. By continuity of the 
coverage probability, this difficulty will persist for 8 near 
0; one simply cannot expect posterior quantiles to have 
proper frequentist behavior near the finite boundaries of 
parameter spaces (which can be interpreted as a criticism 
of demanding uniform frequentist behavior over the entire 
parameter space). 

Thus focus on the larger ( a ,  P) in Table 2. Clearly the 
posterior quantiles for n: yield frequentist error rates that 
are closer to the ideal .05 than those for n:. The posterior 
quantiles for n: simply seem to be too small, being to the 
left of 8 more often than one would desire. Another way 
of saying this is that the 90% credible interval (8,@$, 8,95) 
for n: would miss to the right too often and to the left 
not often enough. This seems to be reasonably compelling 
evidence in support of our earlier intuition that n: was 
indeed shifted a bit too far to the left. The posterior quan- 
tiles for ns, on the other hand, seem much more balanced, 
yielding P,(a, /I)closer to y, and not having such a pro- 
nounced shift to the left. Thus all of the evidence points 
to 71, as the noninformative prior for the problem. 

APPENDIX: PROOFS 

A.1 Proof of Lemma I 
Define o = (Pla)llZ,and change variables from (a, P) to (8, 

w). Writing down the joint posterior density of (8, w), given ( x ,  
y) ,  and integrating out over w to find the marginal posterior for 
8 yields (3.2), subject to verification that 2Hij(0 I x ,  y )  is the 
appropriate normalizing constant. This last fact, together with 
(3.3) and (3.4), is based on the identity 

where the y / ,  and pm are defined by the recurrence relations 

with the initializing functions for m = 0 and m = 1given before 
Lemma 1. 
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A.2 Proof of (5.11) 

Separating the log term in (5.10) into [log 0 + log(w2 + w2)] ,  
it is clear that 

xi(@ = (l/V%)exp{- $ V%Ki(0)Zj(O)}, 
where 

k i l G  

Zj(0) = 1 (1 + o-4)112log(w2 + w-2) d o .  
*/li 

To evaluate this integral, break up the region of integration into 
the intervals ( f i l l , ,  E), (E, E-I), and (E-I, m), where E is small; 
call these integrals e l (@),  R1(0), and O2(O), respectively, ob- 
serving that R, is a constant independent of k, and 1,. Similarly, 
for , 

k , l a
Ii(0) = 1 (1 + d o ,  

V'F/fi 

define Pil(0), R2(0), and fi2(0). 
Observe next that 

(1 + ~ - 4 ) " ~1og(02 + 0-2) 

= -2 w 2  log o + O(E) on (V%/l,, E) 

= 2 log w + w - ~ O ( E )  on (&-I, ki/V%), 

and 

(1 + w - ~ ) " ~= + O(E) on(V%/l,,E) 

= 1 + W - ~ O ( E )  on (&-I, kilV%). 

Here we use O(E) to mean the absolute difference is no more 
than E. Hence letting R, denote bounded functions of 1, or ki, 

= R3 - 2(li/V%)(log(V%/li) + I) ,  

C2(0) = Iil/fi [2 log o + w 2 0 ( & ) ]  d o  
- 1  

= R, + (2kilV%)(log(kilV%) - I) ,  

= R, + kilV%. 

Thus 

Zj(0) = R, + (2/V%){[li log li + ki log k,] 

- [(li + k,)log V% - k, - l,]} 

and 

I;(@) = R, + (li + ki)l.\/e. 

Hence 

K,(O) = ( ~ / V % ) [ R ,+ (I, + k,)lV%]-I 

= ( l , + k , ) - ' + V % ~ , ( l ~ + k , ) - ~  (A.2) 

and 

= (2/V%) {[l,(log 1, + 1) + k,(log k, + I)] 
- log V%}

(1, + kt) 

+ o(1, + k,). (A.3) 
Thus 

K i O i O= (1 + o(li + ki)),Kt (00)nr (00) (A.4) 

and the result follows. 

A.3 Proof of Theorem 1 

Consider the curve defined by a/? = 0 (0 considered fixed). 
It intersects the boundary of AT in two points that we refer to 
as u: = (a:, O/a:) and op = (OI/lP, pp). Observe that (aplk,) + 
a, and (Pylk,) -+ /loas i + a ,  where (0, a,) and (0, Po) are 
the endpoints of the line segments formed by intersecting A* 
with the respective axes. [This follows from continuity of the 
curve forming the boundary of A*; k;lu,8 and k;lo: converge 
to (0, a,) and (0, /lo)along the curve.] One now proceeds, 
as in the proof of (5.11), with I, replaced by a: and ki replaced 
by pp. 
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