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ABSTRACT

There have been numerous attempts to derive noninformative priors for Bayesian infer-
ence via maximization of information measures. The reference prior approach of Bernardo
(1979) utilizes an entropy-based measure, typically applied to an asymptotic limit of i.i.d.
repetitions of the experiment. In attempting to provide a careful mathematical foundation
for the reference prior approach, a number of interesting mathematical issues arise. These
include (i) the possible nonexistence of maximizing priors; (ii) possible discreteness of the
maximizing priors; and (iii) questions concerning the limiting process. Features of the
mathematical foundation are described in this paper, along with examples of the above
phenomena. These examples are also relevant to other information-based approaches to
determination of prior distributions.



1. INTRODUCTION

Information-based approaches to the development of noninformative priors attempt
to find “least informative” priors or, alternatively, priors which “maximize the amount of
information provided by the data.” Pursuing the latter idea, Bernardo (1975) considered,
as a measure of the expected information about a parameter 8e© provided by an experiment
& when = is the prior distribution on ©, the quantity

I°{€, 7} = Ellog{p(X16)/p(X)}], (1.1)

where p(z|0) is the density (for convenience) of the data X from £ and

p(z) = E™[p(=]0)]

(we will use p generically); here “log” stands for the natural logarithm, E™ stands for
expectation over 6 (w.r.t. 7), and E stands for expectation over the joint distribution of
(X, 6). The prior, 1, which maximizes I°{&, 7} has a reasonable claim to being noninfor-
mative, especially since I? is perhaps the most natural measure of expected information
from an experiment (cf. Lindley (1956) and Shannon (1948)).

A related approach, from Bernardo (1979), considers the “experiment” £(k) that is
defined as k independent replications of £ Letting Z = (X3,...,Xk) denote the data
arising from E(k), one can consider I?{&(k),n}. The idea is that £(oco), defined as the
“limit” of £(k) as k — oo, typically will provide perfect information about 6, and so
I{&(c0),7} can be thought of as the missing information about § when 7= describes the
initial state of knowledge. Thus the 7 maximizing I?{€(c0), 7} could reasonably be called
“least-informative.” Typically, however, I?{£(k), 7} grows without bound for almost all =,
making formal definition of I?{€(00), 7} impossible. Therefore, Bernardo (1979) suggested
what has become known as the reference prior approach. First maximize I{&(k),n} for
finite k, resulting in what we will call the k-reference prior, 7. Then define the reference
prior, ¥, providing it exists, by :

. _m()
()= lim —*— 1.2
w0 = Ay (1-2)
where A, is some fixed compact set. Note that 7* will often be improper.

The k-reference priors are themselves of interest. Indeed, we indicated at the begin-
ning that my has a very natural motivation, while the 7 for £ > 1 are clearly compromises
between m; and n*. While we will be discussing the 7y fairly extensively, note that expe-
rience has found 7* to generally be the superior “noninformative” prior.

A further generalization that is of considerable interest occurs when 7 is restricted to
some class I' of distributions. Many of our examples will refer to the quantile class, I'q,
given when 6 is one-dimensional by

Tg = {7 w((bi,bit1]) = fori=1,...,%,

¢
where — 00 <b <b2 <...<bgp;1 <ocoand ¥ v =1}, (1.3)
=1
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or to the moment class, I'ps, given by

Ty ={r:E"[6]=, i=0,...,¢} (1.4)

It is rather natural to define the “£(k)-least informative” prior in I' as that which
maximizes I°{&(k),n} over all me[. We will refer to such a prior (if it exists) as a k-
reference prior with respect to I'. If these priors have a limit as in (1.2), the limit will be
called the reference prior with respect to T

The first issue that will be addressed here is that of the existence of k-reference (with
respect to I') priors. It will be demonstrated in Section 2 that these often do not exist
because I?{€(k),n} can frequently be infinite. The solution that will be suggested is to
consider a nested sequence of compact subsets of O, find the desired reference prior when
6 is restricted to the subset, and pass to a limit as the sequence enlarges to O.

In Section 3, the nature of k-reference priors (with respect to T') is discussed. The
general variational equation which defines the k-reference prior is given. When p(z|6) is
from an exponential family, it is argued that the k-reference prior (with respect to I') is
typically a discrete measure. As a specific example, the Bernoulli trial situation is studied.

Section 4 considers the existence of an overall reference prior with respect to I'. When
I is the quantile class, I'g, it is shown that a reference prior does not exist. In contrast,
reference priors typically do exist for the moment class, I's.

The examples in this paper illustrate the difficulties in basing derivation of nonin-
formative priors on maximization of versions of I. While rigorous use of I? will often
be possible, these difficulties suggest that I® be mainly used as a heuristic guide in the
construction of noninformative priors. Further discussion is given in Section 5. Note that
many of the issues and examples in the paper also apply to other information-based meth-
ods for development of noninformative priors, such as the methods of Jaynes (1968), Good
(1969), Kashyap (1971), and Zellner (1977).

The following notation will be used throughout the paper. The experiment £(k)
k

consists of observing Z = (Xj,...,X) having density p(z]0) = II p(zi|f) (recall our
=1

generic use of p). For prior distribution 7 on O,

pr(2) = E™[p(2]6)]. (1.5)

(When clear from context, we will omit the subscript 7.) Thus

I°{£(k), 7} = Ellog{p(Z|8)/p=(2)}]
= Ellogp(Z|6)] — Ellog px(Z)]
= E"[(6)] — E*~[log px(Z)], (1.6)

where

¥(8) = E*9[log p(Z16)]; (1.7)
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here EP(*|9) denotes expectation over Z with respect to p(z|d), and EP* denotes expectation
over Z with respect to py.

2 _EXISTENCE OF k-REFERENCE PRIORS AND TRUNCATION

2.1 Examples of Existence and Non-existence

In discussion of Bernardo (1979), J. Hartigan observes that I?{£(k), 7} is often in-
finite for a variety of w, in which case a unique (and interesting) m; cannot exist. As
an illustration, and to see that this can happen even when 7 is constrained, consider the
following example, related to that of Hartigan.

Example 1. Suppose X ~ AN (6,1) is to be observed, and that (£ — 1) quantiles of § are
specified; thus wel'g, the quantile class specified in (1.3) (with b; = —oco and bgty = 00).
Assume w.l.o.g. that by < 0. For £(k), calculation yields

Bllog p(Z16)] = — 3 log(2re),

so that
I°{&(k), 7} = —glog(%re) - /p,,(z) log pr(2)d=. ' (2.1)

Now consider those mel'g which have density = w.r.t Lebesgue measure satisfying

7(8) < C and (letting K = 4 log |b2])

K

"(6) = Bldog o2

for 8 < b,.

ba
(Note that [ m(6)df = v1.) Then it is straightforward to show that, for some B < bs,

—Q0

(1-eK
|2|(log |2])?

Direct calculation then yields

(1+ €K

—_ { B.
l(og ) < 7

< p‘lr(z) <

B B
(1-¢)K [ (1+eK 1 .
x(2)[log pr(2)]dz < lo dz = —00,
_/oo prieMoeps(2Nd2 < | llogla1? |8 Filog D2
while -
/p,r(z)[logp,,(z)]dz < / Pr(2)[log Cldz < logC.
; B
Thus I9{&(k),n} = co for any such . O



It is not always the case that I?{€(k),n} is infinite for certain =, as the following
lemma shows.

Lemma 1. Suppose X has discrete or continuous (w.r.t. Lebesgue measure) density p(z|6),
where p(z|0) < Cy, for all z,6. If p(x|0) is non-zero (i) at only a finite number of values
of x (discrete case) or (ii) in a subset of |z| < C (continuous case), then I°{E(k),n} < oo
for all k and «.

Proof: Since —e™! < ylogy < max{0,ClogC} for 0 < y < C, p(z|d) and px(z) both
satisfy _
—e™! < plogp < max{0, CFlog Ck}.

The lemma follows easily from writing

I°=E" [ / p(z]6) log p(z|9)dz] — / pr(2) log px(2)dz.

2.2 Truncation of ©

To deal with situations such as Example 1, a natural idea is to truncate the parameter

space. Thus suppose {©,,} is a nested sequence of compact sets with © = CCle On. Fora

. m=
class, I, of priors, let I'™ denote the set of all 7 € " that are supported in ©,,.
Definition. &, is defined to be the experiment consisting of observing X ~ p(z|0) where,
however, the parameter space is restricted to ©,,. When it exists, 7%, will denote the
k-reference prior (with respect to I'™) corresponding to the base experiment £,. The
reference prior (with respect to I'™) corresponding to £n will be defined (when it exists)
by

7i() = lim —kmC)

2.2
k—o0 Wk,m(Ao), ( )

where A, is some fixed compact subset of ©@;. The reference prior (with respect to T')
corresponding to the original experiment £ will be defined (when it exists) by

() = lim_ :"(1—51)) (2.3)

That truncation can alleviate the difficulty encountered in Example 1 is indicated by
the following lemma.

Lemma 2. If X ~ N(0,1), then I?{En(k), 7} < oo for all 7. |
Proof. Since O, is compact, it is straightforward to verify that there exists ¢ > 0 and
C < oo such that

pa(z) = / p(2]0)7(d8) < e~ < 1 for |2| > C.
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Then, since pr(z) is continuous and bounded,

[ onaas =K + [ p()lognta)s,

|z|>C
and
| [ weessaa] <2 [ Vi@ [ValElios VA d
|z|>C |z]>C
< K / Vp(2)dz < .
2|>C
When used in (2.1), these bounds show that I < oo. O

We suspect that I°{&,(k),n} will typically be finite for all 7, as in the situation of
Lemma 2, but have made no effort to verify this. When I? is finite for all 7, then mg,m
will typically exist, as will 7¥,. Unfortunately, 7* as defined in (2.3) need not exist, as will
be seen in Section 4.

3. DERIVATION OF TRUNCATED REFERENCE PRIORS

3.1 The Variational Equation

We consider here the determination of the my, ., reference prior with respect to T,

when I' is given by
P={r:E"¢:(0) =, t=0,...,4}, (3.1)

where for convenience we define go(6) = 1 and g = 1 so that 7 is fixed to have mass one.
Note that the quantile class (1.3) can be written in this form by defining

g,(G) = 1(b,-,b;+1](9)a 1= 1, RN ,E, (32)

where 14(6) is the indicator function on the set A, and the moment class (1.4) can be
written in this form by defining :

g:i(0) =6, i=1,...,L (3.3)

For convenience in the following, define
Ok,m = {support of 7}, and
Pk,m(2) = Pmy m(2) = E™ ™ [p(2]0)]. (3.4)
Theorem 1. If g m exists, then with probability one on Ok (w.r.t. Tg,m)
£
EP9log pr,m(2)] — () + x Aigi(6) =0, (3.5)
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where the A; are constants. (Note that (8.5) implicitely defines mg m.)

Proof: This is a standard variational argument. Let
T = Tk,m + €7, (3.6)

where 7 is any signed measure for which

[n(d6)|
—FT) <K < oo and (3.7)
/ gi(0)n(d6) =0 fori=0,...,4 (3.8)

Om
Note that wel for |e| < K~1.

Consider I?{€,,(k),n} for 7 of the form (3.6), and expand I? in a Taylors series about
Tk,m. Using (3.7) and (3.8), it can be shown that

—[I*{Em(k), 7} — I°{Em k), mh,m}] = eE™{—(8) + EPC1O[log pr,m(2)]} + O(¢?).
Since this must be positive for 7k, to be the maximizer of I, it follows that
E"{—$(8) + E**1O[log pi,m(Z)]} = 0

for all n satisfying (3.7) and (3.8). (If not, choosing € to be sufficiently small in absolute
value and of the opposite sign of E7{ }, achieves a contradiction.) A standard Lagrangian
argument then yields the conclusion of the theorem (the Lagrange multipliers coming from
(3.8) and the “probability one w.r.t. 7k ,” restriction from (3.7)). O

3.2 Discreteness of 7 1

When p(z|0) is from the exponential family, it will typically be the case that () (see
(1.7)) and

$(6) = EP19(log p, m(2)] (3.9)

are analytic functions in each coordinate of 8 for
0eO;, = convex hull of ©,,.

For instance, when p(z|6) is M(8, X)(¥ known), then () is constant and ¢(6) is a convo-
lution transform of log pk,m(2); both ¢ and ¢ are thus trivially analytic in each coordinate.

Suppose, in addition, that for e®, a compact subset of ©*,, ¢;(0) is analytic in each
coordinate of 6 for i = 1,...,£. Then the left hand side of (3.5) is an analytic function of
each coordinate of 6e®. Defining

km = 10€07, : (3.5) is satisfied}, and
ék,m =0n Qz’m,



it follows that either

(1) O m is a finite set; or
| (3.10)
(33) Op,m = O.

(If ék,m is an infinite set in ©, it has an accumulation point, and an analytic function
which is zero on a set with an accumulation point must be constant over its domain of
analyticity.)

Typically one can show that (ii) in (3 10) is impossible, so that Oy ,, must be a finite
set. But since the support of 7 ., in © must be a subset of G)k ,m, 1t would follow that

Tk,m 18 then a discrete measure on 0. As specific examples, consider 7, ., for the moment
and quantile classes, I'ys and T'g.

Example 2. For ', defined by (3.1) and (8.3), it is clear that ¢;(d) = 6 is analytic over
all of ©F,, for 1 = 0,...,£. Hence the above discussion proves that, if 7, ., exists and ()
and ¢(6) (see (1.7) and (3.9)) are analytic functions on ©%,, then either

(i) 7k,m is a finite discrete measure on ©,,; or

(ii) for all 6eOF,,
$(6) — $(8) + éo M = 0. (3.11)

Example 3. Let I'g be the quantile class given by (3. 1) and (3.2), and assume that 3(6)
and ¢(6) (see (1.7) and (3.9)) are analytic functions in each coordinate of 8 for #e©* .
Claim: If mg », exists, it is either

(1) a finite discrete measure on O,; or

(ii) it is the unconstrained reference prior and satisfies, for some constant ),

$(8) = $(6) + X for all 6O, (3.12)

Proof of Claim: Define C:) = 05, N[bj, bj4+1]. Clearly each g; is either the constant function
0 or the constant funct1on lon®; j» so the left hand side of (3.5) is an analytm function on
@ Defining G)k m,j = =0; iNO%, ms it follows from (3.10) that either @k m,j = ®], or O m,j
is a finite set. But, if O, ; = @,, then ¢(6) —(8) = A; on O, and hence (by analyticity)
#(8) —(6) = Aj on all of OF,. Since this must then be true for each j =1,...,%, it would
follow that all A; must be equal; (3.5) is then the equation defining the unconstrained
reference prior. O

It will obviously be rather rare for the unconstrained reference prior to be in T, so
that (ii) in Example 3 will almost never occur. Also, it is typically possible to show that
(3.11) and (3.12) cannot happen (even in the unrestricted case), and discreteness of 7
follows. Here is an example of such an argument.
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Example 4. (Bernoulli Experiment). Suppose that p(z|6) = 6°(1 — 6)}~%, where z = 0
or1land 0 < 6 < 1. Then &(k) consists of observing Z = (Xy,...,Xx) with p(z|0) =

k
6°(1 — §)*=%,s = % z;. (There is no need to truncate ©® = [0,1] here; see Lemma 1.)
=1
Calculation yields
$(6) = E“19)l0g p(216)] = k[8log + (1 — 6) log(1 — )]
and
_ pr(zl0) _ &
46) = B llogpy(2)] = § ',
where the «; are constants that depend on my.

We seek the unconstrained k-reference prior, so that (3.5) is simply
0=4(8) —¥(8) + o
k .
= % aif’ —k[flogd + (1 — ) log(1 — )] + Ao (3.13)

Observe that

dFH1
T 19(0) — ¥ (6) + do] = k(k — DH(-1)*9~* — (1 - 6)"}.

If k is odd, this is always negative, from which it follows that (3.13) can have at most
(k + 1) solutions. If k is even, then (k + 1) is odd, and the same reasoning implies that
(3.13) can have at most (k + 2) solutions. From Theorem 1, it follows that the support of
7 can be at most (k+ 1) or (k 4+ 2) points, as k is odd or even.

Solving for 7y explicitely is not easy. When &k = 1, it is easy to check that E™[(6)]

and —EP(*)[p(Z)] are both maximized when 7(0) = =(1) = %, so that this is clearly the
1-reference prior. Numerical solution is needed for larger k, however. O

3.3 Heuristic Derivation of 7},

Assuming that 7, is a nonzero density (typically discrete) on Ok, m C O, equation
(3.5) can be rewritten (letting m,m(0]|2) denote the posterior density of 8 given z)

0= — B log{p(216)/pem(2)}] + 2 Ni9i(0)
= —EF log{mi,n(812) /mem ()} + 5 Ni0i(0)
= —EX1log 1 m(612)] + log me,m ()] + 5 Xigi(©)
so that, on Ok m,
Tm(6) = exp{ EP1O[log 1 (6] 2)] — éo igi(0)}. (3.14)
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Note that this is still just an implicit formula for 7 ,(0), since 7 m(6|2z) depends on
Tk,m(6); the expression might be useful for iterative calculation of 7, (), however.

To find 7}, it is necessary to let £ — oo and use (2.2). This is generally very difficult
to do explicitely. It is quite plausible, however, that the limit can be obtained by letting
k — oo in (3.14). The key idea (from Bernardo, 1979) is that, as k — oo, Tk,m(6]2) will
typically converge to some asymptotic distribution, which can then (hopefully) be inserted
into (3.14). Often,

Te,m(6]2) = N(8(2), k2 I(8(2)) ) (3.15)

for large k, where 0(z) is the m.Le. and I(6) is the Fisher information matrix for £. (Recall
that z consists of k£ independent replications of £.) Inserting this approximation into (3.14)
yields (for large k and ignoring multiplicative constants)

i 0) o< cxp { BP0 log 0) — £0 - 0 19)0 - 0)) - £ 2i0i0)]
< 1O op {~ £ 2i0i®)
This suggests that
70 = O e { - £ xa®)} 10,0, (3.10)
where the A; are chosen so that |

/ g (dl = v;, i =0,...,L (3.17)
Om

Example 5. If T’ is the moment class specified by ¢;(6) = 6',i = 0,...,¢, then (3.16)
becomes

7% (8) = \/T(6) exp {_ éo A,-ei} lo,.(6),

where the \; are chosen so that

. £ .
/0’\/1(0)exp{— 5 Ajef}dozw, i=0,...,0
i=0

Om

Example 6. If T is the quantile class specified by ¢i(6) = 1(3,,5;,,](0),¢ > 1, and if (b2, be) C
Om, then (3.17) becomes (defining A; = O, N (b, biy1])

[ VI@e s =,
A; .
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so that

Ai = log ¢ fyi_l/\/I(G)dG
Aq

Hence =}, is given explicitely by

&

. ran 7V 1(6)
o (0) = El —f /006 14,(6). (3.18)
A;

Note that 7% (8) is typically discontinuous here. g

Making precise the heuristic derivation of (3.16), when (3.15) holds, is mathematically
formidable, since the O, are typically finite and nonnested (though they do “increase”
to “fll” ©,,). We do, however, feel that (3.16) is generally correct. Note that |I(6)]Z is the
noninformative prior proposed by Jeffreys (1939/67). Also, expressions similar to (3.16)
have been derived in many papers, including Jaynes (1968), Good (1969), and Kashyap
(1971).

4. EXISTENCE OF 7*

In Section 2, the frequent need for truncation of ® was introduced. Using the tech-
niques in Section 3, we feel that it will generally be possible to obtain 7}, , the truncated
reference prior (with respect to I'™). In Section 2 we also suggested defining the reference
prior (with respect to I') by

i (') = ml—I>noo .ﬂ'f:n(Ao), (4:.1)
where Ay is a fixed compact set _in ©4. Does this work? |

When 7 is not restricted to a class I', or when the restrictions in I' are strong enough
to induce propriety of 7* in (4.1), then we believe that (4.1) generally yields successful
results. Consider, for instance, Example 5.

Example 5 (continued). Suppose £ = 2 and

/ (1+62)/T(6)e % df < oo
©

for ¢ > 0. Then it is easy to check that 7* defined by (4.1) exists. Indeed it can be
normalized to be a proper distribution given by

7*(8) = \/I(8) exp{—Xo + A10 + X26*}16(0),

where

/ 6°/I(8) exp{—Xo + A10 + X26*}d = v;, i = 0,1,2.
©
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If, for instance, p(z|6) is normal with known variance, then I(6) is constant and 7* can be
easily verified to itself be a normal density with mean v, and variance (y2 — 73). O

Unfortunately, even (4.1) is not always successful in defining a sensible 7*, as a version
of Example 6 demonstrates.

Example 6 (continued). Suppose that 1/I(6) is not integrable as § — +oo. Then it is easy
to see that (4.1) yields (ignoring 7% (Ao) which here has no effect)

™(6) = lim %, (6)

= e__.l bl+1 I(0 (bi:bi+1](0)'
= «/I(G d6

(This can be renormalized to have total mass one if desired.) The problem is that the tails
of 7* in (—o0,b;] and (bg,00) have disappeared, so that 7* is no longer in the specified
quantile class. (]

In the above example, the failure of the reference prior approach to find a “good”
noninformative prior w.r.t. I'g is less a failure of the approach than an indication that the
question is ill-posed. If one only specifies quantiles, it is natural that a “noninformative”
prior will seek to spread out the tails as much as possible, and this cannot be done while
preserving the specified quantiles if the parameter space is unbounded. (Choosing a specific
very large m is also not a viable solution; the ensuing statistical answer can depend very
strongly on m.) This is related to the essential impossibility of choosing a “noninformative”
prior to test between models of different dimensions. For some problems, there simply do
not exist “good” noninformative priors.

5. CONCLUSIONS

We have outlined a mathematical framework for determining a “reference” noninfor-
mative prior, a framework which we feel would generally be successful when success is
possible. The examples indicate, however, that great care must be taken in the mathemat-
ics, and in recognizing the possible difficulties that can occur (providing further verification
of Hartigan’s cautions in Bernardo, 1979). Our current view is that, due to the mathe-
matical complexities, formal attempts to implement the above framework are probably an
inefficient use of time. Rather, one should use the framework to heuristically suggest non-
informative priors, which can then be studied from a variety of viewpoints for suitability
(see, e.g., Bernardo (1979) and Berger and Bernardo (1988)).
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