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SUMMARY 
Noninformative priors are developed, using the reference prior approach, for multipara- 

meter problems in which there may be parameters of interest and nuisance parameters. 
For a given grouping of parameters and ordering of the groups, intuitively, according to 
inferential importance, an algorithm for determining the associated reference prior is 
presented. The algorithm is illustrated on the multinomial problem, with discussion of 
the variety and success of various groupings and ordering strategies. 
Some key words: Bayesian inference; Multiparameter problem; Noninformative prior. 

1. INTRODUCTION 
In the development of noninformative prior distributions, Bernardo (1979) explicitly 

recognized the importance of identifying the parameters of interest and the nuisance 
parameters, and tailoring the noninformative prior to this choice; a global noninformative 
prior distribution, e.g. that of Jeffreys (1961), will not always be adequate for inferences 
about different parameters within a model. Many of the 'counterexamples' to noninforma- 
tive priors, e.g. those of Stein (1959) or Dawid, Stone & Zidek (1973), provide dramatic 
illustrations of this fact. 

The reference prior approach of Bernardo (1979) addresses this problem by suggesting 
a two-step reference prior. First, find the conditional reference prior for the nuisance 
parameters given the parameters of interest; then find the reference prior for the para- 
meters of interest in the marginal model formed by integrating out the nuisance parameters. 
This procedure worked well in the examples considered by Bernardo (1979) and in 
subsequent work such as Bayarri (1981, 1985), Bernardo (1980, 1981, 1982, 1985), 
Bernardo & Gir6n (1988), Eaves (1983,1985), Ferrandiz (1982), Lindley (1988), Mendoza 
(1987, 1988) or Sendra (1982). 

Recently, two limitations of the method have been observed. The first is somewhat 
technical, but often crucial. The conditional reference prior found in the first step is often 
improper, and yet is subsequently used to form the marginal model for the parameter 
of interest. Attempts to justify this step rigorously revealed a rather surprising necessity: 
one must 'normalize' even improper conditional reference priors. The normalization, and 
indeed the entire calculation, is done by a limiting operation on proper versions of the 
problem; Berger & Bernardo (1989, 1992) illustrated this in estimating a product of 
normal means, and for balanced variance components, respectively. 



The second recent observation is that merely grouping the parameters of a model into 
parameters of interest and nuisance parameters may not go far enough. Allowing multiple 
groups 'ordered' in terms of importance may be needed, with the reference prior being 
determined through a succession of analyses for the implied conditional problems. In 
fact, experience leads us to recommend providing a complete ordering of all parameters 
of a model, so that the reference prior is determined through a series of one-dimensional 
conditional steps. 

In 9 2, we introduce the general m-group reference prior algorithm. Section 3 applies 
the algorithm to the multinomial problem. Section 4 presents conclusions and discussion. 

As background for the developments in the paper, we mention our overall philosophy 
concerning noninformative priors. This begins with the observation that noninformative 
priors seem to be popular in applied Bayesian work; even the most avowed subjectivists 
seem to use heavily noninformative priors, perhaps with profuse apologies, when 
analyzing data. The second cornerstone of our philosophy is that no one has succeeded, 
or is ever likely to succeed, in defining unambiguously 'noninformative' priors in an 
absolute sense. Our goal is the more modest one of developing an algorithm for generation 
of priors that have a minimal impact on the Bayesian analysis when compared with the 
impact provided by the data. The concern is that, in higher dimensions, noninformative 
priors, such as the Jeffreys prior, can have hidden features that have a dramatic, and 
unrecognized, effect on the answer. 

The reference prior approach, especially the new approach discussed herein of develop- 
ment through a series of one-dimensional conditional steps, seems to be remarkably 
successful in obtaining noninfluential priors in higher dimensions. Evidence of this can 
be found in the papers mentioned above; Ye & Berger (1991) successfully deal with the 
notorious exponential regression model, and there are numerous, as yet unpublished, 
examples. Indeed we have, as yet, found no example in which the recommended reference 
prior algorithm has led to a 'bad' prior, bad in the sense that the resulting inferences 
seem undesirable. We certainly do not claim that this reference prior approach is 
guaranteed to produce results with no undesirable characteristics, but its successes and 
lack of counterexamples are impressive. 

We do not seek in this paper to explore or justify the above comments. Rather, the 
goal is to present carefully the modified reference prior algorithm, so as to allow study 
and application by others. Because of this, the example chosen is probably the most 
perplexing for the theory, namely the multinomial example. For this, the issues of 
'parameter of interest' and parameter 'ordering' are particularly relevant, and lead to a 
recognition that there are numerous possible definitions of 'noninformative'. Anyone 
seeking to apply the reference prior algorithm should be aware of this ambiguity. 

The results for the multinomial problem are of independent interest. For instance, one 
of the reference priors developed has the appealing property of being consistent with 
respect to marginalization over 'nuisance' cells, a property not shared by, say, the Jeffreys 
prior. 

2. NOTATIONAND THE ALGORITHM 

2.1. Notation 
We consider a parametric statistical problem in which the random observation X has 

density p ( x  1 8), where 8 E O c R~ is the unknown parameter. We assume that the Fisher 
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information matrix 

exists and has rank k, so that 

also exists. Often, we will just write H and S. 
We assume that the 8, are separated into m groups of sizes n,, . . . ,n,, and that these 

groups are given by 

1 = 1 - . - ,n 8(2)= (enl+,,. - - ,enl+,,), . - - ,  
i N 1 + l  - - N - e ( m ) =  ( ~ ~ , , - ~ + l ,- - Ok), . 

where N, = n, +. . . +nj for j = 1, . . . ,m. Also we define, for j = 1, . . . ,m, 

'4,1= (e(l),- . - O(,)), 6,-j] =@(,+I),. . . ,e(m)).9 

Finally, we write S as 

so that A,, is n, x n,, and define S, to be the upper left N, x 8.corner of S, with Sm=S, 
and Hj=Syl; then the matrices hj, defined to be the lower right nj x nj corner of Hj, for 
j = 1, . . . ,m, will be of central importance. Note that h, =H, =A;: and, if S is a block 
diagonal matrix, that is Av =0 for all i +j, then hj =A,?', for j = 1, . . . ,m. Defining 
Bj = (Ajl . . . Aj(j-l)), for j =2, . . . ,m, iterative expressions for computing these quantities, 
in general, are 

where any entry containing a factor of H, is to be omitted. In the important special case 
where each nj = 1,no matrix inversions are needed above. An even greater simplification 
occurs if, in addition, Bit, = (ciBi, Ai+li) for some constant ci. Then, 

hi+,= [A(i+l)(i+l)+c:Aii -2ciA(i+l)i -hi(ciAii -~( i+l) i )*l- ' -  
Finally, if O* c O, we will define 

we will use the common symbols IAl =determinant of A, 

1 YE^), 
0 otherwise, 

and will throughout the paper adopt the conventions that 



2.2. The m-group reference prior 
We suppose the Bi have been ordered and divided into the m groups 8(,),. . . , 8(,). 

Note that the ordering within the groups does not matter; see 5 2.3 for discussion of the 
grouping and ordering. 

When the reference priors that are developed turn out to be proper, see, e.g. § 3, matters 
are straightforward. Often, however, they are improper, and care must be taken in their 
definition. In the improper case we proceed by specifying, see 5 2.3 for discussion, a 
nested sequence O 1 c02c... of compact subsets of O such that 

m uO1=O.  
I = 1  

A reference prior is determined on each compact 01, for which the result is typically a 
proper prior, followed by performing a limiting operation. Specifically, one follows the 
following algorithm. 

Start. Define 

where the integral is over the range 01(8[rn-11).  
Iteration. For j = m -1, m -2, . . . , 1, define  

-- ~;+1(8[-j]1 e[j1)exp {;~;[(log 1 hj(8)l) 1 , (2.4).I exp {$f[(log Ihj(8)I)10[,11)do(,) 
where the integral is over the range 01(8[j-11)and where 

~ ; [ g ( o )I ~ [ j l )= l g(8)?i:+1(8[-jl I 8[jl) de[-jl, (2.5) 

where the integral is over the range {8[1j1: (OLjl,8[-jl E 0'). Note that it is easy to 
check, by integrating in turn over 8(,) , 8(,-,) , . . . , B(j),that T:defines a probability 
distribution. For j = 1, interpret 8[-01as 8 and 8[,] as vacuous, and write 

= ~:(~[-o11~[01). (2.6) 
Finish. befine the m-group reference prior, assuming it yields a proper posterior, by 

~ ( 8 )= lim -r i ( e )  
l+m T'(o*)'  

where 8" is some point in O1.  
Note that, if the integrals and expectation in (2-3)and (2-4) are finite when the '1' is 

removed, i.e. when O1 is replaced by O everywhere, then the reference prior is defined 
simply by T,, so that (2-7)is not needed. 

The calculation of the m-group reference prior is greatly simplified under the condition 
lhj(8)1 depends only on OLjl  ( j  = 1, . . . , m). (2.8) 

LEMMA2.1. If (2-8) holds, then 

where the integral is over the range 01(8[i-11). 
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ProoJ: Using (2.8) it is clear that 

~ f [ l o gIhj(8)I18,,11 =log Ihj(8)I- 
The result is immediate from (2.4). 

2.3. Motivation and explanation 
Ordering and Grouping. What ordering should be chosen for the Oi ? In nonhierarchical 

models, as considered here, we suggest the ordering be in terms of the inferential 
importance of the 8;. In particular, the parameter, or parameters, of interest should be 
first. Note that, as argued by Bernardo (1979), a cornerstone of the reference prior 
approach is that the reference prior may change as one focuses on different parameters, 
even within the same study. 

On the issue of grouping of coordinates, our advice is: do not group without a very 
good reason. Thus the k-group reference prior, each stage having ni = 1, is generally 
recommended. At one time (Berger & Bernardo, 1989) we advocated creating two groups, 
with 8(1) being the 'parameters of interest' and 8(,, being the 'nuisance parameters'. 
Examples of unsuitable performance, to be discussed elsewhere, led us to consider 
additional groups, eventually leading to the present recommendation. An example in 
which one might choose to group is discussed in § 3.4. Incidentally, within groups the 
ordering of the Oi is immaterial. 

Choice of the 0'. To reiterate, when the reference priors are proper there is no need 
to consider compact 0'.And even when improper, the reference prior is often unaffected 
by the particular sequence (0 ' )  chosen. 

When needed, our typical choice of the (0 ' )  is simply a collection of nested rectangles 
in 0 ,  or other appropriate shape if 0 is not an 'infinite' rectangle. This is based on the 
heuristic idea that the 0' should reflect the type of set on which we would state 
'noninformativeness' if we had to choose a compact set, though by choosing a nested 
infinite sequence we do not commit ourselves to any particular compact, and it is often 
the case that parameterizations are chosen so that one is 'noninformative' about natural 
regions, e.g. rectangles, in that parameterization. This is admittedly quite vague and, to 
be honest, we are unhappy when the choice of (0 ' )  matters. Note that consideration of 
limits of compacts is also necessary in certain other approaches to development of 
noninformative priors; Cifarelli & Regazzini (1987) and Consonni & Veronese (1989) 
are two recent such references. 

The motivation for the k-group reference prior algorithm. Bernardo (1979) discussed the 
motivation for the reference prior approach. The idea is basically to choose the prior 
which, in a certain asymptotic sense, maximizes the information in the posterior that is 
provided by the data. We will not repeat the discussion here. 

Berger & Bernardo (1989) presented a treatment of the case k =2. The idea is to first 
find the reference prior for 02, at each given value of 81, calling this the 'conditional 
reference prior' ~ ' ( 8 ~ 1 8 , ) .  Assuming asymptotic normality for the model, the argument 
of Bernardo (1979) leads (Berger & Bernardo, 1989) to 

Since this would subsequently be combined with a 'marginal' reference prior for 81, it 
was realized that normalization would be important. Hence the 0' were introduced, in 
case 1 81) was actually defined as the normalized h2(e1, 8,)lf was not integrable, and ~ ' ( 8 ~ 1  



version of (2.10). This is directly analogous to the 'start' of the reference prior algorithm 
in § 2.2, which gives 7ri(8(,) 1 8(1),. . .,e(,-,,). 

Reverting to the two parameter case for simplicity, the natural next step is to form the 
marginal model for 81, by integrating out 8, with respect to ~ ' ( 8 ,  I el), and then to find 
the reference prior for 8, in this marginal model. This approach unfortunately requires 
the determination of H ( e l )  for the convolution of p(xl 81, 0,) and ri(8,1el). Such is 
frequently not available in closed form, limiting the usefulness of the approach. Thus, 
we consider Z = (XI,  . . . ,X,), where the Xi are independently and identically distributed 
p (x  1 81, 02), and derive the marginal model 

Applying the reference prior algorithm of Bernardo (1979) results in the 'marginal' 
reference prior for 8, 

Multiplying this by the 'conditional' reference prior ~ ' ( 8 ,  101) gives the overall reference 
prior 

But this is just the numerator in (2.4), when m = k =2 and for j = 1. The denominator 
in (2.4) is just the appropriate normalizing constant. Details of this argument are given 
by Berger & Bernardo (1992). 

Further stages, when m >2, are handled in exactly the same manner yielding (2.4) as 
the stage-to-stage updating formula. The net result is r i (8 ) ,  the m-stage reference prior 
on the compact 0'. Under reasonable conditions, the reference prior can now be obtained 
by passing to the limit via 

~ ( 0 )= lim -.r'(e> 
~ ' ( e * ) '  

where 8" E O1 is any fixed point. Note that the main condition is that the posterior 
obtained from this r ( 8 )  be proper. The above argument is meant to be only heuristic, 
and does not provide our definition of a grouped reference prior; the definition is given 
via the algorithm in § 2.2. For a partial indication of the difficulties of making the heuristic 
argument precise see Berger, Bernardo & Mendoza (1989). 

3. THE MULTINOMIAL DISTRIBUTION 

3.1. Preliminaries 
Calculation of m-group reference priors for the multinomial distribution is compara- 

tively simple because all distributions involved turn out to be proper, and the integrations 
in (2.3) and (2.4) can be done in closed form. First, some preliminary formulae are 
given; 0 3.2 develops the m-group reference prior; § 3.3 investigates properties of the 
reference prior; 9 3.4 is discussion. 
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We write the multinomial density for k +  1 cells as 

p ( r l , .  . . ,rkI o l , .  . . ,ok)=[n!{ ( i }i = l  o k , (3.1) 

where ri is the observed frequency in cell i, Oi is the probability of cell i, n is the total 
number of observations, 

Note that, in our notation, we will suppress the cell count and probability for the (k  + 1)st 
cell. 

We assume that the 0, have been ordered and grouped as discussed in § 2.3, see also 
99 3.4 and 4, and we freely use the associated § 2 notation. Calculation yields 

H(Ol, . . . ,Ok)= n diag {Or1,. . . ,Oil)+ n(1- ak)-'lk, 
where diag { .}  stands for the diagonal matrix with given entries, and lk  stands for the 
k x k matrix of all ones. Further calculation yields 

From this, it is clear that 
1 1 Sj =-diag (0, ,. . . ,0-1 -- 06] 0[ n n 

and, since Sj has the same structure as S, it must be the case that 
H.=S:'=I J n diag{O;',. . . ,0 ~ ~ ) + n ( l - 6 ~ ~ ) - ' 1 , , .  

Furthermore, an easy calculation yields the determinant of the lower right n, x nj corner 
of Hj, 

Thus we have available, in closed form, all the quantities needed to apply the reference 
prior algorithm. For use in the following, define the constants 

57' ( 2 4 'C2,-1=--- C -(1-I)!' *'-{(21-1)(21-3) . . . (I)} (3.3) 
for all positive integers 1. 

3-2. The multinomial m-group reference prior and posterior 
All distributions that will be encountered have finite mass, so that there is no need to 

consider a compact sequence {a').Hence all formulae in § 2.2 will be applied with the 
'1' superscripts removed. Note also that, here, (2.2) becomes 

O(,+,,: all elements of O(j+l, are positive 
with sum less than (1 -a,,) 

The following lemma provides the crucial calculational development for the reference 
prior. It can be proved by iteratively integrating over ON,, . . . , 



THEOREM3.2. The m-group reference prior is given by 

The m-group reference posterior is 

ProoJ: Since the lhj(8)l satisfy (2.8), Lemma 2.1 yields 

From (2.6), (2.4), and Lemma 3.1 it follows that 

Telescoping the product yields (3.5), and (3.6) is immediate from (3.1). 

Two interesting special cases are the 1-group and the k-group reference priors. 

Case 1: The one-group reference prior. If m = 1, (3.5) yields 

which is, of course, Jeffreys's noninformative prior. 

Case 2. The k-group reference prior. If m = k, that is all group sizes are ni = 1, then 
(3.5) yields 

This is actually the reference prior that we will recommend for typical use. 

3.3. Properties of the reference prior and posterior 
Marginal distributions. The marginal probability distribution of ( r , ,  . . . ,r,) is also 

multinomial, with cell probabilities 81,. . . ,8, and sample size n, so that all other 
observations are lumped together into the new (I+ 1)st cell, which is the union of the 
(1+1)st through (k+  1)st cells in the original multinomial. It is of considerable interest 
to see whether or not the m-group reference prior 'marginalizes' consistently, in that the 
reference prior for the 'collapsed' (I+ 1)-cell multinomial be the same as that obtained 
by finding the marginal distribution of 81, . . . ,8, from the original m-group reference 
prior. The following lemma provides the answer. For simplicity we assume, with the 
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exception of (3.1 I), that the marginalization is done over groups. The proof of this lemma 
is tedious but standard. 

LEMMA3.3. For the prior ~ ( 8 )  in (3.5), the marginal reference prior for 8(,, ,. . . ,8(j, is 

The marginal reference prior for 8(1) is 

while that for 81, . . .,el, when 1 <n,, is 

Typically, of course, one will be interested in the marginal posteriors, rather than the 
marginal priors. These are immediate from the marginal priors, however; simply multiply 
by the likelihood from the corresponding marginal multinomial distribution. For instance, 
the marginal posterior for 8(1) is 

where the sum is over the range i = 1, . . . ,n,. This could, of course, also have been 
obtained by calculating the marginal density of 8(1) from (3.6). 

To return to the question posed at the beginning of this section, we see that (3.9) and 
(3.10) are of exactly the same form as (3.5). Hence, if we reduce consideration to the 
first j groups of parameters 8(1), . . .,8( j,, the answers obtained by marginalizing from 
the original m-group reference prior are identical to the answers obtained by treating 
the j groups as a 'new' multinomial problem. This property may be viewed to be valuable, 
because of the following well-known example. 

Example. Suppose we have the multinomial model with 81,. . . ,On,. Consider the 
1-group reference prior, which is Jeffreys's prior, here 

The posterior means of the Oi are then 

Now suppose one notices that the (n - r1-. . . - r,,) observations in the (n + 1)st cell 
could have been further subdivided into n,+ 1 new categories; say one discovers a new 
classification scheme into n, categories for elements in this cell. Then one has the apparent 
option of adding rnl+,, . . . ,r,,+,, and 8,1+1,. . . ,8,,+,, to the multinomial model. If one 
did so and used Jeffreys's prior, which would then be 



a calculation shows that the posterior means of the 8, would now be 

The creation of new cells can thus have a pronounced effect on posterior beliefs about 
existing cells. 

The m-group reference prior is essentially immune to this difficulty, since the marginal 
prior, and posterior, for, say, 8(1) is the same no matter how many additional groups, or 
cells, are added. This needs two qualifications, however. The first is that the marginali- 
zation property does not hold for all groups; it holds only for an initial sequence 
(8(,),. . . ,8(j,). Of course, by construction it is 8(1) that is supposed to be of interest, so 
that this should not be an objection. 

The second limitation of the marginalization property is that it does not hold within, 
say, 8(1). This can be seen from (3.11), where the marginal reference prior is not of the 
form (3.10), and is hence different from that which would have been obtained had the 
problem been originally confined to ( e l ,  . . . ,8,). We defer further discussion of this issue 
to § 3.4. 

Moments of the reference priors. For comparing and understanding the group reference 
priors, it is useful to have expressions for their moments. Proof of the following is 
straightforward. 
LEMMA3.4. For Nip, +1s 1s Nj and ~ ( 8 )  deJined by (3.5), 

If all ni = 1, 

If s = 1, but ni is arbitrary, 

Finally, the mean for the ( k +  1)st cell is 

3.4. Discussion of the multinomial problem 
The multinomial scenario dramatically demonstrates how the m-group reference prior 

can 'decouple' groups of coordinates. Thus the inferences obtained for 4,)will depend 
only on (r, ,  . . . ,r,,) and n, and not on what happens in other cells, or how many other 
cells there are. This is a natural property when, indeed, 8(1) is of interest and the other 
parameters are nuisance parameters. Note that standard noninformative priors, such as 
Jeffreys's prior, do not have this property. 

The desirability of this property can, however, be questioned. It requires an asymmetric 
treatment of the 8,, and in problems where there is a small number of fixed 'indistinguish- 
able' cells, such asymmetry may be unappealing. 
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To dramatize the difference, consider the two extremes of the 1-group and the k-group 
reference priors in (3.7) and (3-8). From Lemma 3.4, one sees, for instance, that the 
prior means of the 0' are (1 +k)-' for the 1-group Jeffreys's reference prior, but are 2-' 
for the k-group reference prior. Thus the 1-group reference prior treats the 0' equally, 
while the k-group reference prior gives exponentially decreasing mass to the 0' as i 
increases. 

This situation clearly demonstrates the impossibility of unambiguously defining 'non- 
informative'. Initially it seems reasonable to insist that a noninformative prior for a 
multinomial problem be exchangeable, and to require that it have the marginalization 
property; but these requirements are completely incompatible. Through consideration of 
a variety of examples we have convinced ourselves that the marginalization property is 
typically more important, and hence that the k-group reference prior is typically more 
attractive, but some flexibility is clearly required. In particular, if one has a small number 
of cells of interest, between which exchangeability seems very natural, it would clearly 
be tempting to use a 2-group reference prior, guaranteeing the marginalization property 
for the group of parameters of interest, while preserving exchangeability within the group. 
Thus, one might well want to be 'subjectively noninformative'. 

If it is only 0(,, that is of interest, note that there is no reason to even formally consider 
use of an m-group reference prior. The result will simply be that obtained by collapsing 
the original multinomial to the (n, +1)-cell multinomial, with cell probabilities determined 
by 0(,,, and then using Jeffreys's prior for 0(,,. Thus, in practice, one needs to formally 
use the m-group reference prior only if more than the first group is of interest. Of course, 
this will typically be the case if the recommended full k-group reference prior in (3.8) 
is utilized and several of the 0' are of interest. 

We have considered m-group reference priors as a possible solution to the clear-cut 
need in multiparameter problems for developing noninformative priors with limited 
dependencies between groups of parameters, especially parameters of interest and nuis- 
ance parameters. There are different possible views on the success of the solution. 

The least commital view is that the m-group reference prior method succeeds in 
generating a variety of interesting possible noninformative priors. For instance, (3.8) is 
very interesting for its marginalization property and is, to our knowledge, new. As 
candidates for in-depth study or for Bayesian sensitivity studies, these can be very useful 
noninformative priors, especially because of their ability to 'decouple' parameters. In 
this regard, the 1-group Jeffreys and k-group reference priors are likely to exhibit the 
greatest differences and, if a Bayesian analysis yields essentially the same answer for 
either prior there is reason to be confident in the answer. 

The more optimistic view about m-group reference priors, in particular about k-group 
reference priors, so that each group has only one parameter, is that they provide the best 
available 'automatic' priors for general use. Our preference for the k-group reference 
prior is, for the most part, empirically based. In all examples we have considered, including 
many of the 'counterexamples' to Jeffreys's or other noninformative priors, the k-group 
reference priors have yielded very sensible results. 

Our enthusiasm for k-group reference priors is slightly tempered by two issues we 
have touched on. First, they can be technically difficult or ambiguous to derive, especially 
when limits over (0')are needed. This can obviously reduce their pragmatic appeal, 



although derivation of the k-group reference prior could be considered to be the 
theoretician's job, in which case the user is not affected. 

The second difficulty with k-group reference priors is that they can depend on the 
ordering of the parameters and it can be difficult to decide on a complete ordering, 
especially for the nuisance parameters. One possibility is to order the parameters of 
interest, but group all nuisance parameters together, or maybe have several groups, when 
natural. Ordering within groups does not matter, and grouping nuisance parameters is 
rarely harmful, so this is often a sensible resolution of the ordering problem. A second 
possible solution is to try several different orderings, and see if it matters. Note ,indeed, 
that the ordering or groupings of nuisance parameters frequently is immaterial, as in the 
multinomial problem. A third possible solution is to use the average of all the k-group 
reference priors from feasible orderings. 

Many other issues could be raised. One of the most important is that of inference 
about functions (p(0,, . . . ,Ok) of the parameters. Reference prior theory, see, e.g. 
Bernardo (1979) or Berger & Bernardo (1989), requires a reparameterization, with 
q(0, ,  . . . ,ek) defined as the 'new' 0(,,, before the reference prior can be determined. 
Luckily short-cuts appear to be available, so that it is not necessary to completely redo 
the reference prior development for every function that is of interest. This work will be 
reported elsewhere. 
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