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Reference Priors in a Variance
Components Problem

James O. Berger !
José M. Bernardo?

Abstract

The ordeted group reference prior algorithm of Berger and
Bernardo (1989b} is applied to the balanced variance compo-
nents problem. Besides the intrinsic interest of developing good
noninformative priors for the variance components problem, a
number of theoretically interesting issues arise in application of

» the proposed procedure. The algorithm is described (for com-
pleteness) in an important special case, with a detailed heuristic
motivation, :

Keywords and Phrases: Noninformative priors; Multipararm-
eter; Reference Priors; Bayesian Inference.

1. INTRODUCTION

Determination of reasonable noninformative priors in muliiparameter
problems is not easy; common noninformative priors, such as Jeffreys’s
prior, can have features that have an unexpectedly dramatic effect on the
posterior. In recognition of this problem, Bernardo {1979), proposed the
reference prior approach to development of noninformative priors, the key
feature of which was a possible dependence of the reference prior on speci-
fication of parameters of interest and nuisance pararieters.

This approach was further extended in Berger and Bernardo {1988a,
1989b). The first paper introduced a technically important modification:
the reference prior algorithm was utilized in two stages -~ first for the nui-
sance parameter and then for the parameter of interest, as in Bernardo
(1979) - but it was applied on an increasing family of compact subspaces of
the parameter space, allowing a crucial first stage prior normalization to be
performed. The second paper greatly extendéd this idea to deal with mul-
tiple nuisance parameters and parameters of interest, allowing for iterative
application of the reference prior algorithm to any sequence of groupings
of the parameters. This paper also contained examples and extensive dis-
cussion concerning how and when to group the coordinates.
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178 J. O. Berger & J. M. Bernardo

An interesting situation in which to illustrate the new algorithm is the
balanced variance components model, which has for parameters a mean
#, and two variances v2 and o7 (see Section 4 for specifics.) The interest
in considering this situation, besides the basic importance of the model in
statistics, is that all the possible grouped reference priors can be determined
and compared, and that inferesting technical issues arise in application of
the algorithm. The grouped reference priors are given in Section 4, along
with a detailed derivation in the most difficult (and theoretically interest-
ing) case. This section also gives a useful calculational expression for the
ensuing posterior moments, an expression requiring only one-dimensional
numerical integration.

The needed notation and results about patterned information matrices
are presented in Section 2. In Section 3, a special case of the grouped refer-
ence prior algorithm, that was developed in Berger and Bernardo (1989b),
ir reviewed and a detailed heuristic motivation for the algorithm is pre-
sented. In Section 5, we present concluding comments.

2. NOTATION AND PRELIMINARIES

The genera.l. algorithm will be presented for any parametric statistical
problem in which the random observation X has density p(z|6), where 8 €
© C Rk is the unknown parameter. We assume that the Fisher information

matrix o
H(0} = —E; [(5@-‘-55: log p(::lt?))]
exists and has rank k, so that
5(8) = H™'(8)

also exists. Often, we will just‘ write I and S.
We assume that the &; are separated into m groups of sizes ny, na, . .., 2,
and that these groups are given by

3(1) = (_81’ vy By )y 9(2) = (aﬂz +1ly0 "gﬂl‘!'ﬂ?)' e
g(:) = ('9N.'._1-I--1: vy 8Na)1 v gfm} - (BN 1l 91:)1

where Nj = J_, n; for j = 1,.. ,m. These are the groupings to which
the reference prior algorithm will be applied. (The coordinates of # can, of
cdu;se, be reordered if necessary - see Section 3.2- to achieve the desired
ordered grouping.) Also we shall define, for j = 1,. ., m,

oy =y, -0 and Gosp = (Byeny, o Bgmy)-

If we write S as

An AL AL

- Ay Ax . Al

Aml Am? e Amm
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so that Ay is (n; x n;}, and define
S; = upper left (Nj x N;) corner of S, with §5, = 5, and H; = .S'J-‘1

then, the matrices hj = lower right (n; xnj)cornerof Hj,j=1, ..,m will
be of central importance Note that, if one defines B; = (Aj1.4;2 - Ajj-1)
for j = 2,...,m, of sizes (n; X Nj._1), then it is straightforward to verify

that, for 7 =1,...,m

hj = (Aj; ~ BiH;-1B})™! (2.1)
and .
_ (Hj-1+HjBjh; BjHjy ~Hj_1B}h;
H;= ( _h;B;H; Iy » (22

where any entry containing a factor of Hy is to be omitted. Thus, one may
iteratively calculate Hy, .., Hpm, and hence hq, ..., ;.

In the important special case where each n; = 1, no matrix inversions
are needed above, so that calculation of the hy is trivial if § is available.
An even greater simplification occurs if, in addition,

B,‘_]..]_ = (C;Bs, A,‘+,1 s') (2 3)

for some constant e; Then, (2.1}, (2 2), and (2.3) can be used to show that
-t
hiy1 = [A:‘+1 i1 FE A —2eiApgr i — hi (A — Ain ;")z] . (24)

This is particularly useful when (2.3) holds for all 4, which cften occurs in
patterned covariance matrices, since then (2 4) can be used to iteratively
determine all the h;, starting with by = Al‘ll, and defining ¢; = 1. Finally,
if S is a block diagonal matiix, (i.e , Aij = 0 for all i  j) then h; = AJT;-I,
j=1...,m
We will use the common symbols
L , 1 ifyen .
|A] = determinant of A, la(y)= { 0 otherwise,

and will throughout the paper adopt the conventions that Zf:__} y=0
and Hi;,l( } = 1. Also, we will often use p(u|v} to generically represent the
conditional density of u given v.

3. THE m-GROUP REFERENCE PRIOR
3.1. The Algorithm

We suppose the g; have been ordered and divided into the m groups
8¢1)s 1 8(m). When the reference priors that are developed turn out to be
propet, matters are straighforward. Often, however, they are improper, and




180 I O Berger & J M. Bernardo

care must be taken in their definition. In the improper case we proceed by
specifying (see Section 4.2 for discussion) a nested sequence ©! C ©? C |
of compact subsects of & such that U}’;@l = @& TFor simplicity, we shall
assurne that

I .l i 4
07 =01 X Ogzy X+ X Oy,
where @Ei) denotes a set of possible ;). '

For a discussioni on the existence of parametrizations in product form,
see Kass (1989); also, the situation of arbirary ©' is considered in Berger
and Bernardo (1989!)) ' '

A reference prior is determined on each compact @', for which the result
is typically a proper prior, followed by performing a limiting operation.
Specifically, one follows the following algorithm, Note that expresswns for
the h;(§) have been given in Section 2.

Stari; Define

m (O (m—118pm-11) = 75 (8m) 0pn-11)

]hm(g)[lll’}@? )

(3.1.1)

- f@%m) {hm (9)1112‘18("') “
Heration: For j=m—1,m=2,...,1, define
7} (B~ - 10165 -11)
7511 (OpeslOp) exp {32} [(log [ (0)) [01] } Ly, (512)
T o exp {35 [(oglhs (O 1]} 40y -
where, letting Of"_ﬂ = OEJ. Gy X X @Em)’
E} [s(0)lon} = /e 1O Tl (313)

[~31

(Note that it is-easy to check, by integrating in turn over f(m), fm-1y, -
8¢y, that 7r‘ defines a probability distribution ) For j = 1, interpret 8[~u}
‘as 6 and 9[03 as vacuous, and write

(8) = 1 (Bol6po)) - (3.1.4)

Finish: Define the m-group reference prior, assuming it yields a proper
posterior, by

ol
{8) = l1m n ((:)) (3.1.5)
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where 8* is some point in 91,

If the integrals and expectation in (3.1.1) and (3.1 2) are finite when
the “” is removed (i.e., when ©* is replaced by © everywhere), then the
reference prior is defined simply by =y (i.e., (3.1 5} is not needed). It should
also be observed that the condition

[h;(8)] depends only on £y, (3.1.6)
resuits (for the iteration corresponding to j) in (3.1.2) being replaced by

A ()12 1o

I . : o Gy
1'T.?'{B[."-'(J—I)]lgi?—1]) -}l(gl“J]wa])[ ]h (9)|1/2 dﬂ{ ) (3'1"7)

3.2. Motivation and Discussion

We suggest that in nonhierarchical models (as considered here) the or-
defing of the #(;y should be in terms of their inferential importance. For
instance, in the variance components scenario, to be considered in Section
4, if inference concerning the “between” variance, T2 1s the pr:ma:y goal,
with the population mean, s, and “within® variance o2 bemg nuisance pa-
rameters, then the suggested ordering would be 8y = 73,8, = 1,83 = a3,
or maybe 8; = 72,8, = 2,83 = p. For inference concerning g, on the oher -
hand, (g, 7%, ¢%) or (4,02, 7%) would be the suggested orderings. On the
issue of grouping of coordinates, our advice is: do not group without a very
good reason. Thus the k-group reference prior (each stage having n; = 1)
is generally recommended. Incidentaly, within groups the ordering of the
8; is immaferial.

When the reference priors ate proper there is no need to consider compact
©' And even when improper, the reference prior is often enaffected by the
particular sequence {©'} chosen. When needed, our typical choice of the
{6} is simply a collection of nested rectangles in © {or other appropriate
shape if © is not an “infinite” rectangle).

In Bernardo (1979) the motivation for the reference prior approach is
discussed: The idea is basically to chdose the prior which, in a certain
asymptotic sense, maximizes the information in the posterior that is pro-
vided by the data. We will now summarize the argument for the simple case
k = 2. We stress that the argument below is heuristic and that, rather than
irying to make it precise, we choose to define the grouped reference prior
as that determined by the algorithm in Section 3.1. (See Berger, Bernardo
and Mendoza (1989} for an indication of some of the difficulties in making
the heuristic argurhent precise )

Let = be the result of an experiment which provides information about
g1, accoxdmg to the probability model p(z|61,82), (81,02) € ©, where 85 is
some nuisance parameter, and let ©' be a compact approximation to the
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(joint) parameter space ©. Let 2 = {z1, , T¢} be the result from ¢ con-
ditionally 1ndependem‘, replications of the ongmal experiment; the amount
of information I{*{p(f,8:)} to be expected about 8 from z;, when the
prior is p(Bl,Bg), is defined to be (Shannon, 1948; Lindley, 1956)

(s, 0)} = /Ip{Zg) / p(61]z¢) log 2 (lf?[z)‘)dﬁ' dz,

Using a variational argument, it may be shown under certain conditions
that, for any fixed p(0;}6:), this is maximized by a prior m¢(th} which
satisfies .

7i(8)  exp { / p(z:]61) log p(ell;f)dz,} : (321)

where p(z:|6h) = [ p(z[01,92)p(6201) df>

Note that {3 2 1) only defines m(8;) implicitely for given ¢, since p(f1]2:)
depends on m{f1). As ¢ — oo, perfect knowledge is app:oached so that
7¢(81) approaches that prior which, given p(f2|f1), maximizes the missing
information about &;; this is referred to as the reference prior.

Moreover, as t —+ 0o, and under appropriate regularity conditions, p(f1|2)
is approached by the asymptotic marginal posterior distribution of #4,
N{BIIB;, 51(91,92)}, where 51(51,32) 18 th& upper left corner of 5(31,92),
the inverse of Fisher’s information matrix H{#,9:). For convenience, we
will denote this marginal posterior by N{8).

It follows that, for each conditonal prior p(#2[f:), and for ¢ large enough,
one may write

m(8) { z,iﬂ;)logN(ﬁl)dzg}
~ exp{ / [ (01, 62101) logN(Hl)dBIdeg}
= exp{ { (81,leel,eg)p(ﬁziﬁl)dﬂg}logN(Gl)d91d92}
- exp{ p(ﬁgl&l) [ [ / p(6r, 82181, 85) log N (61) deidez} dﬂg}
~ ke { [iniosision, o) e}

where k = (27)Ye~1/2, the last step following from
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//p(él,égwl,gg)logN(Bl) dé;dég

1(6, - 8;)

1 ..
}Dg(zﬂ‘)"i . -2- log 251(91,32) 2 S (3 9 )
1\V1,V2

= [ [ o002t

1 I
~ }og(2~r)‘1 _— Iog [31(91, 92)‘ -

} d6, db;

(smce as { — oo, p(Bl,BQ}BI, 82) converges to a peint mass at (¢, 82), and
6, is asymptotically N{Bllﬂl, 51(91,92)} ).
Furthermore, since by = H; = S71, [hy|'/? = [S;]~%/% and hence,

(02) cxexp {3 [ 010 log I 0,002
oF, nprmalizing over &,
exp {% .]é;” p(B2161) log |1 (61, 92)]“’92}1@;1)

~ , (322
feam exp {% j@le p(f2[61) log [h1 (81, 32)§d92} at

(81) =

which provides an explicit expression for the reference prior #'(8;) corre-
sponding to a given p(f2|f ).

It is natural to choose p(#2{6;) to bBe the condifional reference prior
m{fs]81), i.e. that which, given ¢y, maximizes the missing information about
s By the same argument leading to {3.2.1), this is obtained from

7i(82161) o< exp { [ e, 02108 p(ezlsl,zt)dz,} .‘

Again, as ¢ — oo, and under appropriate regularity conditions, p(6218;, %)
is approximated by the asymptotic conditional posterior distribution of 85
given 6y, N{Bg[ég, h;l(él , ég)} where hy(f1,62) is the lower right corner of
the information matrix H (8, 8»). Hence, for large enough ¢, reasoning as
before yields

ﬂ'11(.32|9z) o exp {/p(z,]Bl,Qz)logN{Bgléz,hz_l(§1,éﬂ}dz,}

exp { [ [ p(61, Balfy, 02) log N{eziéz,h;l(él,éz)}dézde‘z}

~ |ho(6y,02)]H2.
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Thetefore, after normalizing,
|B2(81, 0,2 lot,
for,, 1ha(f, 82)]1/2 dbz -

' (6a16:) = (323)

Finally, the joint referénce prior necessary to obtain a reference posterior
for #; will be defined to be #*(8),8;) = n'(82|61)x'(61) on ©'; hence, if
{©'} is a sequence of compacts expanding to ©, the desired reference prior
is defined to be

©'(81,62)

o (83,63) °
where (87,03) is some point in @' : the denominator is necessary to cancel
out irrelevant multiplicative constants which may diverge as { -» co.

Equation 3.2 3 is directy analogous to “start” of the reference prior algo-
rithm in Section 3.1, which gives #/(8(m){0(1), - -, fm-1)); Equation 3.2.2
provides the motivation for the “iteration” steps, and Equation 3.2.41is a
version of the “finish™ element in the algorithm.

Further stages (when m > 2} are handled in exactly the same manner
yielding (3.1.2} as the stage-to-stage updating formula The net result is
x'(8), the m-stage reference prior on the compact ©'.

(3 2.4)

w(f1,82) =

Table 1. Reference priors for the variance components problem

Ordered Groupmg ~ Reference Prior

{{p,0%, %)} o2 (nr? + o2)32
(o) J5lir? o7y
(w2 ()

{o?, (1,7} o Y(nr? 4 o2)" Y2

{2 (m, 08} Yo~ nr? + o2)~ 12y (,-_:)

{r, (e, 75}, {(c? %), 1}

{p, 0%, 7%} a'é(nfz +a?)~t

{0.2’#’ Tz}’ {02,‘}'2,#}

R B Gt e B Gt SR e 1 ¢

In Table 1, Cpr, = {1 — \/le(\/_'+ Va = 1)7%}, and $(+? /) = [(n— 1)+

(1+ 1rrr2/cr2)_2]”2 Grouping of parameters is indicated by parentheses.




Reference Priors 185

4, THE VARIANCE COMPONENTS PROBLEM

The determination of m-group reference priors for the balanced variance
components problem is of interest, not only methodologically, but also be-
cause it provides an interesting illustration of the téchniques (and possible
difficulties) of the general limiting derivation of #(@) via (3.1 5) Section 4 1
presents the model and the m-group reference priors: Section 4.2 discusses
some of the interesting technical issues that arose in the development. Sec-
tion 4 3 briefly discusses using the reference priors in posterior caleulations.

4,1, The Model and Reference Priors

We consider the balanced variance components model
Xij = p+ o; +eij ; i=1,...,p and j=1,...,n,.

where the a; are iid. N{a:[0,7?) and, independently, the £; are iid.
N(ei;]0,0%). The parameters (g, 7%, 0%) are unknown.

Since there are only k = 3 parameters it is easy to list all m-group ref-
eréhce priors The possible ordered groupings are given in Table I, along
with the associated reference priors. Note that Jeffreys’s prior is that asso-
ciated with the single group {(,u,a r2)}; the prior suggested by Box and
Tiao {1973, p 251) is that associated with {,u, (e*, 7))} Observe that Cp
is typically very near 1, and that

Vi< u() <V

thus, replacing Cp, by 1 and 1 by a constant is reasonable for all but very
small n.

As indicated in Section 3.2, we aré most favorably disposed towards the
last two reference pliors in Table 1, since they correspond to the various
3-group reference priors {each group having only a single element) Note
that, among the 3-group reference priors, only the order of o2 and 72 affects
the answer; thus there are only two 3-group reference priors instead of
the possible six Thus all that need be spec1ﬁed in order to determine
the 3-group reference prior, is whether 2 or r? is deemed to be of more
importance.

4.2. Determination of the Reference Priors

To implement the algorithm in Section 3.1, compact sets ©! must be
selected In deriving the reference priors in Table 1, nested boxes of the

form
= (a;, bf) X (c;, dr) x (ﬁi,fl), for (F:Jza 1_2), (42-‘1)

were chosen, where @; — —o0,¢; and ¢; — 0, and the upper endpoints — co.
This would, intuitively, cozrespond to a presumption of prior independence
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among the parameters. In most cases, the precise choice of the endpoints in
(4 .2.1) was immaterial to the result. Disturbing exceptions were the third
" and last 1eferénce priors in Table 1, where the reference prior actually
depends on

If this limit does not exist, there is no reference prior for these situations
If the limit does exist, the third and last reference priors are, in general, as
given in Table 1 but with C, replaced by

Caln) = 1= A = M) - 2,  422)
where A = v/n ~ 1/+/n. Recalling that (c;, d;) is the range for o2, the impli-

cation is that we must specify the relative rate at which we are “noninfor-
mative” about logs?, as 02 — 0 and 7 — oo, to determine the reference
prior. In Table 1 we made the natural choice 7 = 1, but the need to make
" such an extra choice is clearly unfortunate. '

For the third prior in Table 1, it is indeed not even possible to choose
a value of 5 such that 7 < ,\(m-i- 3= 1}/{(3x + 1), for then it can be
' shown that Cu(7) > 4/3 and the priot will have a nonintegrable singularity
at 72 = 0, a singularity which persasts in the posterior; these values of n
thus lead to unusable reference priors. Note that 7 = 1 does yield’'a proper
posterior. _

Alternatives to ©; in {42 1) can also be considered. One reasonable

choice is
o = {(#,6 3); k€ (a, b)), 0% € (er, dt), —3 G(ez,f:)}

The point is that it is sometimes natural to be “noninformative” about the
ratio 72/0? rather than just 72 (cf. Hill, 1965).

If such © are used, the reference priors are as in Table 1, except for the
second, third, and last cases, which become o ~3(nr2+02)~1 7736~ 29(12 fo?),
and 7 %¢ 2(r? /02) respectively. These last two priors have nonintegrable
singularities at 72 = 0, whlch permst in the posterior, and hence are not
usable:

‘We shall present here the development of the last reference prior in Table
1, for the ordered grouping {p, 72, 0%}. The analyses for all other cases in -
Table 1 are similar, but simpler, and are hence omitted.

. We apply the algorlthm in Section 3.1, with the ©' defined by (4.2. l)
Note that the Fisher information matrix for {g, 72,02} is

pn__ 0 0
{nti4ol) . X
H{prd)=| 0 ey pCEEr ;.

0 Z(nrg-';a’}z p~(;a—'1) + 2(n-r£|—a'2)?]
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so that
!an:o’! O U
22y 204 HUnriia?)? 25t
S (w7 0%) = 0 [Pn’(n-%) +X Pt : ] T pn(n-1)
0 ——2 207 _
pn(n=1) p{n—1}

In the notation of Section 2 the 3-group case {,u,'r 7%} corresponds to
Ipy=5 =plp =0 = 72, and B3 = 3 = 0. Also, 5 satisfies (2. 3)
with Bz = 0, ¢z = 1, and A3g = —2¢%/[pn(n — 1)}, so that

— =1 mn
hl—all —'-———'2 2
nré 4o

and (2.4) yields

hy = [1122 + A — HlAfl] !

— 201 2Anri+a?)? -1
= lmen T

and L
ha = [Asa+ A2z — 2432 — ha{Azg - Azz)?]

= (152 + sty

Start: To begin,

o 72 %) L0 (%)
[ (i, 72, 0%)j1/2 do?

wh(o |, ) =

. 1/2
n—1 .
_ [P(2a‘ ) + 2(nr£]—o‘)2} l(chdl)(az)

o ‘I’i(‘rzlc;,d;) . !

where

R o CCE T g
1(7*er, dr) /. [ 574 -1-2(1,”_24_‘:}'2)2 do

Tteration for j = 2:

] = Ta(r?ler, di)

E [log|he||(s, 7*)] = ¥y (r?er, dr)
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where
dy . 4 2 2y27—1
2¢ 2(nr? + o?) ]
2 _ g ,
¥alr e, di) = /q (log [pn'l(n Tyt T
[p(n—l) R R
204 2(nr? 4 0%)? '
Hence
Mrmny Y2 ey (o)
Aoy = LA ] e
exp{ a(r?er, c-’:)/‘l’:(falq d:}}1(=, mit®
X K(ci)dl ‘-’-!)fl) !
where

_ s
K(C[,d;,eg,f;): / exp {%‘Fz/‘f’;} d‘r'z..

ey

Iteration for j = 1: Since neither hy, nor x4 depend on p, i

E! [log !hl(y: 1.2, Ug)l lﬂ] = k‘(Cf, df) €1, fl)
Hence

: we{T L
FI(H:TZ; 52)': Fi()u} Tz; 0'2) 2((61 F ) (Gf br)(lu)

Finish: Choosing, say, the fixed point (g, 72,0%) = (0,1,1), one obtains
(ignoring multiplicative constants)

1/2
(0% = T {[ i + sy
(7", 0%) = Jim Ui (r2ler, di)/ ¥1(ller, di)

‘I’z(f-zfq, d;) Ty(ller, di) . ..
X exp {2‘1’1 (1'2]c;,d;) 2‘1’1(l!c;, ) }} (4"2.‘3)

To detexmme this hmlt note first that changing variables from az tov=
72/0? in the integrals defining ¥; and ‘I‘g ylelds

e

) “1 1 1/2
Uy (e, di) = 3 / > [n- -1+ mﬁ] du,-
T3 [dy
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T e

21-4 1
i) =2 [ s 54 g (G + 0007
-,-2‘[‘_{[ .
1 i 1/2
o [n_1+(l+nv)2] dv.

Divide the integrals up into integrals over the regions (7/d1€), (&, g~1),
and (71, 7%/c). Clearly

[ 4o o] [ [£+ow]e

r2/d Téfd; :

= +n [(log %) + log dz‘ + O(¢)
Likewise,
r 1 1 11
1 —_— -1y2 ) - — + ——ee
/ Og((n—-l)v2 tn+vT) ) ] [n L4 (14 nv)? | {?U
Tz,/dr N
n vn
= / [log ((n — l)vz) + O(v)] [—vn + O(l)] dv
T?/d; ’ .
B n & N [ 7_2 2 2 ,
= (Iog - 1) \/E(Iog = + Iogd;) +/n [(Iog dr) — (loge) ]Jr O{z}).
For the range (¢71, 7% /cr) we get
2l 12 r3/d -
1 V-1 1
" [n 1+ (1_—1;7’2_1.))5:1 v / (—' - +0 (;3—)) dv
= vn—1{loger® —loger) +O(e%)
and

= Pesro(3) [ w0 (3)] @

st

2
= 1 —1(logn?)(log -E—;—)
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To complete the specification, define

-1

£ 1 . 1 1[2
Ii]_(E) = l ; [n -1+ '(T-T-n_v)_z] dv,

Collecting terms yields
Ui (e, di) = \/g{\/ﬁbg dy— vVn~1loger + (loge) (vn+ vVn—1)
4+ (ogr®)(Vn—1~va)+ Ki(e) + O(,s)}

274 ‘
~log ;‘%‘%(Tzlcb dr) - \/g{\/ﬁ_(log dr)?

— (log dr)zs/ﬁ'(log ) = 2v/n — llognlog g
-+ flog( logd; + K* (e, %) +O(s)}

‘I’g(‘r’z IC[, d;)

-0

where K* is a function of € and 72,

As | — oo, logd; and log c,"1 converge to infinity, while all other terms
in ¥, and ¥, remain constant. (The O(¢) terms are uniform in l.) Hence,
it follows immediately that ' '

. Ui(re,d)
Jlim O (e d)

(424)
More difficult is the limit of ¥/ \¥;. Defining
R(e, ) = (loge) (v/n+ vn — 1) + (log r?) (\/n”_—— 1- \/E) + Kife),
S(e, 7%, ¢, di) = n(logdi)? — (log di)2v/a{log %) + /nlog (ﬁ—l—) logd;
=2/ - l(log n}loge + K*(g, 2) |

and edn = /n(logdi) — v — llog cr, we have

Uo(rile,d) ;2%
AT L0y e 2T
(e, d) T E

—{S(s, 7%, c1,dp) + O(e) }
{edn + R(e, 7%) + O{e)}
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_ —{S{g, 7% o, di) + O(e)} [1 _Rle )+ 06) +0 ( ; )]

B cdn cdn (logdi/cr)?
_ VA [ogdi + (lonz2r) losd] | [Ree, )+ 0(e)] VA(og )
B cdn (cdn)?
(2/(log 7*)(log dr) + 2v/a - I(log m)(log 1)) I
+ edn +0 ((Iogd;/c;)) "
Thus
Uo(r%er, di) B Ta(l]er, di)
\Ill(TZIr:r, dg) . ‘i’l(llc;, d;)
_ 4%#+m@ﬂyﬁan+am¢mﬁm2
(cdn)®
2/n(log 72 log d; 1.
+ edn +0 ((log d;/c;))
* - b o [Qogr)(1 - v =TT/} + Ofe)]

[1- (V= 1/vR)(log e/ log di)]

2log7?) 1
” [1—(vVn— L/vn)loge/logd))] +0O ((10gd4/61)) |

Notifig that the O(¢) term was uniform in I, and assuming that

exists, we thus have, defining A = /= —1//7,

lim {‘I’z(fgicz,d:) B "I’z(licr,dr)}
\Ifl(‘r:"[c;,d;) ‘F;(l!cr,aﬁ)
B B (A—1) 2 O(e)
= ~losrilogr [(1 £ Tt n—IA)] (T iap
M2 =], 0
= s =R

Observing that O(e) can be made arbitrarily small, this equation, together
with (4.2 3) and (4.2 4), yields the reference prior in Table 1, with C,
replaced by (42.2).

l—o0
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4.3. Posterior Calculations

Note that the likelihood function is proportional to

. _ T2

(g, 0%, 7%) = 0~ VP (nr? 4 0?) P exp { N %[wn:f’i+ )
+n2(ﬂx‘,‘ - )2 + Eﬁ:(x,'j -z;)?

nr? 4 o o2 :

Also, all of the reference priors can be written in the form
, 4, 5. 3 72

() = 0= S + %)y (1)
o

.- for certain constants «, B, v, and ¥* either eqlia.l to 1 in Table 1, or equal
~to 1

- Einally, suppose one is interested in evaluating the posterior expectation
of a function of the form

. r?
plu,a?,78) = ploty (;) ,

a form which clearly includes all posterior moments (and cross-moments)
of u; o, and 7. The following lemma shows that this calculation reduces
‘to one- dimensional integration for » = 0,1, or- 2. (Integer r > 3 also can
be handled using only one-dimensional integration, but the formula gets
messier. )
Lemma 4.1 The posterior expectation of p(y, o2, 7 ) forr=10,1, 01 2,
is
5 s T 'é'(c—-s)
E[ho(;x,o‘ )T )I da,ta] = ST
o sl {E +‘::f‘:‘:’?:%?12(")}'*‘:5"'(1+nv)"'¢(u>¢'(n)dv

I:n [S(u)] vE (+av)y 1T ¢ (v)dv

¥

where 4* = 7+ z(p— Die=a+B8+2y+np=35, la{r) equals T’ 1{7'"‘2
and equals 0 otherwise, and

1/2

S(v) = RDE=E IHICE

(1 + nv)

Proof First transform to the variables (g, o'z,v),-where v = 72/g2. 1t is
_ then straightforward to integrate over p, followed by o2, yielding the result.
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5. CONCLUDING REMARKS

The variance components example clearly illustrates the difficulties that
can be encountered in applying the grouped reference prior algorithm:

(i} the grouping and ordering of the groups will frequentiy result in dif-
ferent reference priors,

(ii} the limiting process given in the algorithm can be difficult to carry
out, and

(iii) the limit can depend on the compact sets chosen (and may not even
yield a properposterior.)

Before addressing these points, it should be noted that it is rather rare to
encounter the second and third difficulties; indeed, the variance components
problem is the most pathological we have seen for the reference prior theory.

The dependence of the reference prior on the group chosen and their or-
der is, we feel, unavoidable Many examples exist which illustrate that no
single noninformative prior will work well for all functions of a given high-
dimensional parameter. As more fully discussed in Berger and Berpardo
(1989b), our own preference is actually to use the reference prior corre-
sponding to single element groups, with the groups ordered according to
the iriferential importance of the parameters. That different orderings of the
nuisance parameters can yield different answers even has positive aspects;
one can then conduct a sensitivity study over the choice of the noninfor-
mative prior

As to the possible technical difficulty of implementing the grouped ref-
erence prior algorithm, again most examples we have seen are much easier
than the variance components example. Also, the determination of the ref-
erence prior can be thought of as the theoretician’s work, to be done for
all common models of statistical importance.

Difficulties with existence or uniqueness of the limit in the algorithm
are more troubling It would be nice if such never occurred, and indeed
occurrence of these problems is quite rare, but there are no guarantees.
As in Berger and Bernardo (1989a}, one can surmount the non-uniqueness
problem (when present) if there is a natural sequence of compact sets that
one prefers.

At the very least, the grouped reference prior algorithm can be thought
of as a method for generating interesting candidate noninformative priors,
either for sensitivity studies or for investigation of their performance While
our attitude is that study of the performance of noninformative priors is
certainly to be encouraged, we have found the group reference priots to
generally be highly satisfactory, and we would feel reasonably confident in
using them in situations in which further study is impossible
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