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SUMMARY

On Election Night, returns from polling stations cceur in a highly non-random manner, thus posing
special difficulties in forecasting the final result. Using a data base which contains the results of past
elections for all polling stations, a robust hierarchical multivariate regression model is set up which
uses the available returns as a training sample and the outcome of the campaign surveys as a priot.
This model produces accurate predictions of the final resulis, even with only a fraction of the returns,
and it is extremely robust against data transmission errors.
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1. THE PROBLEM

Consider a situation where, on election night, one is requested to produce a sequence of
forecasts of the final result, based on incoming returns. Unfortunately, one cannot treat the
available results at a given time as a random sample from all polling stations; indeed, returns
from small rural communities typically come in carly, with a vote distribution which is far
removed from the overall vote distribution.

Naturally, one expects a certain geographical consisiency among elections in the sense
that areas with, say, a proportionally high socialist vote in the last election will still have
a proportionally high socialist vote in the present election. Since the results of the past
election are available for each polling station, each incoming result may be compared with
the corresponding result in the past election in order to learn about the direction and magnitude
of the swing for each party. Combining the results alieady known with a prediction of those
yet to come, based on an estimation of the swings, one may hope to produce accurate forecasts
of the final results.

Since the whole process is done in real time, with very limited checking possibilities,
it is of paramount importance that thé forecast procedure (i) should deal appropriately with
missing data, since reports from some polling stations may be very delayed, and (ii) should
be fairly robust against the influence of potentially misleading data, such as clerical mistakes
in the actual typing of the incoming data, or in the identification of the corresponding polling
station.

* This paper has been prepared with partial financial help from project number PB87-0607-C02-01/02 of
the Programa Seciorial de Promocidn General del Conocimiento granted by the Ministerio de Educacion vy
Ciencia, Spain. Professor José M. Bernardo is on leave of absence from the Departamento de Estadistica e
1O, Universidad de Valencia, Spain,
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In this paper, we offer a possible answer to the problem described. Section 2 describes
a solution in terms of a hierarchical linear model with heavy tailed error distributions, In
Section 3, we develop the required theory as an extension of the normal hierarchical model;
in Section 4, this theory is applied to the proposed model. Section 5 provides an example
of the behaviour of the solution, using data from the last (1989) Spanish general election,
whete intentional “errors” have been planted in order to test the robustness of the procedure.
Finally, Section 6 includes additional discussion and identifies areas for future research,

2. THE MODEL

In the Spanish electoral system, a certain number of parliamentary seats are assigned to
each province, roughly proportional to its population, and those seats are allocated to the
competing parties using a corrected proportional system known as the Jefferson-d’Hondt
algorithm (see e.g., Bernardo, 1984, for details). Moreover, because of important regional
differences deeply rooted in history, electoral data in a given region are only mildly relevant
to a different region. Thus, a sensible sirategy for the analysis of Spanish electoral data is
to proceed province by province, leaving for a final step the combination of the different
provincial predictions into a final overall forecast.

Let 7;;2; be the proportion of the valid vote which was obtained in the last election by
party ¢ in polling station 7, of electoral district %, in county [ of a given province. Here,

t = 1,...,p, where p is the number of studied parties, § = 1, ..,ny, where ny is the
number of polling stations in district k of county I; k = 1,...,n;, where n; is the number
of electoral districts in county I, and I = 1,...,m, whete m is the number of countics

(municipios) in the province. Thus, we will be dealing with a total of

polling stations in the province, distributed over m counties. For convenience, let 7 gener-
ically denote the p-dimensional vector which contains the past results of a given polling
station.

Similarly, let y;;1; be the proportion of the valid vote which party ¢ obtains in the present
election in polling station j, of electoral district k, in county [ of the province under study.
As before, let y generically denote the p-dimensional vector which contains the incoming
results of a given polling station.

At any given moment, only some of the ¥’s, say ¥y,. .., ¥,, 0 < n < N, will be known.
An estimate of the final distribution of the vote z = {z1,.. ,2,} will be given by
) N N
i=1 i=n+1 i=1

where the w’s are the relative weights of the polling stations, in terms of number of voters,
and the @j‘ ’s arc estimates of the N — n unobserved s, to be obtained from the n observed
results.

Within each electoral district, one may expect similar political behaviour, so that it seems
plausible to assume that the observed swings should be exchangeable, ic.,

Ykl — Tkl = O T €541, 7=1, .., ng;
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where the o’s describe the average swings within each electoral district and where, for
robustness, the e’s should be assumed to be from a heavy tailed error distribution,
Moreover, electoral districts may safely be assumed to be exchangeable within each

county, so that
akz=ﬁ; + gy, E=1,...,n,
where the 3’s describe the average swings within each county and where, again for robustness,

the u’s should be assumed to be from a heavy tailed error distribution.
Finally, county swings may be assumed to be exchangeable within the province, and thus

Bi=ry+u, I=1,_.m

where -y describes the average expected swing within the province, which will be assumed
to be known from the last campaign survey. Again, for robustness, the distribution of the
v’s should have heavy tails.

In Section 4, we shall make the specific calculations assuming that e, v and v have
p-variate Cauchy distributions, centered at the origin and with known precision matrices P,
Py and P, which, in practice, are estimated from the swings recorded between the last two
elections held. The model may however be easily extended to the far more general class of
elliptical symmetric distributions,

From these assumptions, one may obtain the joint posterior distribution of the average
swings of the clectoral districts, i.e.,

p(aln ETRL Iyla" s Yns T, ‘")TN)

and thus, one may compute the posterior predictive distribution

p(.z l Yooy Yny T, '7TN)

of the final distribution of the vote,

n N N
Z=sz'y«;+ Z wi(a + 73), sz'=1,
i=1 i=1

i=n-+1

where, for each 7, «; is the swing which corresponds to the electoral district to which the
polling station ¢ belongs.
A final transformation, using the d’Hondt algorithm, s = Hondt[z], which associates a
partition
s={s1,...,5} s+t sp=35
among the p partics of the S seats allocated to the province as a function of the vote
distribution z, may then be used to obtain a predictive posterior distribution

P8y, Yn T, TN) (2.1)

over the possible distributions among the p parties of the S disputed seats.

The predictive distributions thus obtained from each province may finally be combined
to obtain the desired final result, i.¢., a predictive distribution over the possible Parliamentary
seat configurations.
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3. ROBUST HIERARCHICAL LINEAR MODELS

One of the most useful models in Bayesian practice is the Normal Hierarchical Linear Model
(NHLM) developed by Lindley and Smith (1972) and Smith (1973). In their model the
assumption of normality was essential for the derivation of the exact posterior distributions
of the parameters of every hierarchy and the corresponding predictive likelihoods. Within
this setup, all the distributions involved were normal and, accordingly, the computation of all
parameters in these distributions was straightforward. However, the usefulness of the model
was limited, to a great extent, by the assumption of independent normal errors in every stage
of the hierarchy. In this section,

(i) We first generalize the NHLM model to a multivariate setting, to be denoted NMHLM,
in a form which may be extended to more general error structures.

(i) We then generalize that model to a Multivariate Hierarchical Linear Model (MHLM)
with rather general error structures, in a form which retains the main features of the
NMHLM,

(iii) Next, we show that the MHLM is weakly robust, in a sense to be made precise later,
which, loosely speaking, means that the usual NMHLM estimates of the parameters in
every stage are distribution independent for a large class of error structures.

(iv) We then develop the theory, and give exact distributional 1esults, for error structures
which may be written as scale mixtures of matiix-normal distributions.

(v) Finally, we give more precise results for the subclass of Student’s matiix-variate ¢ dis-
tributions,

These results generalize the standard multivariate linear model and also extend some
previous work by Zellner (1976) for the usual lincar regression model.

A k-stage general multivariate normal hierarchical linear model MNHLM, which gener-
alizes the usual univariate model, is given by the following equations, each representing the
conditional distribution of one hyperparameter given the next in the hierarchy. It is supposed
that the last stage hyperparameter, ©y, is known,

Y [0~ N(A:161,C1 0%)
©:i]0it1 ~ N(Ai110;4,Ci ®E);  i=1,... k-1
In these equations Y is an n X p matrix which represents the observed data, the ©;’s are
the i-th stage hyperparameter matrices of dimensions n; X p and the A;’s are design matrices
of dimensions n;_1 x n; (assuming that ng = n). The C;’s are positive definite matrices of
dimensions n; 1 x n;_1 and, finally, ¥ is a p x p positive definite matrix. The matrix of
means for the conditional matrix-normal distribution at stage 4 is 4;0; and the corresponding
covariance matrix is C; ® X, where ® denotes the Kronecker product of matrices.
From this model, using standard properties of the matrix-normal distiibutions, one may
derive the marginal distribution of the hyperparameter ©;, which is given by

©; ~ N(B;y0, P; @ X), 1=1,... k-1,

(3.1)

where . ]
Bij = Ajyy - Ay, i < 7
: k-1 ,
P;=Ciq+ Z Bz'jCj+1B£j-.
j=i+1

The predictive distribution of Y given ©; is
Y |0~ N(A16;, Q; 8 T),
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where
Af=AgA; - A; with Ag=1,;
i-1
Q;=> AIC; A}
=0

From this, the posterior distribution of ©; given the data Y, {4;} and {C;} is

©;|Y ~ N(D;d;, D; ® &),
with
D' = A7Q AT+ P
d; = AYQ;'Y + P{'B;0;.

In order to prove the basic result of this section, the MNHLM (3.1) can be more uscfully
written in the form

Y =A4,6,+U; (3 2)

©; = Ai110;0 + Ui t=1,...k—1, “
where the matrix of error terms U; are assumed independent N(O, C; ® ) or, equivalently,
that the matrix U = (U4, ..., Uy}) is distributed as

Ul O Cl v O
N NP\ B I N N TR D 3 I (3.3)
U o o .. C;

Predictive distributions for future data Z following the linear model
Z=Wi01+Uyw, Uw~ NO,Cy @ 1), (3.4)

where Z is a m X p matix and Uy is independent of the matrix U, can now be easily
derived. Indeed, from properties of the matrix-normal distributions it follows that

Z|Y ~ N(WDsdy,( WD,W' + Cy) ® ). (3.5)

Suppose now that the error vector U is distributed according to the scale mixture
U~ / N(O,C®AF{), (3.6)

where C represents the matrix whose diagonal elements are the matrices C; and the remaining
elements are zero matrices of the appropriate dimensions, i.e., the diagonal covariance matrix
of equation (3.3), and F(A) is any matrix-distribution with support in the class of positive
definite p x p matrices. Clearly, the usual MNHLM (3.2) can be viewed as choosing a
degenerate distiibution at A = ¥ for F, while, for example, the hypothesis of U/ being
distributed as a matrix-variate Student ¢ distribution is equivalent to F being distributed as
an inverted-Wishart distribution with appropriate parameters.
With this notation we can state the following theorem
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Theorem 3.1 . If the random matrix U is distributed according to (3.6), then

i) the marginal distribution of ©; is
o; N/N'(Bika,Pif@A) dF(A)  i=1, . k-1
ii) the predictive distribution of Y given ©; is
Y[@ﬁ-N/N(A;f@i,Qi®A)dF(A|9,;), i=1,...k-1;
where the posterior distribution of A ;i'ven &, F(A|©;), zs given by
F(A]03) o |A] "5/ exp { - %ml(ei - Ba&y) P (8 — By®s) }dF(A);
iii) the posterior distribution of ©; given the data Y is
;Y ~ /N(Didi,Di ©A)AF(AlY), i=1, . k-1,
where the posterior distribution of A given' Y, F(A|Y), is given be
AF(A|Y) o [A] 2 exp { - ém—i(y - A0 QE (¥ — A70y) JaF ().

Proof. The main idea is, simply, to work conditionally on the scale hyperpaiameter A
and, then, apply the results of the MNHLM stated above.

Conditionally on A, the error matrices U; are independent and normally distributed as
U; ~ N{(O, C; ® A); therefore, with the same notation as above, we have

©:|A ~ N(By,0;, P; ® A),
Y [0;,A~ N(AjO,Q;®A),
and
0:;|Y, A~ N(Didi, D;® A);  i=1, .,k
Now, by Bayes theorem,

dF(A|©;)
dF(A)

where g(©; [ A) and h(Y" | A) represent the conditional densities of ©; given A and Y given
A, which are N(B;;0;, P; ® A) and N(A;O, Q; ® A), respectively.

From this, by integrating out the scale hyperparameter A with respect to the conespondmg
distribution, we obtain the stated results. 4

dF(A|Y)

o A(Y | A),

The theorem shows that all distributions involved are also scale mixtures of matrix-
normal distributions. In particular, the most interesting distributions are the posteriors of the
hyperparameters at every stage given the data, ie., ©;|Y . These distributions turn out to
be just a scale mixture of matrix-normals. This implies that the usual modal estimator of the
©;’s, i.e., the mode of the posterior distribution, which is also the matrix of means for those
F’s with finite first moments, is D;d;, whatever the prior distribution F of A. In this sense,
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these estimates are robust, that is, they do not depend on F. However, other parameters and
characteristics of these distributions such as the HPD. regions for the hyperparameters in
the hierarchy depend on the distribution F' of A. :

Note that from this theorem and formula (3.5) we can also compute the predictive dis-
tribution of future data Z generated by the model (3.4), which is also a scale mixture.

Z\Y ~ / | N(WDydy, (WD, W' + Cw) @A) dF(A|Y). (3.7)

More precise resuits can be derived for the special case in which the U matrix is dis-
tributed as a matrix-variate Student ¢. For the definition of the matrix-variate Student ¢, we
follow the same notation as in Box and Tiao (1973, Chapter 8).

Theorem 3.2. If U ~ ¢(0,C, S;v) with dispersion matrix C ® S and v degrees of
freedom, then
(i) the posterior distribution of ©; given Y is

@z' | Y ~ tnzp(Dzdz;Dz, (S + T), v+ n),

where the matrix T = (Y — A;0:) Q1 (Y — ALOy);
(ii) the posterior distribution of A is an inverted-Wishart,

MY ~InW(S+T,v+n).
(iii) the predictive distribution of Z = W10, + Uy is
Z|Y ~ tmp(WD1d),( WDIW' + Cy), S + T v + n).

Froof. The first result is a simple consequence of the fact that a matrix-variate Stu-
dent ¢ distribution is a scale mixture of matrix-variate normals. More precisely, if U ~
{0, C, 8;v), then U is the mixture given by (3.6), with F ~ Inw(S,v).

From this representation and Theorem 3.1. iii), we obtain that the inverted-Wishart
family for A is a conjugate one. In fact,

dF(A|Y) —nj2 L .1 —(v/2+) Lo
— & [A] exp{ 2tIA T} |A exp{ — EUA S}
oc JA[(@Fm/240) oy { — %-U'A_I(T + S)};

and (ii) follows. Finally, substitution of (ii) into (3.7) establishes (i1). 4«

4. PREDICTIVE POSTERIOR DISTRIBUTIONS OF INTEREST

In this section we specialize the results just established to the particular case of the model
described in Section 2. In order to derive the predictive distribution of the random quantity
z let us introduce some useful notation. Let Y denote the full N x p matrix whose rows are
the vectors y; of observed and potentially observed results, as defined in Section 2. Partition
this matrix into the already observed part Y1, s YUn» 1€, the n X p matrix Yy and the
unobserved part, the (N — n) x p matrix Y5 formed with the remaining N — n rows of Y
Let R denote the N x p matrix whose rows are the vectors 7; of past results and Ry, R the
corresponding partitions. By X we denote the matrix of swings, ie., X =Y — R with X,
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X9 representing the corresponding partitions. Finally, let w be the row vector of weights
{wi, ... ,wy) and w; and wgq the corresponding partition.

With this notation the model presented in Section 2, which in a sense is similar to a
random effect model with missing data, can be written as a hierarchical model in three stages

foll
as follows X; = A0+ Uy,

01 = A0+ Uy, (4.1)
Oy = A303 + Ug;

where X1 is a n X p matrix of known data, whose rows are of the form y;i; — 75z for those
indexes corresponding to the observed data yq,...,y,, ©1 is an N x p matrix whose rows
are the p-dimensional vectors ay;, ©9 is an m X p matrix whose rows are the p-dimensional
vectors (3; and, finally, O3 is the p-dimensional row vector v. The matrices A; fori =1,2,3
have special forms; in fact A; is an n x N matrix whose rows are N-dimensional unit vectors,
with the one in the place that matches the polling station in district k¥ of county ! from which
the data arose. As is an N X m matrix whose rows are m-dimensional units vectors, as
follows: the first ny rows are equal to the unit vector e, the next ng rows are equal to the
unit vector ez, and so on, so that the last n,, tows are equal to the unit vector e,,. Finally,
the m x 1 matrix Ags is the m-dimensional column vector (1,...,1}.

The main objective is to obtain the predictive distribution of 2z given the observed data
Uy, ..+, Yy and the results from the last election r1,...,7rx5. From this, using the ’Hondt
algorithm, it is easy to obtain the predictive distribution of the seats among the p parties.

The first step is to derive the posterior of the a’s or, equivalently, the posterior of &
given Y or, equivalently, X;.

From Theorem 3.2, for £ = 3 we have

D;l = A\CTY AL + (Cy + AsC3 AL ™!
d) = A\CT X1+ (Co + AsC3A5) 1Az Az,

The computation of D! involves the inversion of an N x N matiix. Using standard
matrix identities, D! can also be written in the form

which may be computationally more efficient when the matrix C is diagonal and m, as in
our case, is much smaller than NV,

Further simplification in the formulae and subsequent computations result from the hy-
pothesis of exchangeability of the swings formulated in Section 2. This implies that the
matiices C; are of the form k;I, where k; are positive constants and I are identity matrices
of the appropiate dimensions,

Now, the predictive model for future observations is

Xo=Yy—~Ray=W0;+ Uy, Uw ~ N(O,Cw ® 8);

where W is the (N — n} x N matrix whose rows are N-dimensional unit vectors that have
exactly the same meaning as those of matrix A;.

Then, using the results of the preceding section, the predictive ditribution of Yo given
the data Y; and R is

Yo~ t(N—n)p(RQ + W D1dy, WDIW’ + Cw, S + (Yl - lV)IQ?TI(Yl “17): v+ n)
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due to the fact that the matrix A3 = 1, where 1 is an n column vector with all entries equal

to 1,
From this distribution, using properties of the matrix-variate Student ¢, the posterior of

z which is a linear combination of Y5 is

z|Y1,R~ tp(wi1Y1+ woRo + waW Dhd;,
we(WDiW' + Cy)wy, S + (Vi — 19) Q51 (Y1 ~ 1v); v + 7).

This matrix-variate ¢ is, in fact, a multivariate Student ¢ distribution, so that, in the
notation of Section 2,

p(Z ] Uiy 3 U T, oy TN) = ST?(Z l m,, Sz-.- v+ n) (42)
1.e., a p-dimensional Student ¢, with mean
m;=wi¥ 1+ wyRy+ woW D1d;y,

dispersion matrix,

wy(WD W’ + Cw)wf.z
v+n

and v 4+ n degrees of freedom.

5. A CASE STUDY: THE 1989 SPANISH GENERAL ELECTION

The methodology described in Section 4 has been tested using the results, for the Province
of Valencia, of the last two elections which have been held in Spain, namely the European
Parliamentary Elections of June 1989, and the Spanish General Elections of October 1989,
The Province of Valencia has N = 1566 polling stations, distributed among m = 264
counties. The number n; of electoral districts whithin each county varies between 1 and 19,
and the number ny, of polling stations within each electoral district varies between 1 and 57.
The outcome of the October General Election for the P = 5 parties with parliamentary
representation in Valencia has been predicted, pretending that their returns are partially un-
known, and using the June European Elections as the database. The parties considered were
PSOE (socialist), PP (conservative), CDS (liberal), UV (conservative regionalist) and IU

(communist).

(S+ (Y1 - 19)/Q3 (V1 — 1)

5% 20% 90% Final

Mean Dev. Error Mean Dev  Error Mean Dev. Eror

PSOE 4008 046 -043 4039 040 -013 4050 016 -002 4052
PP 2372 049 040 2419 045 007 2419 018 007 2412
CDS 628 036 020 633 033 -0.15 649 013 001 6.49
uv 1188 050 044 1162 046 017 1142 017 -0.02 11 45
U 1005 040 003 993 037 009 1601 014 -0 10.02

Table 1. Evolution of the percentages of valid votes.

For several proportions of known returns (5%, 20% and 90% of the total number of votes),
Table 1 shows the means and standard deviations of the marginal posterior distributions of
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the percentages of valid votes obtained by each of the five partics. The absolute etror of the
means with respect to the final result actually obtained are also quoted.

It is fairly impressive to observe that, with only 5% of the returns, the absolute errors of
the posterior modes are all smaller than 0.5%, and that those errors drop to about 0.15% with
just 20% of the returns, a proportion of the vote which is usually available about two hours
after the polling stations close. With 90% of the returns, we are able to quote a “practically
final” result without having to wait for the small proportion of returns which typically get
delayed for one reason or another; indeed, the errors all drop below 0.1% and, on election
night, vote percentages are never quoted to more than one decimal place.

In Table 2, we show the evolution, as the proportion of the returns grows, of the posterior
probability distribution over the possible allocation of the S=16 disputed seats.

PSOE PP CDS uv i) 5% 20% 90% Final
8 4 1 2 1 0476 0.665 0799 1000
7 4 1 2 2 0521 0324 0201 0.000
7 5 1 2 1 0.603 0.010 0.000 0.000

Table 2. Evolution of the probability distribution over seat partitions.

Interestingly, two seat distributions, namely {8, 4, 1, 2, 1} and {7, 4, 1, 2, 2}, have a
relatively large probability from the very beginning. This gives advance warning of the fact
that, because of the intrinsically discontinuous features of the d’Hondt algorithm, the last seat
is going to be allocated by a few number of votes, to either the socialists or the communists.
In fact, the socialists won that seat, but, had the communists obtamed 1,667 more votes (they
obtained 118,567) they would have won that seat,

Tables 1 and 2 are the product of a very realistic simulation. The numbers appear to
be very stable even if the sampling mechanism in the simulation is heavily biased, as when
the returns are introduced by city size. The next Valencia State Elections will be held on
May 26th, 1991; that night, will be the premiére of this model in real time.

6. DISCUSSION

The multivariate normal model NMHLM developed in Section 3 is a natural extension of
the usual NHLM; indeed, this is just the particular case which obtains when p = 1 and
the matrix S is an scalar equal to 1. As defined in (3.1), our multivariate model imposes
some restrictions on the structure of the global covariance matiix but, this is what makes
possible the derivation of simple formulae for the posterior distributions of the parameters and
for the predictive distributions of future observations, all of which are matrix-variate-normal.
Moreover, within this setting it is also possible, as we have demonstrated, to extend the model
to error structures generated by scale mixtures of matrix-variate-normals. Actually, this may
be futher extended to the class of elliptically symmetric distributions, which contains the
class of scale mixtures of matrix-variate-normals as a particular case; this will be reported
elsewhere, Without the restrictions we have imposed on the covariance structure, further
progress on the general model seems difficult.

One additional characteristic of this hierarchical model, that we have not developed in
this paper but merits careful attention, is the possibility of sequential updating of the hypei-
parameters, in a Kalman-like fashion, when the observational errors are assumed to be con-
ditionally independent given the scale matiix hyperparameter. The possibility of combining
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the flexibility of modelling the data according to a hierarchical model, with the computational
advantages of the sequential characteristics of the Kalman filter deserves, we believe, some
attention and further research.

As shown in our motivating example, the use of sophisticated Bayesian modelling in
forecasting may provide qualitatively different answers, to the point of modifying the possible
uses of the forecast.
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APPENDIX

Tables 3 and 4 below describe, with the notation used in Tables 1 and 2, what actually
happened in the Province of Valencia on election night, May 26th, 1991, when § = 37 State
Parliament seats weie being contested,

5% 20% 90% Final

Mean Dev. Error Mean Dev. Error Mean Dev. Error
PSOE 415 36 -10 416 26 -09 424 22 01 42.5
PP 235 31 0.0 234 28 01 235 1% 00 235
CDS 44 14 19 48 05 23 29 05 04 2.5
uv 44 23 20 136 13 28 160 20 -04 16.4
U 92 20 09 94 22 i1 86 19 03 33

Table 3. Evolution of the percentages of valid votes.

PSOE PP CDS Uv U 3% 20% %0% Fipal

18 10 0 6 3 0.06 0.02 082 1.00
18 9 0 7 3 003 002 0.04 000
17 10 2 5 3 0.03 047 134)1 0.00
17 9 2 5 4 003 0.17 0.01 0.00
17 10 1 6 3 036 0.02 001 0.00
18 9 1 6 3 01 002 001 0.00

Table 4. Evolution of the probability distribution over seat partitions.

It is easily appreciated by comparison that both the standard deviations of the marginal
posteriors, and the actual estimation errors, were far larger in real life than in the example.
A general explanation lies in the fact that state clections have a far larger local component
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than national elections, so that variances within strata were far larger, specially with the
regionalists (UV). Moreover, the liberals (CDS) performed very badly in this election (mo-
tivating the resignation from their leadership of former prime minister Adolfo Suarez); this
poor performance was very inhomogeneous, however, thus adding to the inflated variances.
Nevertheless, essentially accurate final predictions were made with 60% of the returns, and
this was done over two hours before any other forecaster was able to produce a decent
approximation to the final results.

DISCUSSION

L. R. PERICCHI (Universidad Simén Bolivar, Venezuela)

This paper addresses a problem that has captured statisticians’ attention in the past. It
is one of these public problems where the case for sophisticated statistical techniques, and
moreover the case for the Bayesian approach, is put to the test: quick and accurate forecasts
are dermanded.

The proposal described here has some characteristics in common with previous ap-
proaches and some novel improvements. In general this article raises issues of modelling
and robusiness.

The problem is one on which there is substantial prior information from different sources,
like past elections, surveys, etc. Also, exchangeability relationships in a hierarchy are natural,
Furthermore, the objective is one of prediction in the form of a probability distribution of the
possible configurations of the parliament. Thus, not surprisingly, this paper, as previous arti-
cles on the same subject, Brown and Payne (1975, 1984) and Bemardo (1984), have obtained
shrinkage estimators, “bortowing strength”, setting the problem as a Bayesian Hierarchical
Linear model. Bernardo and Girén in the present article get closer to the Brown and Payne
modelling than that of Bernardo (1984), since they resort to modelling directly the “swings”
rather than modelling the log-odds of the multinomial probabilities. All this, coupled with
the great amount of prior information, offers the possibility of very accurate predictions from
the very begining of the exercise.

A limitation of the model, as has been pointed out by the authors, is the lack of sequential
updating. The incoming data is highly structured —there is certainly a bias of order of
declaration— producing a trend rather than a random ordering. This prompts the need for
sequential updating in a dynamic model that may be in place just before the election, as the
authors confirmed in their verbal reply to the discussion.

The second limitation is in our opinion of even greater importance and that is the lack of
“strong” robustness (see below), protecting against unbounded influence of wrong information
of counts and/or wiong classification of polling stations; i.e. gross errors or atypical data
should not influence unduly the general prediction of the swings. The usual hierarchical
normal model has been found extremely sensitive to gross errors, possibly producing large
shrinkages in the wrong direction. _

At this point a short general discussion is in order. The term ‘Bayesian Robusiness’
covers a wide field within which it can have quite different meanings. The first meaning
begins with the recognition of the inevitability of imprecision of probability specifications.
Even this first approach admits two different interpretations (that have similarities but also
important differences). One is the “sensitivy analysis” inteipretation (Berger, 1990), which
is widely known. The second is the upper and lower probability interpretation. The latter
is a more radical departure from precise analysis, which rejects the usual axiomatic founda-
tions and derives directly the lower probability from its own axioms for rational behaviour,
(Walley, 1990). The second meaning of robustness is closer to the Huber-Hampel notion of
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assuming models (likelihoods and/or priors) that avoid unbounded influence of assumptions,
but still work with a single probability model: The present paper uses this second meaning
of robustness. _

The authors address the need for robustness by replacing the normal errots throughout, by
scale mixtures of normal errors. Scale mixtures of normal errors as outlier prone distributions
have a long history in Bayesian analyses. They wete, perhaps, first proposed as a Bayesian
way of dealing with outliers by de Finetti (1961) and have been sucessfully used in static
and dynamic linear regression, West (1981, 1984).

Let us note in passing that the class of scale mixture of normals has been considered as
a class (in the first meaning of robustness mentioned above) by Moreno and Pericchi (1990).
They consider an e-contaminated model but the base prior 7y is a scale mixture and the
mixing distribution is only assumed to belong to a class H, ie.

Ty (B, Q) = {w(e) = (1-2) [ mofblr)hidr) +eq(0),a € @, h e H}

Examples of different classes of mixing distributions considered are
7
H = {h(dr) : / hid,Y =hs,i=1. .n}
0

o
Hy = {h(d,) . h(r) unimodal at 7y and/ hd,) = h(}}
0

When 7p is normal and € = 0 then I'(H) is the class of scale mixtures of normal
distributions with mixing distributions in H. The authors repoit sensible posterior ranges for
probabilities of sets using Hy and Ho.

Going back to the particular scale mixture of normals considered by Bernardo and Girén,
they first conveniently write the usual Multivariate Normal Hierarchical model and by restrict-
ing to a common scale matrix (2 in (3.3) or A in (3.6)), they are able to obtain an elegant
expression of the posterior distributions (Theorem 3.1.). Furthermore in Theorem 3.2, by
specializing to a particular combination of Student-¢ distributions, they are able to get closed
form results. This would be suiprising, were it not for Zellner’s (1976) conjecture: “similar
results (as those for 1egression) will be found with errors following a matrix Student-”.
However, as with Zellner’s results the authors get “weak” rather than “strong” robusiness,
in the sense that the posterior mean turns out to be linecar in the observations (and there-
fore non-robust), although other characteristics of the distributions will be robust. However,
“strong” robustness is what is required, and some ad hoc ways to protect against outlying
data (like screening) may be required. Also, approximations on combination of models that
yield “strong” robustness may be more useful than exact results. Having said that, we should
bear in mind that compromises due to time pressure on election night, may have to be made
given the insufficient development of the theory of scale mixtures of normals,

Finally, we remark that the elegant (even if too restricted) development of this paper
opens wide possibilities for modelling. We should strive for more theoretical insight in
the scale mixture of normals, to guide the assessment. For example O’Hagan’s “Credence”
theory is still quite incomplete. Moreover, scale mixture of normals offers a much wider
choice than just the Student-¢, that should be explored. So far Bernardo and Girén have
shown us encouraging simulations. Let us wish them well on the actual election night.
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A. P. DAWID (University College London, UK)

It seems worth emphasising that the “robustness” considered in this paper refers to the
invariance of the results (formulae for means) in the face of varying ¥ in (3.3) or (what is
equivalent) the distribution F' of (3.6). This distzibution-can be thought of either as part of
the prior (¥ being a parameter) or, on using (3.6) in (3.2), as part of the model — although
note that, in this latter case, the important independence (Markov) properties of the system
(3.2) are lost. Relevant theory and formulae for both the general “left-spherical” case and
the particular Student-f case may be found in Dawid (1977) — see also Dawid (1981, 1988).

At the presentation of this paper at the meeting, I understood the authors to suggest that
the methods also exhibit robustness in the more common sense of insensitivity to extreme
data values. One Bayesian approach to this involves modelling with heavy tailed prior and
erior distributions, as in Dawid (1973), O’Hagan (1979, 1988) —-in particular, Student-¢
torms are often suitable. And indeed, as pointed out at the meeting, the model does allow
the possibility of obtaining such distributions for all relevant quantitities. In order to avoid
any ambiguity, therefore, it must be clearly realized that, even with this choice, this model
does not possess robustness against outliers, The Bayesian outlier-robustness theory does
not apply because, as mentioned above, after using (3.6) with F ~ InW(5,v) the (U;)
are no longer independent. Independence is vital for the heavy-tails theory to work — zero
correlation is simply not an acceptable alternative. In fact, since the predictive means under
the model turn out to be linear in the data, it is obvious that the methods developed in this

paper can not be outlier-robust

S. E. FIENBERG (York University, Canada)

As Bernardo and Girén are aware, others have used hierarchical Bayesian models for
election night predictions. As far as I am aware the earliest such prediction system was set
up in the United States.

In the 1960s a group of statisticians working for the NBC televion network developed
a computer-based statistical model for predicting the winner in the U.S. national elections
for President (by state) and for individual state elections for Senator and Governor. In a
presidential-election year, close to 100 predictions are made, otherwise only half that number
are required. The statistical model used can be viewed as a primitive version of a Bayesian
hierarchical linear model (with a fair bit of what I J. Good would call ad hockery) and it
predates the work of Lindley and Smith by several yeais. Primary contributors to the election
prediction model development included D. Brillinger, J. Tukey, and D. Wallace. Since the
actual model is still proprietary, the following description is somewhat general, and is based
on my memory of the system as it operated in the 1970s.

In the 1960s an organization called the News Election Service (NES) was formed through
a cooperative effort of the three national television networks and two wire services. NES
collects data by precinct, from individual precincts and the 3000 county reporting centers
and forwards them to the networks and wire services by county (for more details, see Link,
1989). All networks get the same data at the same time from NES.

For each state, at any point in time, there are data from four sowrces: (i) a prior estimate of
the outcome, (ii) key precincts (chosen by their previous correlation with the actual outcome),
(iii) county data, (iv) whole-state data (which are the numbers the networks “oficially” report).
The NBC model works with estimates of the swings of the differences between % Republican
vote and % Democratic vote (a more elaborate version is used for multiple candidates) relative
to the difference from some previous election. In addition there is a related model for turnout
rafios.

The four sources of data are combined to produce an estimate of [%R — %D]/2 with
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an estimated mean square error based on the sampling variance, historical information, and
various bias parameters which can be varied depending on circumstances. A somewhat more
elaborate structure is used to accomodate elections involving three or more major candidates.
For each race the NBC model requires special settings for 78 different sets of parameters,
for biases and variances, turnout adjustment factors, stratification of the state, etc. The
model usunally involves a geographic stratification of the state into four “substates” based on
urban/suburban/rural structure and produces estimates by strata, which are then weighted by
turnout to produce statewide estimates.

Even with such a computer-based model about a dozen statisticians are required to
monitor the flow of data and the model performance. Special attention to the robustness
of predictions relative to different historical bases for swings is an important factor, as is
collateral information about where the early data are from (e.g., the city of Chicago vs. the
Chicago suburbs vs. downstate Ilinois).

Getting accurate carly predictions is the name of the game in election night forecasting
because NBC competes with the other networks on making forecasts. Borrowing strength
in the Bayesian-model sense originally gave NBC an advantage over the raw data-based
models employed by the other networks, For example, in 1976, NBC called 94 out of 95
races correctly (only the Presidential race in Oregon remained too close to determine) and
made several calls of outcomes when the overall percentages favored the eventual loser. In
the Texas Presidential race, another netwoik called the Republican candidate as the winner
early in the evening at a time when the NBC model was showing the Democratic candidate
ahead (but with a large mean square error). Later this call was retracted and NBC was the
fizst to call the Democrat the winner.

The 1980s brought a new phenomenon to U.S, election night predictions: the exit survey
of voters (sec Link, 1989). As a consequence, the television netwoiks have been able to
call most races long before the election polls have closed and before the precinct totals are
available. All of the fancy bells and whisiles of the kind of Bayesian prediction system
designed by Bernardo and Girén or the earlier system designed by NBC have little use in
such circumstances, unless the election race is extremely close.

REPLY TO THE DISCUSSION

We are grateful to Professor Pericchi for his valuable comments and for his wish that all
worked well on election night. As described in the Appendix above, his wish was reasonably
well achieved.

He also refers to the possibility of sequential updating, also mentioned in our final
discussion. Assuming, as we do in sections 2 and 4, the hypothesis of exchangeability in
the swings —which implies that the C; matrices in the model are of the form k;J— the
derivation of recursive updating equations for the parameters of the posterior of @1 given the
data yy,.. ¥y fort =1,. ., n, is straightforward. However, no simple recursive updating
formulae seem. to exist for the parameters of the predictive distribution (4.2), due to the
complexity of the model (4.1) and to the fact that the order in which data from the polling
stations ariive is unknown a priori and, hence, the mattix W used for prediction varies with
n in a form which depends on the identity of the new data.

We agree with Pericchi that weak robustness, while being an interesting theoretical ex-
tension to the usual hierarchical normal model, may not be enough for detecting gross errois.
As we prove in the paper, weak robustness of the posterior mean -—which is linear in the
observations— is obtained under the error specification given by (3.6), independently of
F(A).
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To obtain strong robustess of the estimators, exchangeabilty should be abandoned in
favour of independence. Thus, the first equation in model {4.1), should be replaced by

‘f -
T; = a;01 + u;, t=1,. .,n,

where the af’s are the rows of matrix A;, and the error matrix U? = (uf, . ) is such
that the error vectors u; are independent and identically distributed as scale mixtures of
multivariate normals, ie., u; ~ [ N(0, kiA) dF(A).

Unfortunately, under these conditions, no closed form for the posterior is possible, except
for the trivial case where F(-) is degenerate at some matrix, say, &. In fact, the posterior
distribution of ©; given the data is a very complex infinite mixture of matrix-normal distri-
butions. Thus, in order to derive useful robust estimators, we have to resoit to approximate
methods. One possibility, which has been explored by Rojano (1991) in the context of dy-
namic linear models, is to update the parameters of the MHLM sequentially, considering
one observation at a time, as pointed out above, thus obtaining a simple infinite mixture of
matrix-normals, and then to approximate this mixture by a matiix-normal distribution, and
proceed sequentially.

Professor Dawid refers again to the fact that the method described is not outlier-robust.
Pragmatically, we protected ourselves from extreme outliers by screening out from the fore-
casting mechanism any values which were more than three standard deviations off under the
appropiiate predictive distribution, conditional on the information currently variable. Ac-
tually, we are developing a sequential robust updating procedure based on an approximate
Kalman filter scheme adapted to the hierarchical model, that both detects and accomodates
outliers on line,

We are grateful to Professor Fienberg for his detailed description of previous work on
election forecasting. We should like however to make a couple of points on his final remarks.
(i) Predicting the winner in a two party race is far easicr that predicting a parliamentary

seat distribution among several parties.

(ii) In our experience, exit surveys show too much uncontrotled bias to be useful, at least if
you have to forecast a seat distribution.
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