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SUMMARY

The paper begins with a general, though idiosyncratic, discussion of noninformative priors. This
provides the background for motivating the recent and ongoing elaborations of the reference prior
method for developing noninformative priors, a method initiated in Bernardo (1979). Included in
this description of the reference prior method is a new condition that has not previously appeared.
Motivation for this new condition is found, in part, in the Fraser, Monette, Ng (1985) example.
Extensive discussion of the motivation for reference priors and the specific steps in the algorithm are
given, with reference to new examples where appropriate. Also, technical issues in implementing the
algorithm are discussed.
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1. INTRODUCTION

1.1. Perspective on Noninformative Priors

In some sense, Bayesian analysis is a distinct field only because of noninformative priors.
This can certainly be argued fiom a historical perspective, noting that for virtually 200 years
— from Bayes (1763) and Laplace (1774, 1812) through Jeffreys (1946, 1961) — Bayesian
statistics was essentially based on noninformative priois. Even today, the overwhelming
majority of applied Bayesian analyses use noninformative priors, at least in part. Indeed
the only proper priors that are commonly used in practice are those in the eatly stages of
hierarchical models, and these can virtually be thought of as part of the model. (Of course,
thinking of such hierarchical distributions as priors rather than, say, random effects models
is more natural and is inferentially superior,)

On a philosophical level, things are a bit murkier, but one can still argue for the centrality
of noninformative priors. Basically, Bayesian analysis with proper priors is not cleaily
distinct from probability theory. Indeed, there have been a multitude of Bayesian analyses
done throughout history that were viewed as simply being probability analyses. Bayesian
analysis with noninformative priors typically does not fit within the usual probability calculus,
however. Some Bayesians use foundational arguments to attempt to exclude noninformative
priors from consideration, but this also is murky. While axiomatic perspectives typically
do suggest that priors should be proper, sensible axiomatics do not tule out proper finitely
additive distributions, which operationally can be cquivalent to noninformative priors: cf.,
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Cifarelli and Regazzini (1987), Consonni and Veronese (1989), and Heath and Sudderth
(1978).

- Finally, even from a pragmatic viewpoint, it might pay to strongly associate Bayesian
analysis with use of noninformative priors, How often do we hear “I’'m not a Bayesian
because statistical inference must be objective” or “I use Bayesian analysis if I actually have
usable subjective information, but that is very rare.” Statements such as these are, of course,
contestable, but the rejoinders “Objectivity is a useless pursuit,” and “It may be hard, but you
always must try to quantify subjective information,” are much less effective arguments than
“If yowr statement were true, the best method of inference would nevertheless be Bayesian
analysis with noninformative priors.”

It is important, of course, to keep a balanced perspective. Thus today it is obviously
to the advantage of Bayesians to claim as their own all true probability inference and to
promote the use of subjective priors (especially for pioblems such as testing of precise
hypotheses in which there are no remotely sensible objective answers). And it is important
for noninformative prior Bayesians to acknowledge that they are treading on “improper”
ground, upon which they do not have the automatic coherency protection provided by proper
priors. 'The noninformative prior Bayesian can run afoul of the likelihood principle (see
Berger and Wolpert, 1988, for discussion, but see Wasserman, 1991, for a contrary view),
marginalization paradoxes (Dawid, Stone, and Zidek, 1973; but see Jaynes, 1930), strong
inconsistency or incoherency (cf. Stone, 1971), and can even encounter the disaster of an
improper posterior (sec Ye and Berger, 1991, for an example.)

In 1ecognition of these dangers, there are two types of safeguards that are typically
pursued by noninformative prior Bayesians, The first, which is the subject of this paper, is
the development of a method of generating noninformative priors that seems to avoid the
potential problems. The second safeguard is to investigate robustness with respect to the
prior, possibly by Bayesian sensitivity swdies but more commonly by frequentist evaluation
of the performance of the noninformative prior in repeated use. This last type of safeguard is
obviously controversial and must be used and interpreted with caution, but it has historically
been the most effective approach to discriminating among possible noninformative prioss.
(Note that the perspective of this second safeguard is that of studying a particular, or several,
noninformative priors for a given model, and evaluating their sensibility or performance.)

12. Perspective on Reference Priors

Bernardo (1979) initiated the reference prior approach to development of noninformative
priors, following in the tradition of Laplace and Jeffreys. This tradition is the pragmatic
tradition that results are most important; the method should work. If examples are found
in which the method fails, it should be modified or adjusted to correct the problem. Thus
Laplace (1774, 1812) found that, for the problems he encountered, it worked exceptionally
well to simply always choose the prior for § to be the constant w(6) = 1 on the patameter
space ©. For very small sample sizes, however, it was observed that this led to a significant
inconsistency, in that the answer could change markedly depending on the choice of param-
eterization. (A constant prior for one parameter will not typically transform into a constant
prior for another),
This led Jeffreys (1946, 1961) to propose the now famous Jeffreys prior,

w{f) = +/det(1(6)),

where I(0) is the Fisher information (see (1.3.1)) and “det” stands for determinant. This
method is invariant in the sense of yielding properly transformed priors under reparametei-
ization, and has proved to be remarkably successful in one-dimensional problems. Jeffieys
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himself, however, noticed difficulties with the method when 8 is multi~dimensional, and
would then provide ad hoc modifications to the prior. '

Bemardo (1979) sought to remove the need for ad hoc modifications by systematically
dividing multi-dimensional § = (6y,6s,...,6;) into the “parameters of interest” and the
“nuisance parameters,” developing the noninformative prior in comresponding stages. As
with Jetfreys, this approach was based on information concepts, and indeed the approach
yielded the Jeffreys prior in usual one-dimensional problems.

Over the subsequent years and scores of applications the reference prior method has been
progressively defined and refined. The papers recording the evolutions in the method that are
summarized here include Berger and Bernardo (1989, 1992a, 1992b), Berger, Bernardo, and
Mendoza (1989), and Ye (1990). It is noteworthy that the primary impetus for refinement
has come from examples, especially the continually-being—invented “counterexamples” to
noninformative priors. This explains some of the apparent arbitrariness in the details of the
current reference prior method; where different choices were possible, it was through exten-
sive study of examples of application that the ambiguity was resolved. This ongoing process
is reviewed in this paper, with several previously unpublished conditions and examples being
highlighted.

The above should not be constiued as an admission that the reference prior method is
solely ad hoc. Far from it, the method is grounded in a very appealing heuristic which even
today is the source of new insight. For instance, the condition (2.2.5) in Section 2.2 has
only recently been added to our description of the reference prior method. This condition
arose out of study of the delightful Fraser, Monette, Ng (1985) counterexample (discussed
in Section 3 2), the resolution of which required us to return to the fundamental heuristic.

13. Perspective on Methods for Deriving Noninformative Priors

Fitst, it is important to clarify that we are concerned here with methods of developing
noninformative priors, not noninformative priors themselves. A method takes as input the
statistical model (possibly including the design and / or stopping rule) and possibly the actual
data, and produces as output a prior distribution. (Ultimately, of course, it is the posterior
distribution which is desired; in some situations it might even be possible to directly develop
a reference posterior) Thus the Jeffreys “method” takes the sample density f(z|@) for the
data X € X, computes the Fisher information I(#), ie. the (k x k) matrix with elements

2 .
5y(6) = ~Eo S5 o 1 (X1, (13.1)

with sy denoting expectation over X with 6 given, and finally produces the prior density

7(0) = /det(1(8}). (1.3.2)

In comparing methods of producing noninformative priors, a variety of criteria are involved.
The three most important criteria are simplicity, generality, and trustworthiness.

By far the simplest method is to follow Laplace and always choose 7 (#) = L. In practice
this is, indeed, often quite reasonable, since (as partly argued by Laplace) parameterizations
are often chosen to reflect a vague notion of prior uniformity, This simple choice fails on
enough problems of interest, however, that a more reliable general method is needed.

On the simplicity scale, the reference prior approach is at the opposite extreme. Indeed,
computation of a reference prior is so complex that it typically requires the involvement of
a research statistician. Of course, for each statistical model computation of the associated




38 James O. Berger and José M. Bernardo

reference priors need be done only once, with the resulting reference priors (or perhaps
posteriors) being made available in the literature.

In terms of generality, Laplace’s method and the reference prior method are virtually
universally applicable. The Jeffreys method is quite universal, but does require existence
of I(6) and, typically, additional regularity conditions such as asymptotic normality of the
model. Other methods vary widely in terms of generality, some applying only in univariate
problems, some requiring special group invariant or transformation structures, etc. Qur goal
has been the development of a universal method,

Trustworthiness of the method is a rather nebulous concept, essentially referring to how
often the method yields a noninformative piior with undesirable properties. Undesitable
properties include impropriety of the posterior (clearly the worst possibility), inconsistency
or incoherency of resulting statistical procedures, lack of invariance to reparameterization,
marginalization paradoxes, lack of reasonable coverage probabilities for resulting Bayesian
credible sets, and unremovable singularities in the posterior. The best way to gauge the
trustworthiness of a method is to try it on the large set of challenging “counterexamples” to
noninformative priors that have been developed over the years. In this sense the reference
prior method is very trustworthy; it does not yield a bad answer in any of the counterexamples.

Conspicuously absent in this discussion of methods for developing noninformative priors
has been the notion of how to define “noninformative.” Most methods begin with some
attempt at measuring the amount of information in a prior or the amount of influence that
the prior has on the answer. One could debate the sensibility or value of each such measure
(and, of course, we are supporters of the measure undetlying reference priois) but, on the
whole, we feel that this is a somewhat tangential issue. No sensible absolute way to define
“noninformative” is likely to ever be found, and often the most natural ways give the silliest
answers (cf. Berger, Bernardo, and Mendoza, 1989),

Another aspect of this is the debate over the name “noninformative” versus, say, “refer-
ence.” Many object to the former, fecling that it caities a false promise. Reference priots
are sensibly named (see Bernardo, 1979) and less objectionable in this regard. Other names
such as the “standard” or “default” prior have been proposed, the idea being that the profes-
sion should ultimately agree on a standard default prior for use with each particular model.
Trying to change historical nomenclature is, however, generally a waste of time, so we have
chosen to continue using “noninformative” to refer to the general area, and “reference” to
refer specifically to reference priors.

No attempt is made here to survey the wide vatiety of methods for deriving a noninfor-
mative prior and to evaluate them by the above criteria. Those most similar to the reference
prior approach, in the sense of explicitly considering parameters of interest and nuisance
parameters separately, include Stein (1985), Tibshirani (1989), and Ghosh and Mukerjee
(1992),

2. THE REFERENCE PRIOR METHOD

The reference pﬁbr method is presented here, in full detail. Unfortunately, it is notationally
quite complex. The reader interested only in the ideas can skip to Section 3. For a description
of the algorithm in the much simpler two-parameter case, see Berger and Bernardo (1989).

2.1. Introduction and Notation

In Section 2.2, the general reference prior method will be described. This method is typically
very hard to implement. For the regular case, in which asymptotic normality of the model
holds, a considerable simplification of the algorithm occurs. This simplification is given in
Section 2.3, which is a review of Berger and Bernardo (1992a and 1992b).
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We assume that the ; are separated into m groups of sizes nj, 7o, .., 7, and that these
groups are given by

9(1) = (81: sy 9121): 9(2) = (9n1+l: naey 9711-!—712)5
me 9(2) == (QN?;_I-K-].) sy H.Nz)y R :8(m) = (gNm_lJrly o :ek)j

' J
where N; = 3 n;. Also, define

=1
65 = By 106) = (61, - ,6x),
9["’7} = (9(j+1)7 o :g(m)) = (gNj--i-ls e ,gk),

with the conventions that 8. = 6 and 8jo) is vacuous.
We will denote the Kullback—Liebler divergence between two densities g and & on © by

D@m»=égwmmmmmwmm (211)

Finally, let Z; = {X1,...,X;} be the random vaiiable that would arise from ¢ condi-
tionally independent replications of the original experiment, so that Z; has density

i
p(zl6) = [ [ f(x:16). (2.1.2)
i—=1

2.2. The General Case

The general reference prior method can be described in four steps. Justification and motiva-
tion will be given in Section 3.

o0
Step 1. Choose a nested sequence {©°} of compact subsets of @ such that [} ¢ = ©.
(This step is unnecessary if the reference priors turn out to be proper.) =
Step 2. Order the coordinates (61, .. .,6;) and divide them into the m groups 01)s -5 Oy
Usually it is best to have m = k, and the order should typically be according to inferential
importance; in particulat, the first parameters should be the parameters of interest.
Step 3. For j =m,m — 1,..., 1, iteratively compute densities Wf(ﬁ[ﬁ,(j-_l)]lf}ﬁ_l]), using

T3 Ot 0105-1) 0 41 (OO0 5 05105 1), (2.21)

whete 7}, ; = 1 and hf is computed by the following two steps.
Step 3a: Define p(6;10};_17) by

P850 -1)) o< exp {/ P(Zt!f)[j])108?(9(7')[%,9{1—1])6{3;}, (2.2.2)
where (using p(-) generically to represent the conditional density of the given variables)

plalfy) = / P(24l0)7511 O |013)) 1, (223)
p(Oylzi, 011} o< p(2016)5))pe (811 165—17)
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Step 3b: Assuming the limit exists, define

By (B0 1915—) = Jim pi(645)|05-) (224)

Comment: In (2.2.2), p; is only defined implicitly, since p(f;)|2:,8};_1)) on the right hand
side also depends on p; (see (22.3)). In practice, it is thus usually very difficult to compute
the p; and find their limit. In the regular case discussed in the next section, however, this

difficulty can be circumvented.
Step 4. Define a reference prior, #(6), as any prior for which

EfD#4EX), ®(0]1 X)) — 0 as £ — oo, (2.2 5)
where D is defined in 2.1.1 and Eg( is expectation with respect to
v(e) = | falo)i(o)as

(writing 7§(6) for nf (8(~0)|6}0)))- Typically one determines «(6) by the simple relation

I3
T | (6)
"(0) = Jim e

(2.2.6)

where 8* is any fixed point in © with positive density for all wf , and then verifies that (2.2.5)

is satisfied.
Comment: Note that (2.2.5) really defines a reference posterior; we convert to a reference

prior mainly for pedagogical reasons.

2.3. The Regular Case

If the model is regular, in the sense that the replicated p(2|6) is asymptotically normal,
then Step 3 in Section 2.2 can be done in an explicit fashion, The following notation is
needed, where I(f) is the Fisher information matrix with elements given by (1.3.1) and
S(0) = (1(6))L. Often, we will write just I and S for these matrices. Write S as

[An Ay . AL
S Ay Ax ... AL,
At Amy .. Amm

so that A;; is (n; x n;), and define
S; = upper left (N; x Nj) comer of S, with S, = S, and H; = Sj”l.
Then the matrices
h; = lower right (n; x n;) comer of H;,7=1,...,m

will be of central importance. Note that hy = Hy = AJ; and, if S is a block diagonal matrix
(ie, A = 0 for all ¢ # j), then h; = A;},j = 1,...,m. Finally, if 6* C ©, we will
define

O (61 = 100+1): O3 050, Oputy1y)) € ©7 for some B, 1y} (231)
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We will use the common symbols |A| = determinant of A, and 1n(y) equals 1if y € Q, 0

otherwise. |
Step 3 from Section 2.2 can, in the regular case, by replaced by the following, which is

essentially taken from Berger and Bernardo (1992b).
Step 31 To start, define
T O 1110pm 1) = T (B o) |Bpn-1))
B Loy Em) (2.3.2)
) P @) 2B

[@Z (BEm—}.

Forj=m—1m—2,...,1, define

» 0 7441 (8101013) exp{3 B[ (log |h'(9)|)|9[j]}1@z(g[j P 1 (05)) 233
G ) = 3.
F\ [~ =DV -1] fei(ﬁ[j- exp{gEl [(log lh (B)I)]e[]]}dg(])
where .
E;[9(6)16y] = / 9(0) 11 (81015 6}y (2.34)

s O3} <0}
The calculation of the m—group reference prior is greatly simplified under the condition
|1;(6)] depends only on &), forj=1,...,m. (2.3.5)
Then (see Lemma 2.2.1 in Berger and Bermardo, 1992b)

< w2

-1 Jotig_y) IO 0

t(8) = 161(6). (2.3.6)

3. MOTIVATION FOR THE REFERENCE PRIOR METHOD

3.1. Information and Replication

For simplicity, suppose there is a single parameter # with a compact © (or that we are
operating on the compact © C ©). Suppose that it is desired to define a noninformative
prior, w(#), as that prior which “maximizes the amount of information about & provided by the
data, z.” The most natural measure of the expected information about # provided by X, when

 is the prior distribution, is (Shannon, 1948; Lindley, 1956) I¢ = EXD(x(6|X), =(9)),
where D is the Kullback—Liebler diver gence defined in (2.1.1) and EX stands for expectation
with respect to the marginal density of X, p(z) = [, f(2]6)7(8)d6.

Unfortunately, basing the analysis on I? is not very satisfactory, as is discussed in Berget,
Bernardo, and Mendoza (1989). Indeed, it is shown therein that the w(#) which maximizes
I? (possibly with 8 restricted to the compact ©F) is typically a discrete distribution, even
when © is, say, a connected subset of Euclidean space. Clearly such a #(#) would be a very
unappealing noninformative piior.

Bernardo (1979) considered a variant of this approach, defining

I = E%D(x(6]Z:), (8)), (3.1.2)
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where Z; consists of ¢ replicates of X as discussed in Section 2.1. The underlying idea

is that, as { — oo, Z; will typically provide perfect information about @, in which case

g = tlim I? can be thought of as the missing information about § when 7 describes the
— 00

initial state of knowledge. Thus the # maximizing Igo could reasonably be called “least
informative.” Unfortunately, it is typically the case that IZ is infinite for almost all 7, so
that this approach also does not work. However, it suggests finding, for each ¢, the prior
which maximizes If, and then passing to a limit in ¢. Using a variational argument it can be
shown, under certain conditions, that ; satisfies

7(6) o exp { [ ptadeyiog %'télzt)dzt} | (3.13)

This equation, reproduced in (2.2 2) for the multiparameter case, is the heart of the reference
prior algorithm, and (2.2.4) defines the limit in ¢.

As observed in Section 2.2, (3.1.3) only defines n; implicitly. However, as £ — oo, both
p(21|6) and 7(6|2) will typically converge to their asymptotic distributions, and (3.1.3) will
become an explicit equation. For instance, in the regular case of asymptotic normality of the
posterior, it can be shown (cf. Bernardo, 1979, Berger and Bernardo, 1992a) that, for large
t, m(8) is approximately proportional to +/I(6), which is thus the reference prior,

For the case of two parameters, § = (5, 62), with m = 2 stages to be used in Section 2.3,
the argument proceeds by first determining 72 (62]61), the conditional reference prior for 5
assuming that 6, is given. This is done exactly as in the previous univariate argument, and
results in the analogue of (2.3.2). The idea is then to use m9(#2]6;) to integrate 85 out of
the model, leaving a marginal model p*(#|61), for which a reference prior 7(61) can (as
¢t — co) be found. The overall reference prior on © is then m1(6) o< w9(f]61)7(61), which is
the analogue of (2.3.3); the expression for 77(6;) in (2.3.3) follows from another asymptotic
argument (cf., Bernardo, 1979, Berger and Bernardo, 1992a).

Extension to more than two groupings and muiti-dimensional groupings is straightfor-
ward, The result is the algorithm described in Section 2.3.

3.2. Compact ©° and Condition (2.2.5)

In Berger, Bernardo, and Mendoza (1989) it was shown that, for noncompact ©, there
typically exist priots for which I? in (3.1.2) is infinite, making useless any attempt to define
“least informative prior” directly through If. The most direct way to circumvent the problem
is to operate on compact ©F, passing to the limit as ©f — ©. The issue, then, is how to
choose the ©°, Usually the choice does not matter, but sometimes it does (cf., Berger and
Betnardo, 1989 and 1992a). And even when the choice does matter, it seems to require quite
pathological choices of ©¢ to achieve different resulis.

Choosing the ©° to be natural sets in the original parameterization has always worked
well in our experience. Indeed, the way we think of the ©f is that there is some large
compact set on which we are really noninformative, but we are unable to specify the size
of this set. We might, however, be able to specify a shape, 2, for this set, and would then
choose ©f = £02 N ©, where £ consists of all points in £2 multiplied by £.

Condition (2.2.5) is a2 new qualification that we have added to the reference prior method.
The motivation for this condition is that the pointwise convergence in (2.2.6), that we had
previously used in defining the method, does not necessarily imply convergence in an infor-
mation sense, which is the basis of the reference prior method. Note that (2.2.5) is precisely
convergence in the information measure defined by (3.1.1).
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Because this is a new condition in the reference prior method, we present two examples,
one in which the condition is satisfied and one in which it is not.
Example 1. Suppose X = © = (—c0,c0) and X given ¢ is N(8,1). Define ©f = [-£,4].
It is easy to apply the reference prior method here, obtaining

f(z|f)
@l —2)—3(-t—2)] " e,

m(8) = é}é on ©f, wf(f|z) =
o) =1, =(6lz) = f(z}9),

and p(z) = | f(z]0)nt(6)d8 = [®(£—z) — B(—f —~ x)}/(2¢), where ® denotes the standard
normal ¢.d.f. Thus

| | Lo
D(t(6le), m(@la)) = [ ni0le) log 7t a0 = og(iae ~ ) - a2 - ),

and
EED(x4(01X), m(6]X)) = / p!(z)D(x4(8lz), 7(6]z))de

o0

- “3125 | (2 - o) — (—£ - 2)]log([B(¢ ~ ) — B(~L — 7)])da

=~ [ 71860 - 2t -~ 0] 108800 - 31y - 20D,

the last step using symmetry and making the transformation y — (€ — z}/£. Break this
integral into ]13 + 37, Since —vlogv < e ! for 0 < v < 1, the dominated convergence
theorem can be applied to the first integral to show that it converges to 0 as £ — oo. For the
second integral, the inequality

1 2 . 1.2
1~ 0756_?” <Pw) <1 - %6_?1’

for large v can be used to prove convergence to 0 as £ — oo, Hence Condition 225 is
satisfied. q

Example 2. Fraser, Monette, and Ng (1985) considered a discrete problem with ;L’ =0 =
{1,2,3,. .} and
f(zl6) = § for z € {[8], 26, 20+ 1},

with [v] denoting the integer part of v (and [-%—] separately defined as 1). Note that, when  is
observed, 6 must lie in {[Z], 2z, 2z + 1}, and that the likelihood fanction is constant over
this set. It is immediate that, if one used the noninformative prior 7(6) = 1, then

m(6lz) = 1 for 6 € {[], 2z, 2z + 1}. (3.2.1)

This is a very unsatisfactory answer, as discussed in Fraser, Monette, and Ng (1985). As
a stmple example of this inadequacy, consider the credible set C{z) = {2, 2z + 1}, which
according to (32.1) would have probability 2/3 of containing & for each x. But it is easy
to check that the frequentist coverage probability of C'(z), considered as a confidence set, is
Py(C(X) contains 8) = -é— for all 8. This is an example of “strong inconsistency” (see Stone
(1971) for other examples) and indicates a serious problem with the noninformative prior. For
later discussion, it is interesting to note that the noninformative prior w(8) = 81 performs
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perfectly satisfactorily here, resulting in posterior probabilities and coverage probabilities that
are in essential agreement. The prior of Rissanen (1983) is also fine here.

Now, to apply the reference prior method to this problem one must first choose compact
subsets ©F. Clearly any such sets will here be finite sets, and it can easily be shown that the
wf (8) must be constant on finite sets. If now one attempted to pass to the limit in (2.2 6),
the result would be the unsatisfactory =(¢) = 1.

This turns out, however, to be a situation in which the limit from (2.2.6) violates (2.2.5).
To see this take, for instance, the ©Ff to be ©f = {1,2,...,2¢}. As previously mentioned,
7$(8) then becomes uniform on ©f, so that (3.2.1) is modified to be

3 for6e{[g],2z,20+1} ifxz<i

1 for z if =

Wf(glfﬂ) — 5 f()[ fc {:[[;2],217} lf:L’ 4
1 for 0 = [Z] fl<zr<4+1
nonexistent fd4é+1 <z

Also, it is easy to see that

o 1/2 ifz<?
P@) =) flalf)mi(6) = fﬁgﬁg tf <<l +1
b=1 0 if4f+1<z.
An easy calculation then yields
Ef D(ni(01), =(01X)) = Y _9"(@) ) _ wi(8le) log[x{ (6]2) /7 (0]z)]
=1 #=1
2 3 3¢+ 1)
E— [N S — ]
o, log (2) + o, log(3) 0g(3) as £ — oo,

(3.2.2)
50 that (2.2.5) is violated.

At this point, all that can be concluded is that a reference prior, as we have defined it,
does not exist. There is a fascinating hint, however, that our approach of approximating
by compact sets and passing to a limit in “information divergence” may be too crude in
this situation. The hint arises from consideration of priors x(#) o 8% Repeating the
computation done eatlier for o = 0 yields the interesting fact that the analogue of (3.2.2)
does not converge to 0 for a < 1 but does converge to 0 for « = 1, This suggests that a
more clever truncation or way of looking at the truncated problems would yield () 61
as the reference prior (which, as mentioned earlier, is perfectly satisfactory), but we have
been vnable to devise such a formulation. 4

We have concentrated on condition (2.2.5) here because this is the first discussion of it in
print. Our feeling, however, is that it would be highly unusual for «(#), defined by (2.2.6),
to lead to a violation of (2.2.5). Hence we hesitate to recommend routine verification of the
condition, unless there is reason to suspect some pathology.

As one final comment, the need to use (2.2.5) rather than (2.2.6) to define a limit in #
suggests that an analogous condition might be needed to replace the pointwise limit in ¢ in
(2.2.4). As we have no examples of the necessity of such, however, we have stayed with the
simple (2.2.4).
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3.3. Parameters of Interest and Stepwise Computation

As mentioned in Section 1.2, the separation of # into parameters of interest and nuisance
parameters has been a comerstone of the reference prior method. In the notation of Sec-
tions 2.1 and 2.2, § would be divided into m = 2 groups, with 6(1) being the parameters
of interest and 65) being the nuisance parameters. We begin the discussion of this with a
historical example, that will subsequently be put to a new use.

Example 3. Neyman and Scott (1948) introduced an example that has since become a standard
test for all new methods of inference, The model consists of 2n independent observations,

Xij ~ N{pi0%), i=1,...,n, j=1,2

Reduction to sufficient statistics X = (X1, ..., Xy, 8%), where X; = (X;; + X;2)/2 and

n 2 .
§2=% > (X — X;)?, and use of the prior T(fhy, . ooy fn, @) = 0% yields
=1 j=1

1 1 o
T(pt, -y phn,y OlT) ey &P {—%5 [32 + 22(% - Hi)z] } ) (3.3.1)

i=1

for which the posterior mean of o2 is Eo?ja] = s?/(n+ a — 3).

The original interest in this example, from a noninformative prior perspective, is that
the unmodified Jeffreys prior is 7(us, .., pn, o) = vVdet o g~ +1) leading to a posterior
mean for o2 of Efo?|z] = s2/(2n — 2). This would be inconsistent as 7 — 00, since it can
be shown that $2/n — o2 with probability one (frequentist) so that $2/(2n — 2) — ¢2/2.

Bernardo (1979) and Jeffreys (for related problems) overcame this difficulty by separately
dealing with (1) = o and 6 9y = (#1,.. ., ttn). To apply the reference prior algorithm to
these two groups, compute 1 EH) and write it as

1(6) = (1110(‘9) I*?H)) , (33.2)

where I11(6) = 8n/o? and I*(6) = (2/02)I(n_1)x(n_1).. Computation yields |h1(8)| =
8n/o® and |hy(6)] = 2" /o, so that condition (2.3.5) is satisfied. Choosing ©¢ = (£ ~1,0) x
(=£,£) x ... x (=¢£,£) (virtually any choice would give the same answer here), (2.3 6) can
thus be used to yield, on €7,

(o) = — V8 __Vnjo = ky/o, 3.3.3
(©) fgg_l v/ 8n/aida ffg - ffp/2n/02”dp1 . dyy, e/ ( )

where ky is a constant. Finally, applying (2.2.6) (verification of (2.2.5) is rather tedious here),
yields 7(8) = 1/o.

This reference prior is perfectly satisfactory, yielding a posterior for which the posterior
mean is the very sensible s2/(n — 2). Thus if o2 (or ¢) is the parameter of interest with
(#1, .., 1tn) being nuisance parameters, all is well with the reference prior algorithm.

Unfortunately, this simple method of grouping does not always work. Suppose, for
instance, that 8y = g1 and 89y = (B2; .-, lin, 0), Le., that gy is the parameter of interest
with the rest being nuisance parameters. Now, I(#) is as in (3.3.2) but with [ 11(8) = 2/5?
and I*(0) = diag{-%,.. , %, B} Thus hi(6) = 2/0? and ho() = n2(*+) /62" Define
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0f = (~£,£) x ©*, where O* = (~£,£) x ... x (—£,£) x (£71,£). The start of the iteration
for the reference prior yields (see (2.3.2))

/nz(n+2)/g2n k

Y N

Since h1(f) does not depend on 6y = p, it is easy to see that (2.3.3) becomes wé(6) =
keo™"1¢(6). Passing to the limit in £ results in the reference prior m(6) = 1 Ja™.

For this prior, a standard Bayesian computation yields that the marginal posterior for u;
given z is a t—distribution with (2n — 1) degrees of freedom, median 73, and scale parameter
§*/2(2n — 1)]. Thus, for instance, a 95% HPD credible sct for p1 is

C(Z1,8) = (Tl - t(zn—l)(-975)—2("2\/—i—7—15= 7 +t(2n“1)(-975)—2—(\/—2%._=1)) :

where (5, 1,(.975) is the .975 quantile of a standard ¢ with (2n — 1) degrees of freedom.

Now, from a frequentist perspective, it is easy to see that (X — 11)/(5/v2n) has a
standard {~disuibution with n degrees of freedom. It follows that C'(X 1, S) has frequentist
coverage probability

Py(C (X1, S) contains u1) = 2F, (, /@%ﬁt(g‘n_l)(ugﬁ)) 1,

where F), is the standard ¢ c.d.f. For large n, F, is approximately the standard normal ¢.d.f, @,
and ¢y, 1y(.975) = 1.96, so that P4(C(X1, S) contains ;) = 28 ((1.96)/v2) —1=0.83
This, again, is a strong inconsistency, indicating that the noninformative prior is highly
inadequate. It is of interest to note that 7(6) = 1/¢ would heze result in petfect agieement
between posterior probability and frequentist coverage. 4

The above example clearly demonstrates that it is not sufficient to merely divide € into
parameters of interest and nuisance parameters. Once separation of @ into more groups is
considered, the natural suggestion is to completely separate the coordinates into k groups of
one element each.

Example 3 (continued). If one sets m = k, letting each coordinate of € be a grouping for
the reference prior algorithm, it can be checked that 7w(8) = 1/ is the resulting reference
prior regardless of the ordering of the coordinates of #. This one—at-a—time reference prior
is thus excellent for this problem.

Example 4. In Ye (1990), the development of reference priors for problems in sequential
analysis is considered. If NV is the stopping time in a sequential problem with indepen-
dent observations, the Fisher information matrix is 7(8) = (EsN)I1(6), where Li(6) is
- the Fisher information for a sample of size one. Then the Jeffreys prior becomes w(f) =
(EpN)Y¥/2, /det(I,(8)), which can casily be terrible if % is large because of the presence of
(EgN)%/2, Grouping and iterating the reference prior method will typically reduce the power
of k/2, but does not necessarily cure the problem (see Ye, 1990, for examples). But if one
uses the one-at-a-time reference prior, then under reasonable conditions (see Ye, 1990) the
result is (8} = /EyN=*(8), whete *(f) is the one-at-a—time reference prior for the fixed
sample size problem. This is a very reasonable prior. (Of course, use of this method of
determining a prior violates the Stopping Rule Principle, but this appears to be one of the
unavoidable penalties in use of noninformative priors.) 4
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Other arguments for use of the one—at-a—time refeience prior can be found in Berger and
Bernardo (1992a and 1992b). Bayarri (1981) gives an example where at least 3 groupings
are necessary (and the one—-at~a~time reference prior is fine). The bottom line is that we have
not yet encountered an example in which the one-at-a-time reference prior is unappealing,
and so our pragmatic recommendation is to use this reference prior unless there is a specific
reason for using a certain grouping (see Berger and Bernardo, 1992b, for a possible example).

There remains the problem of how to order the parameters before applying the one—at—a—
time reference prior algorithm. Currently, we recommend ordering ths parameters according
to “inferential importance,” but beyond putting the “parameters of interest” first, this is too
vague to be of much use. Using an average of the reference priors arising from the various
acceptable orderings has some appeal, but seems a bit too ad hoc. In practice, we have
typically computed all one-at-a-time reference priors (and, indeed, all possible reference
priors). We have not yet encountered an example in which this could not be done. Having a
vatiety of possible noninformative priors is actually rather useful, since it allows a sensitivity
study to choice of the noninformative prior. For additional discussion of this issue see Ghosh
and Mukerjee (1992) and the ensuing comments.

34, Other Issues

3.4.1. Technical Considerations

In computation of the reference prior in the regular case, the two most difficult steps would
appear 1o be evaluation of the expectation Ef in (2.3.3) and passing to the limit in (2 .2.6).
Fortuitously, the latter typically makes the forrner relatively easy. This is because the expec-
tation in (2.3.3) is with respect to w1, which typically is tending towards an improper prior
as £ — co. When this happens, it will usually be the case that E£[(log [h;(6)|)|8;)] can be
expanded in a Taylors series as

Ky + Cp(8) + Dy(8),

where Ky — o0, Cp — C, and Dy(f) — 0 as £ — oo. When inserted into (2.3.3), the K,
term typically cancels in the numerator and denominator, and the [D;(8) term is typically
irrelevant (both because of the exponentiation of the E£ term). Thus the contribution of the

Ef term to the final answer will be exp{ 20¢ (@)}, Many variants on this theme are possible.

What is important is the recognition that (i) exact computation of the Ef 1s typically not
needed — computing the first few terms of a Taylors expansion (in £) usually suffices; and
(ii) since the expansion is then being exponentiated, all terms except those going to zero
(in £) are important.

3.4.2. Piediction and Hierarchical Models

Two classes of problems that ate not covered by the 1eference prior methods so far discussed
are hieraichical models and prediction problems. The difficulty with these problems is that
there are unknowns (that are indeed even usually the unknowns of interest) that have spec-
ified distributions. For instance, if one wants to predict Y based on X when (¥, X) has
density f(y,z|8), the unknown of interest is ¥, but its distribution is conditionally specified.
One needs a noninformative prior for 8, not Y. Likewise, in a hierarchical mode! with,
say, f1s f2, . -, Mp being iid. M(€,7%), the {;} may be the parameters of interest but a
noninformative prior is needed only for the hyperparameters £ and 72,

The obvious way to approach such problems is to integrate out the variables with con-
ditionally known distributions (¥ in the predictive problem and the {g;} in the hierarchical
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model), and find the reference prior for the remaining parameters based on this marginal
model. The difficulty that arises is how to then identify parameters of interest and nuisance
parameters to construct the ordering necessary for applying the reference prior method; the
real parameters of interest were integrated out!

We currently deal with this difficulty by defining the parameter of interest in the reduced
model to be the conditional mean of the original parameter of interest. Thus, in the prediction
problem, E[Y'|8] (which will be either 8 or some transformation thereof) will be the parameter
of interest, and in the hierarchical model E[u;|€,7%] = £ will be defined to be the parameter
of interest. This technique has worked well in the examples to which it has been applied,
but further study is clearly needed.

3.4.3. Invariance

When 7(f) = y/detI(#) is the reference prior (typically recommended only for one—dimen-
sional problems), one automatically has invariance with respect to one—to—one transformations
of #, in the sense that the reference prior for a different parameterization would be the correct
transform of w(4). For the iterative reference prior of Section 2.3, certain types of invariance
also exist. For insiance, in the case of two groupings, 8(1y and fy), the reference prior is
invariant (in the above sense) with respect fo choice of the “nuisance parameter” 4y, and
is also invariant with respect to one-to-one transformations of ;). The reference prior can
depend dramatically, however, on which parameters are chosen to be ;). Some results on
invariance for more than two groupings are known, but the general issue s still under study.
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DISCUSSION

R. McCULLOCH (University of Chicago, USA)
My discussion will touch on four points: i) the notion of a parameter of interest; ii) what
I think the key idea is; iii) how a subjectivist might use the results; (iv) the role of compact

sets.

The notion of a parameter of interest. From the outset the reference prior method has had
the notion of a “parameter of interest” and the complementary notion “nuisance parameter”
as central concepts. I did my graduate work at Minnesota under Seymour Geisser. If I ever
uttered the phrase “paramer of interest” he would beat me up. Geisser smiles a lot and he
makes jokes but he’s a mean dude. If a partameter has no effect on predictions then by the
principle of parsimony it would be eliminated from the model If it does have an effect on
predictions then it can hardly be called a nuisance parameter. Thus, the predictive viewpoint
indicates that the need to identify parameters which are a “nuisance” severely restricts the
applicability of the method.

I think that it is evident that much of statistical practice has been severely hurt by the
nuisance parameter concept. Consider the simple N (ys, %) model. In elementary statistics
courses we teach methods for testing hypotheses about the parameter of interest x without
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having to specify ¢, But surely the conclusion that g is close to 0 has quite different
implications depending on whether ¢ is small or large.

What I think the key idea is. The reference prior method has become quite complicated.
To me it ends up being something of a black box. The authors explicitly state that with all
the asymptotic approximations and limits that the method should be viewed as heuristic and
invite us to judge it by how well it works in various examples. The examples are interesting,
By that I mean that they excite, in the reader, the psychological and emotional state we label
with the word interest. In the product of means example I'm not sure I don’t like the uniform
priotr best. In the Monette, Fraser, Ng example it works only in the sense that it warns us
(rightly) that the resultapt prior may not be quite right. I have never been happy about the
Neyman Scott example because the number of parameters goes to infinity just as fast as the
sample size.

And yet the method does generate interesting priors. If the method is applied to the entire
patameter vector without breaking it up and iterating, the result is Jeffreys® prior, Jetfieys
himself found fault with his prior is cases where there was more than one parameter and
modified the result in ad hoc ways. By breaking up the parameter vector and more or less
applying Jeffreys method iteratively the method produces, by a formal mechanism, the kind
of results that Jeffreys himself seemed to prefer. This is the key idea in the method. Perhaps
it is in one of the earlier papers that I didn’t read, but I would like to know if the authors
have any intuition for why this seems to wotk.

How a subjectivist might use the resulss. The first sentence of the paper is, “Bayesian analysis
is a distinct field only because of noninformative priors”. My reaction to this sentence was
something of a personal epiphany. It revealed something of myself to me. I had thought that
I was the kind of guy who was pretty much willing to try anything (an attitude that gets me
into trouble in other walks of life). But upon reading the opening line my soul shuddered
and then emitted a dark, twisted howl, of which, the only discernible syllable was “no”.

Are these results of interest to a subjectivist? I think the answer is yes. Suppose 1
don’t want to bother choosing my prior. Well, T will go ahead and see what I get from
a “noninformative” prior. For example I might use the Laplace uniform prior, hopefully
after giving some thought to the parametrization. Then, broadly, three things can happen
to me. The simplest case is where my posterior distribution is quite tight. In which case
[ am tempted to conclude that the likelihood dominates the prior and if I bothered to elicit
a subjective prior I would just get the same posterior anyway. The second case is where
the posteriors is very diffuse. In this case I am tempted to conclude that there isn’t much
information in the data so that whatever prior I put in will be highly influential in that the
posterior will be much like the prior so I might be better off getting more data than eliciting
my prior. The third case is anything in between the other two. In this case we would like
to check to see how influential the choice of prior is. Ideally we would like to know if the
posterior is really any different from that which would be obtained from a carefully elicited
prior. To gauge this (without eliciting a prior) we would compare the posterior based on the
Laplace prior with that obtained from the reference prior. If the difference between these
two posteriors is substantively important you probably can’t get away without thinking about
your ptiot.

Compact sets. Limits of compact sets play an important role in the reference prior method.
It seems to me that this is one lmit that, in our modern computational eavironment we
could avoid taking. In the old days people wanted analytical results and given the set of
mathematical tools it was actually more convenient to let the parameter space be infinite.
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Now most of our work is done numerically so that, in effect, we are using a compact set.
Also, it may be that the choice of a compact subset of the parameter space is something that
could be done fairly easily based upon prior information even in high dimensional problems.

Well, all of the above seems like a lot of complaining and whining. We all use “noninfor-
mative” priors and this work is probably the most important current work in the area, I found
the papers very um. . .er...ah. . interesting. If the authors obtain impossible solutions it is
because they are working on an impossible problem. It is comforting to see that Professor
Bernardo is keeping the spirit of Don Quixote alive in Spain and I should not be surprised
to see the aged Knight, some dark and stormy night, pursning his quest yet, in the town of
West Lafayette.

B. CLARKE (Purdue University, USA)

Introduction. Implicit in the work of Berger and Bemardo is a physical interpretation which
merits direct examination. They note that in certain examples, the information-theoretic
merging of two posteriors may depend on the sequence of compact sets supporting the
prior which defines one them, This motivates the definition of reference priors given by
expression (2.2.5). Although they have written that such dependence indicates the necessity
for subjective input, it can also be given a physical interpretation, in terms of universal
noiseless source coding.

In addition, the stepwise prior which appears in expression (2.2.5) can be given a physical
interpretation in terms of the capacity of a certain information-theoretic channel. While
expression (2.2.5) itself can also be interpreted physically in the context of channel coding,
this seems somewhat artificial. Since channel coding and source coding are quite distinct,
we 1aise the question of how to physically interpret the reference prior method.

As this may sound like a criticism, we also argue that the unsatisfactory results obtained
in the Fraser-Monette-Ng example, and in the Neyman-Scott example are not a failure of the
method, but instead reflect unreasonable expectations.

Some asymptotics will be used and we follow the notation of the paper. For instance,
we use Z; = (X1,...,X¢), a vector of iid outcomes from f(:|#). Henceforth, we only note
our occasional necessary departures.

Channel coding and source coding. First consider the function
Z
K(t,1) = B (#l(12),7(12))

The criterion in (2.2.5) is that = (#) satisfy

lim K(t,1) =0,
[—00
$0 that 7 is a limit point of the sequence < =, > |°,. The definition of K (¢,1) gives

K(t,1) = D(ni,7) +/7T§(9) (D (f(2:l6),p1{Z2)) — D(f(Z:)0),p(Z:))] dF. (1)

When Z; is discrete, the integrand is essentially the change in redundancy due to using the
Shannon code based on py, rather than the Shannon code based on p, when the true source
is f(:|f). Integration over # gives the Bayes redundancy, and the Shannon code based on
a mixture of distributions with respect to a given prior is essentially the code achieving
minimal Bayes redundancy, as defined by that prior. Consequently, if the integration over
the second term of the integrand were with respect to 7, we would say that the sequence
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of Bayes codes given by the sequence of mixtures p; tends to the Bayes code for the entite
family of f(-|6)’s. However, both terms are integrated with respect to m; which is intended
to approximate the limit .

The first term on the right in (1) represents the redundancy of coding with respect to
7 when the true prior is ﬂ{ . However, in the statistical context it is not clear what this
means. Perhaps it is sensible to replace (2.2.5) with D(vri,ar) — O: If'm is proper, regularity
conditions already imply that for fixed 1, k(t,1) — 0 as t increases. The result might be
finding rates at which ! may be let to increase as a function of ¢,

Next we wrmn to a channel coding interpretation for the stepwise reference prior. A
conditional density effectively defines a channel. The Shannon mutual information gives,
typically, an achievable rate of transmission across the channel. The suptemal value of
that rate is called the channel capacity. For compact parameter spaces the reference prior is
usually the source distribution which gives the channel capacity. In the two step case, there is
a formula in Ghosh and Mukeijee (1992) which implies that ﬂ'i is the source distribution for
the channel defined by m(Z|0:1) = [ f(Z;|61,02)7(62)61)d6; which achieves the maximal
rate of transmission, asymptotically in ¢,

This channel has the following interpretation. The message sent is §;. There are ¢
receivers, and they pool their data to decode the message. The ! defines the range of
messages we are able to transmit. The effect of the mixing in m(Z;]61) amounts to saying
that unbeknownst to the sender, once #; is sent, an auxilliary message 89 is sent, with
probability w(df2|61). The decoding is affected in that the constant term in the expansion
for the mutual information changes.

Contrasting the two interpretations, we note that adding and subtracting the integral
[ m(@)D(f(Z16),p(Z:)) d6 in (1) gives a difference of mutual informations which makes
sense in terms of channel coding. However, the other terms are problematic. Also, the
! defines an increasing sequence of parametric families in source coding, but a range of
messages in channel coding. It is not clear what this means in a statistical context.

Comments on the examples. Finally, we pick a few knits. In the Neyman-Scott example, the
two step reference prior approach is sensible when o is the parameter of interest, but breaks
down when i is the parameter of interest. This is not really surprising since the number of
parameters is growing as a linear function of the data, so there is no hope to estimate all of
them well. On a technical note, to control error terms in certain proofs, it is essential that
the number of parameters grow slowly, if at all.

Regarding the Fraser-Monetie-Ng example, it is important to note that the parameter
space is discrete. The asymptotics in the discrete case are quite distinct from those in the
continuous case: There is no dependence on ¢ or 7 (8). In the absence of nuisance parameters,
the mutual information converges to the entropy of the piior. As a result, the reference prior
is, asymptotically, the maximum entropy distribution. So, it is not surprising that anomalous
resulis are obtained. Some constraint on the class over which the maximization OCCurs may
be necessary.

In any event, the authors have made a valuable contribution, for which they are to be
complimented.

M. GHOSH (University of Florida, USA)

The present article is yet another mastesly contribution from Berger and Bernardo on
the development of reference priors. These authors, over the last few years, have made
several important extensions of the original work of Bernardo (1979), where the reference
priors were first introduced. One of the major accomplishments of this ongoing research is a
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systematic development of reference priors in the presence of nuisance parameters, and the
present article is yet another important step in that direction.

I will confine my discussion to the Neyman-Scott example, one of the major examples
in this paper, a problem that has fascinated statisticians for more than fouz decades. 1 am
particularly impressed by the simple reference pnor w(g1, ..., tin,0) o< o~ which leads to
the consistent Bayes estimator S%/(n — 2) of o2, consistency being achieved in a frequentist
sense.

I now show that an alternative consistent estimator of o2 can be derivell using a hierar-
chical Bayes approach, though the proof of consistency requires certain mild conditions on
the u;’s. The derivation pxoceeds as follows:

First note that (X, . X - 82) is minimal sufficient, where X; = (X1 + Xi2)/2,
i=1,---,m and S =37 EJ::[(XZJ X;)?. Consider now the following hierarchical
model:

I. Conditional on p2 = (p,..., y), o2 M m, and A = )\, X1,...,X, and S? are
mutually independent w1th Xi~N (,uz, 0?),i=1,.. ,n,and §% ~ a2x,21.‘
II. Conditional on M m,a? and A=) p’s are iid N(m, A7 16?).
Il Margmally M,o57? and Aa are mutually independent with M ~ umform (—-oo 00},
o2~ Gamma (0, 2g0) where gy(< 0) is some specified number, and Ao~? is Gamma

(0, —1), where we use the notation Gamma(c, 8) for a (possibly improper) distribution

with pdff (y) o exp(—ag)ys~.

Based on the above hierarchical model, one obtams the following results:
(i) Conditional on X; =% (i =1,...,n),52 = s2, and A = ),

_ 1 1
g NGamma( (S -i—mZ(-Tz ) ,5(271“‘3"‘90)) 3

where T=n"137 7

(i) conditional on X; = F;(i =1, ..., n), and 52 = 52, A has conditional pdf
1
FAIZ1, . Fn, 8%) o (M (24 4)) 301 37262 +2AR+ N 12 7)2)" $(2n—3+g0)

It is convenient to reparametrize A into U = A/(2 ++ A} so that posterior pdf of U is

F(UIE, . Fn, 57) oc wd@ (1 up) dO-S00) g (1)
Based on (i) and (ii), we obtain
E(o7?Z1,. .., Fn,8%) = *(2n — 5+ go) " [1 + E(UF|Z1, .., %, ] @

where F' =230 (T — 5)2/ s“, a multiple of the usual F statisiic. Using (1), it follows |
after some simplifications that

F .
THF) 3 -3) () _ )3 —4+00) g,
E(U.Frfls o ',Em 32) = ‘[0 I i ( fU) -
f6(1+Fi v%(n—5)( 1 — v)%(n#z.wo)d,v

)
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Integrating by parts, it follows from (3) that
E(UFz1,. .., Tn,s") = (n—3)(n+go—2)""-
9 F3m=?) (4)
(n+go—2)(1 + F)%(Zn—ﬂgo} ]('}F/(H-F) U%(n—5)(1 - v)%(ﬂﬁ%go)dv |

Combining (2) and (4), one gets

2

&
E(o7%1,. .., Zn,8%) =5/ (n+ g0 - 2) ~ S5 ta

o 3 (n-3) (5)

| (n+ g0 — 2)(1 _|_ F)%(2n—5+go) f{‘}F/(HF) v%(n—f))(l _ U)%(ﬂ—%go)dv "

As n — oo, the first term in the right hand side of (5) converges to ¢2 in probability
for every fixed gg. Using some heavy and tedious algebra, it can also be shown that the
second term in the right hand side of (5) converges to zero in probability as n — oo if
n! iy (i — )2 — A (some fixed positive number) as n — oco. Thus, the consistency
of the Bayes estimate given in (5) holds under some mild conditions. It may be interesting
to note that the first term in the right hand side of (5) equals the Berger-Bernardo reference
prior estimate when gg = 0.

Barnard (1970) suggested that the Neyman-Scott problem could be resolved using an
empirical Bayes approach. Bamard never did spell out how the empirical Bayes approach
should be used, but it seems quite plausible that an empirical Bayes approach will also meet
with success if one estimates m and A rather than use a hyperprior on these parameters.

I'wish to thank Professor J. K. Ghosh for posing a question which led to the development
of (5). '

M. GOLDSTEIN (University of Durham, UK)

The subject of reference priors seems to divide Bayesians beiween those who like and
use them, and those who find them rather puzzling. As one of the latter group, I would like
to pick up on the link asserted between reference priors and “objectivity”, and the related
claim that, in some general sense, reference priors “work”.

Consider the Fraser-Monette-Ng example dealt with in the paper. The authors seem
to imply that a reference-type prior distribution of form =(6) o< 8~1 would be “perfectly
satisfactory”. Now, I can agree that such a prior distribution would not be inherently contra-
dictory. However, what puzzles me is how such a prior could have some claim to objectivity.
What is “objective” in placing four times higher probability on the smallest of the three
allowable @ values, when we have seen z, than that placed on the other two values? Either
this corresponds to a genuine prior judgement that small values are, a priori, mote likely than
large values, or it looks like an arbitrary fix, The idea that a scientist could “objectively”
demonstrate that smaller values of 6 were more likely than larger values, without making
any subjective inputs, is rather weird, so maybe the authors might like to comment on what
they view as the criteria for judging a successful reference prior for this problem.

R. E. KASS (Carnegie Mellon University, USA)

I have several comments on this interesting paper,

1. The authors’ work is very much in the spirit of Jeffreys, who judged rules for
determining prior distributions according to how they worked in specific examples. As a
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matter of historical record, however, thete is not much support for the claim that “Jeffreys
himself ... noticed difficulties with the mecthod, ie., his general rule, taking the prior to
be proportional to det[I(6)]/? when # is multidimensional and would then provide ad hoc
modifications to the prior”. What Jeffreys did was (i) suggest that location parameters
should be treated specially, (ii) note that simple alternative solutions exist in many problems
(such as taking a uniform prior on the Binomial proportion), which do not agree with those
produced by his general rule, and (iii) encourage further investigation of “invariance theory”
in determining priors. The defects he noted in his general rule were present in one-parameter
problems; application to problems of higher dimension per se did not seem to bother him.

2. As far as nomenclature is concerned, I think “noninformative prior” is sufficiently
problematic that introducing an alternative is desirable. Since “reference prior” is often
understood to refer to Bernardo’s method, perhaps a better choice would be “conventional
prior”. This would cleaily be true to Jeffreys’s intent in his suggestion that such priors be
determined “by international agreement . .. as . . . in the choice of units of measurement and
many other standards of reference” (Brit. J. Phil. Sci., 1955, p. 277).

3. Another matter of nomenclature involves the term “parameters of interest”. Aparnt
from location problems, it is by no means clear that parameters may be ordered according
to “interest”. Why not simply refer to ordered parameters, and let the arbitrariness in the
choice remain obvious? (In Jeffieys's scenario, the specifics could be determined by the
international committee that will table the results.)

4.  In the Neyman-Scott example, it should be remarked that for any fixed n, Jeffreys’s
method was to take the prior proportional to 1/¢. I do not see how his method is any more
“ad hoc” than the authors’. Also, it would seem that a hierarchical prior would be of interest
in this example; the authors treated the conjugate case in full detail in their previous work.

5. Hierarchical models present very important cases for any conventional prior method-
ology and I would hope to see further work in this direction. Computation, however, is likely
to be a very serious difficulty. The information matrix is already hard to compute and the
brief remarks made in Section 3.4.2 are not specific enough to offer much comfort: the matrix
would have to be computed at a large number of values of # and it is not clear how we would
combine that computation with some Gaussian quadrature or simulation method for comput-
ing posterior quantities in a reasonably efficient scheme. (By the way, the problem when
using asymptotic approximations is greatly reduced because the matrix need only be com-
puted at a few points.) The authors note that their full iterative algorithm may not be feasible
in analytically-intractable cases. What, then, are we to do in these commonly-encountered
situations?

6. In answering such ultimately practical questions, it is perhaps inappropriate to sep-
arate prior selection from sensitivity analysis. In any real problem we will want to perform
some kind of sensitivity analysis and we are then led to ask what the role will be for a con-
ventional prior in such an alaysis. This seems to me to be an important outstanding problem.
My own experience is dragging me toward subjective sensitivity analysis, but if one were
to go to the trouble of peiforming a sensitivity analysis based on subjectively-determined
priors, why would one need a conventional prior? It would seem that the best answer is that
it would assist in scientific reporting. On the other hand, it may be possible to construct
a method for assessing sensitivity that would be both useful and more convenient than one
that requires detailed prior elicitation; perhaps conventional priors could play a role in this
process.
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G. KOOP (Boston University, USA) and
M. E I. STEEL (Tilburg University, The Netherlands)

We congratulate Professors Berger and Bernardo for developing an clegant general ap-
proach to reference priors for independent experiments. OQur comments are not so much a
criticism of their approach as they are a query concerning an extension which we judge to be
important. That is, among econometricians there has been a great deal of discussion lately
on what constitute reasonable noninformative priors for non-independent experiments. One
subject of controversy is the elicitation of noninformative priors for variants of the simple
AR(1) model, y; = py;.1 +&; (where the &;’s are iid. N(0,02) and ¢ =1,...,7T). Phillips
(1991) develops Jeffreys prior for this model, which is oftcn used to test for a unit root
(p = 1). It is our opinion that the development of noninformative priors for dynamic models
such as the AR(1) model has great relevance indeed for practitioners of applied econometrics.
In the following, we discuss the use of the reference prior in dynamic models and describe
the problems that arise in this context.

In the simple AR(I) model, conditional on yy = 0, there are two parameters, p and o2
By treating either o or p as the nuisance parameter, the model satisfies (2.3.5) in Berger and
Bernardo and hence (2.3.6) holds. The reference prior calculated using Berger and Bernardo’s
method is the same as the Jeffreys’ prior, which possesses tails of 0(p? —2). Although it has all
the advantages ascribed to it by Berger and Bernardo, the prior also has several disadvantages.
First, the Jeffreys’ prior depends on sample size, T, (ie., is data based) and violates the
Likelihood Principle. Second, this dependence on sample size occurs in such a way that
the prior influences the posterior even as sample size gets large. That is, the likelihood
does not dominate the posterior, even for large samples, which precludes “calibration” {ie.,
two Bayesians can continue to disagree as information accrues). Third, econometricians are
frequently interested in testing whether y; is stationary against the hypothesis that it is non-
stationary ([p| < I versus |p| > 1). The prior odds for the stationarity hypothesis against
a hypothesis containing any finite interval of comparable length in the explosive region
are virtually zero. Relative to what econometricians think is reasonable, the Jeffreys® prior
places far too much weight on explosive alternatives. This is because the Jefireys’ procedure
takes expectations over the sample space. In the AR(1) model, the sampling properties of
explosive models dominate those from stationary models. Fourth, the Jeffreys’ prior for
the AR(1) model depends on the order in which data are observed. Sequential updating
is precluded. For all of these reasons, many econometricians consider the Jeffreys® prior
to be unreasonable and strongly criticize its indiscriminate use in dynamic models (see the
discussion to Phillips (1991)).

On the basis of these objections, we contend that the reference prior approach desciibed
in Berger and Bernardo does not extend inmediately to non- -independent experiments. On
reading the unit root literature in econometrics, we find that a great demand for noninformative
priozs appears io exist, Hence the development of reference priors that circumvent the above
objections might just convince classical econometricians—a very challenging audience indeed—
of the merits of Bayesian methods. Pethaps the authors could propose a convincing procedure
for such models. Or should researchers just stick with the simple Laplace rule?

D. J. POIRIER (University of Toronto, Canada)

The authors readily acknowledge that pursuit of “reference” priors leads to priors that
often have a variety of discomforting properties, two of which can include incoherency and
violation of the Likelihood Principle. In addition the authors admit that reference priors ate
often not easy to derive, and are unlikely to achieve broad agreement because they depend
on issues such as the parameters of interests. Given these latter pragmatic problems, coupled
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with the former distasteful theoretical violations, I think the reader deserves more elaboration
on why this pursuit is worthwhile (other than the obvious reply that so many previous authors
have gone before). If one is to violate basic principles, then at least the violator should outline
the cases in which such violations may be palatable, and if pragmatic expediency is not the
reason, what then is the reason?

L. WASSERMAN (Carnegie Mellon University, USA)
This is a very interesting paper I have two comments; both are aimed at promoting

more widespread use of the techniques in this paper. First, I think it may be possible to
provide a rationale for the sample space dependence of reference priors. The argument goes
like this. Let E be the experiment selected by the experimenter. Let Ig be the event that
the experimenter preferred E to all other experiments and let 7 be the experimenter’s prior.
Suppose I try to guess 7, Let J be my prior on the set P of all priors. It can be shown that,
under suitable assumptions, my best guess at w conditional on Ig, is the Jeffreys’ prior. In
other words, Ej(n|lg) = n}, where 7% is Jeffieys’ prior for experiment E. The details are
in Wasserman (1991). Thinking of Jeffieys’ prior as a guess at w conditional on Ig obviates
the criticism that there is a violation of the likelihood principle. It might be possible to justify
the stepwise prior in a similar way, by conditioning on the information that the experimenter
has chosen a “parameter of interest”.

My second comment is a minor point about terminology. As mentioned by the authors,
the alemative “default prior” has been suggested in place of “non-informative prior” to refer to
priors chosen by scientific convention. Kass (1989) uses this term too. I suggest we abandon
the term “non-informative prior” and use “default prior” instead. The former is emotionally
charged and, besides, we all agree that there is no such thing as a noninformative prior.
Also, the term “reference prior” is ambiguous, Does it refer to (a) priors chosen by scientific
convention, (b) priors chosen by the missing information argument or (c) priors chosen by a
stepwise argument? To add to the confusion, Box and Tiao (1973} also use “reference prior”.
I suggest “default priot” for (a), “missing information prior” (MIP) for (b) and “stepwise
prior” for (c).

REPLY TO DISCUSSION

We thank the discussants for their interesting comments and questions. Because several of
the discussants raised certain common questions, we will respond by topic.

The Name. Kass suggests we replace the name “noninformative” prior with “conventional”
prior, while Wasserman prefers “default” prior. Assuming “reference” is to be the name
associated with the particular method we advocate for derivation of a noninformative prior,
we would slightly prefer the name “conventional” to “default” for the general concept, simply
because “default” sounds somewhat unscientific. Basically, however, it is so difficult to
change a historical name that we do not advocate such a change. Perhaps when we finally
have a true statistical convention to select our official noninformative priors, we should meet
in Geneva and then we can call them the “Geneva Convention” priors.

Parameters of Interest. Kass and McCulloch express various concerns about the definition
and meaning of “parameters of interest” and “nuisance parameters”. We refer to these
partly because the historical development of reference priors was heavily influenced by these
notions, and partly because the concepts do still seem to provide some guidance in choosing
the parameter ordering or the parameters (see Section 3.4 2) to which the reference prior
algorithm should be applied. But we must admit that we are drifting away from these
concepts; in particular we no longer recommend dividing the parameters exclusively into
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these two classes. And we are close to just recommending trying all parameters orderings,
regardless of which parameters are of interest.

Dependent Data. The example discussed by Koop and Steel is fascinating, pointing out a
serious potential difficulty in information-based methods of deriving noninformative priors.
What seems to be happening is that the data can be made more and more informative by
having the prior concentrate on larger and larger values of the parameter p, Therefore, as the
sample size increases, the prior will shift to larger p to “increase the information provided
by the data”. We agree with Koop and Steel that the net effect of this does not seem to be
good. Is there a solution within the reference prior theory? We will certainly think about it,
but the answer might well be — No!

Why Do All This? This is a very good question, raised to different degrees by Kass, Mc-
Culloch, and Poirier. There are actually two distinct questions here. The first is; Has the
reference prior method become so involved that we have lost the original motivation for
noninformative priors — simplicity? The key to the answer is recognizing that noninforma-
tive priors are typically used in a “look-up” scenario, with the practitioner choosing a model
and then searching the literature for the “correct” noninformative prior. It will be the job
of the reference prior researchers to determine the reference priors for common models, and
provide tables of such. The highly sophisticated practitioner who operates by inventing and
studying many completely new models will probably find the reference prior algorithm too
difficult to employ for each new model, but might well choose to derive it for the model
ultimately selected. '

The second important question here is: What is the alternative? Let us consider two
possibilities:

(i) McCulloch considers use of a constant noninformative prior, lists three possible things
that can happen, and suggests that the reference prior is at best useful only for checking
if the answer is sensitive to the choice of a constant prior. There are at least two other
possibilities that need to be considered, however. The first is that the posterior need
not be proper for a constant prior, and impropriety of the posterior may not be easy to
recognize in this age of analysis by computer. The exponential regression model referred
to in the paper is an example. The other troubling possibility is that the posterior for a
constant prior could be quite concentrated, but concentrated in the “wrong” place. The
famous Stein example of estimating the squared notm of a multivariate normal mean is
one such example; one of us recently even encountered a variant of this problem in a
major consulting project. Reference priors aie not guaranteed to avoid these difficulties,
but their track record is certainly better,

(i1) Subjective Bayesian analysis, perhaps with sensitivity analysis as mentioned by Kass,
is the obvious possible alternative. And as the noninformative prior theory grows in
complexity, the difficulties in subjective Bayesian analysis start to seem less foreboding,
We are not sure, however, if subjective Bayesian analysis is the cure to the difficuliies in
multi-dimensional problems. The point is simply that subjective elicitation is so difficult
in even moderate dimensional problems (hierarchical prior and other structured scenarios
excepted) that there is no guarantee that the subjective approach will even be superior
to the noninformative prior approach. Only a small number of features of a multivariate
-prior are ever specified, and the simplifying assumptions that one typically must make
(e.g., independence of the parameters) can be extremely influential without one being
aware of it. It is nice to say that one will conduct a sensitivity study, but what is
the chance, in a high dimensional space, of happening to encounter the truly influential
features of the prior? Current research on Bayesian robustness may provide solutions
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to this concern, but the jury is still out. The surprising success of the reference prior
method on the various known *“difficult” multiparameter problems could be viewed as
~ an indication that it somehow seeks and neutralizes potentially serious high-dimensional
“““confounding” of parameters, but at the moment this is sheer speculation. At the very
least, it would be sound practice in a subjective Bayesian sensitivity study to include the
reference prior (and probably the constant prior).

Violation of the Likelihood Principle and other Nasties. Several of the discussants express
concern over the various foundational inconsistencies that can be encountered with common
methods of developing noninformative priors. We have learned to live with these as one of
the prices that must be paid. In this regard, we were extremely interested in the statement
by Wasserman that, if one adopts a broad enough perspective, the information-based nonin-
formative priors may not be in violation of these principles. His argument sounds plausible,
and we await its fleshing out with considerable anticipation.

Koop and Steel discuss a number of unappealing properties of the Jeffreys (and probably
reference) prior for the AR(1) model. Two of these properties fall in the category of general
problems with noninformative priors, and are thus worth highlighting. First, the fact that
the usual noninformative piiors do not work well for testing is not too surprising, since
noninformative priors rarely work well for testing. Indeed, they only work when there
is symmetry between hypotheses or for eliminating nuisance parameters common to the
hypotheses. Likewise, it is not uncommon for noninformative priors to be inconsistent with
sequential updating, since they often will depend on the amount and even the nature of the
data to be obtained. Of course, if the sequential sampling plan is completely known in
advance, then one can obtain the noninformative prior for that sequential experiment —see
Example 4. We are not saying that these are pleasing properties, but they do seem to be
unavoidable.

The Neyman-Scott Example. Kass observes that Jeffreys method (not prior) for location-scale
problems was to use 1/o as the noninformative prior, and asks — why is this method (which
gives the “right” answer for the Neyman-Scott example) more ad hoc than the reference prior
method? In a sense, Jeffreys method here could be considered to be the stepwise reference
prior method, since it is based on somehow attemipting to separate the location and the scale
parameters. Indeed, our recommended reference prior method could just be viewed as a
general way to accomplish separation of parameters.

Kass also observes that a hierarchical model might be natural in this example. We agree,
but it is important to note that choosing a hierarchical prior is a major subjective judgement,
and is far from being noninformative.

Ghosh provides an interesting analysis showing that use of a hierarchical model here
works well, in the sense of providing consistent estimators under weak assumptions. The key
feature of his analysis to note is that he does not prove consistency only under the condition
that the p; arise from the indicated hierarchical prior, but under much weaker assumptions.
On a technical point, we suspect that his consistency condition can be weakened to

n—o0

T
limsup [n‘l > (i - 'ﬁ)g} <k
=1

which is of some interest because it states that the hierarchical prior works even if the p; are
not arising as 1.1.d. observations from a distribution with a finite variance,
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Coding. The efforts by Clarke to explain, through notions of coding, the various motivations
for the reference prior steps are very interesting It is perhaps unfortunate that not everything
seems to be completely explainable in this regard.

The suggestion that one might consider, instead of (2.2.5), the condition D(ﬂtf ,m) — Ois
reasonable for proper priors, but for improper 7 this quantity typically converges to infinity.
The suggestion of choosing £ to depend on the asymptotic repetition number is an interesting
possibility, but in some sense there are already too many options in developing a reference
prior; we would recommend adding more options only if the current structure proves to be
inadequate. '

Why Does the Stepwise Method Work?

McCulloch asks this question. We do not really know the answer. Examination of exam-
ples such as the Neyman-Scott example 1eveals the problem with considering all parameters
jointly, but our insight is not much deeper than that. More generally, one of us has never
been exactly sure why the entire reference prior method works, and has continually been
very pleasantly swrprised at its success. At the very least, one must agree with McCulloch’s
statement “and yet the method does generate interesting priors”.

Miscellaneous Comments.

(i) The comments of Kass concerning the attitude of Jetfreys towards higher dimensional
problems are interesting. To us, the key point is that Jeffreys was at least willing to
modify his rule in higher dimensions.

(i1} The computational difficulties mentioned by Kass, especially in regards to determining
reference priors for hierarchical models, are very real, Undoubtedly there are problems
for which reference priors are not effectively computable, even numerically.

(111) McCulloch suggests subjectively choosing a large compact set on which to operate,
thereby avoiding the need to perform the limiting operation over compact sets. Actually,
however, the limiting operation over compact sets is typically a simplifying operation as
discussed in section 3.4.1; trying to do the exact computation of a reference prior over a
fixed compact set would typically be much more difficult,
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