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Abstract

This paper defines intrinsic credible regions, a method to produce objective
Bayesian credible regions which only depends on the assumed model and the avail-
able data. Lowest posterior loss (LPL) regions are defined as Bayesian credible
regions which contain values of minimum posterior expected loss; they depend
both on the loss function and on the prior specification. An invariant, information-
theory based loss function, the intrinsic discrepancy, is argued to be appropriate
for scientific communication. Intrinsic credible regions are the lowest posterior loss
regions with respect to the intrinsic discrepancy loss and the appropriate reference
prior. The proposed procedure is completely general, and it is invariant under both
reparametrization and marginalization. The exact derivation of intrinsic credible
regions often requires numerical integration, but good analytical approximations are
provided. Special attention is given to one-dimensional intrinsic credible intervals;
their coverage properties show that they are always approximate (and sometimes
exact) frequentist confidence intervals. The method is illustrated with a number of
examples.
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priors, LPL regions, objective priors, reference priors, point estimation, probability
centred intervals, region estimation.

AMS subject classification: Primary 62F15; Secondary 62F25, 62B10.

1 Introduction and notation

This paper is mainly concerned with statistical inference problems such
as occur in scientific investigation. Those problems are typically solved
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conditional on the assumption that a particular statistical model is an ap-
propriate description of the probabilistic mechanism which has generated
the data, and the choice of that model naturally involves an element of
subjectivity. It has become standard practice however, to describe as “ob-
jective” any statistical analysis which only depends on the model assumed
and the data observed. In this precise sense (and only in this sense) this
paper provides an “objective” procedure to Bayesian region estimation.

Foundational arguments (Bernardo and Smith, 1994; de Finetti, 1970;
Savage, 1954) dictate that scientists should elicit a unique (joint) prior
distribution on all unknown elements of the problem on the basis of all
available information, and use Bayes theorem to combine this with the in-
formation provided by the data, encapsulated in the likelihood function,
to obtain a joint posterior distribution. Standard probability theory may
then be used to derive from this joint posterior the posterior distribution
of the quantity of interest; mathematically this is the final result of the
statistical analysis. Unfortunately however, elicitation of the joint prior is
a formidable task, specially in realistic models with many nuisance param-
eters which rarely have a simple interpretation, or in scientific inference,
where some sort of consensus on the elicited prior would obviously be re-
quired. In this context, the (unfortunately very frequent) näıve use of
simple proper “flat” priors (often a limiting form of a conjugate family)
as presumed “noninformative” priors often hides important unwarranted
assumptions which may easily dominate, or even invalidate, the analysis:
see e.g., Berger (2000), and references therein. The uncritical (ab)use of
such “flat” priors should be strongly discouraged. An appropriate reference
prior (Berger and Bernardo, 1992c; Bernardo, 1979b, 2005b) should instead
be used.

As mentioned above, from a Bayesian viewpoint, the final outcome of a
problem of inference about any unknown quantity is simply the posterior
distribution of that quantity. Thus, given some data x and conditions C, all
that can be said about any function θ(ω) of the parameter vector ω which
govern the model is contained in the posterior distribution p(θ |x, C), and
all that can be said about some function y of future observations from the
same model is contained in its posterior predictive distribution p(y |x, C).
Indeed (Bernardo, 1979a), Bayesian inference is a decision problem where
the action space is the class of those posterior probability distributions of
the quantity of interest which are compatible with accepted assumptions.



Intrinsic Credible Regions 319

However, to make it easier for the user to assimilate the appropri-
ate conclusions, it is often convenient to summarize the information con-
tained in the posterior distribution, while retaining as much of the infor-
mation as possible. This is conveniently done by providing sets of pos-
sible values of the quantity of interest which, in the light of the data,
are likely to be “close” to its true value. The pragmatic importance of
these region estimates should not be underestimated; see Guttman (1970),
Blyth (1986), Efron (1987), Hahn and Meeker (1991), Burdick and Gray-
bill (1992), Eberly and Casella (2003), and references therein, for some
monographic works on this topic. In this paper, a new objective Bayesian
solution to this region estimation problem is proposed and analyzed.

1.1 Notation

It will be assumed that probability distributions may be described through
their probability density functions, and no notational distinction will be
made between a random quantity and the particular values that it may
take. Bold italic roman fonts are used for observable random vectors (typ-
ically data) and bold italic greek fonts for unobservable random vectors
(typically parameters); lower case is used for variables and upper case cal-
ligraphic for their dominion sets. Moreover, the standard mathematical
convention of referring to functions, say fx and gx of x ∈ X , respectively
by f(x) and g(x) will be used throughout. Thus, the conditional proba-
bility density of data x ∈ X given θ will be represented by either px |θ or
p(x |θ), with p(x |θ) ≥ 0 and

∫

X
p(x |θ) dx = 1, and the posterior distri-

bution of θ ∈ Θ given x will be represented by either pθ |x or p(θ |x), with
p(θ |x) ≥ 0 and

∫

Θ
p(θ |x) dθ = 1. This admittedly imprecise notation will

greatly simplify the exposition. If the random vectors are discrete, these
functions naturally become probability mass functions, and integrals over
their values become sums. Density functions of specific distributions are
denoted by appropriate names. Thus, if x is an observable random variable
with a normal distribution of mean µ and variance σ2, its probability den-
sity function will be denoted N(x |µ, σ). If the posterior distribution of µ is
Student with location x, scale s, and n degrees of freedom, its probability
density function will be denoted St(µ |x, s, n).
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1.2 Problem statement

The argument is always defined in terms of some parametric model of
the general form M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}, which describes the
conditions under which data have been generated. Thus, data x are as-
sumed to consist of one observation of the random vector x ∈ X , with
probability density p(x |ω), for some ω ∈ Ω. Often, but not necessar-
ily, data will consist of a random sample x = {y1, . . . ,yn} of fixed size n
from some distribution with, say, density p(y |ω), y ∈ Y , in which case
p(x |ω) =

∏n
j=1 p(yj |ω), and X = Yn.

Let θ = θ(ω) ∈ Θ be some vector of interest; without loss of generality,
the assumed model M may be reparametrized in the form

M ≡ { p(x |θ,λ), x ∈ X , θ ∈ Θ, λ ∈ Λ }, (1.1)

where λ is some vector of nuisance parameters; this is often simply referred
to as “model” p(x |θ,λ). Conditional on the assumed model, all valid
Bayesian inferential statements about the value of θ are encapsulated in its
posterior distribution

p(θ |x) ∝
∫

Λ

p(x |θ,λ) p(θ,λ) dλ, (1.2)

which combines the information provided by the data x with any other
information about θ contained in the prior density p(θ,λ).

With no commonly agreed prior information on (θ,λ) the reference
prior function for the quantity of interest, a mathematical description of
that situation which maximizes the missing information about the quantity
of interest θ which will be denoted by π(θ)π(λ |θ), should be used to obtain
the corresponding reference posterior,

π(θ |x) ∝ π(θ)

∫

Λ

p(x |θ,λ) π(λ |θ) dλ. (1.3)

To describe the inferential content of the posterior distribution p(θ |x)
of the quantity of interest and, in particular, that of the reference posterior
π(θ |x), it is often convenient to quote regions R ⊂ Θ of given (posterior)
probability under p(θ |x), often called credible regions.

This paper concentrates on credible regions for parameter values. How-
ever, the ideas may be extended to prediction problems by using the pos-
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terior predictive density of the quantity y to be predicted, namely p(y |x)
=

∫

Ω p(y |ω) p(ω |x) dω, in place of the posterior density of θ.

Definition 1.1 (Credible region). A (posterior) q-credible region for
θ ∈ Θ is a subset Rq(x,Θ) of the parameter space Θ such that,

Rq(x,Θ) ⊂ Θ,

∫

Rq(x,Θ)
p(θ |x) dθ = q, 0 < q ≤ 1.

Thus, given data x, the true value of θ belongs to Rq(x,Θ) with (posterior)
probability q.

If there is no danger of confusion, dependence on available data x and
explicit mention of the parametrization used will both be dropped from the
notation, and a q-credible region Rq(x,Θ) will simply be denoted by Rq.

Credible regions are invariant under reparametrization. Thus, for any
q-credible region Rq(x,Θ) for θ and for any one-to-one transformation
φ = φ(θ) ∈ φ(Θ) = Φ of the parameter θ, Rq(x,Φ) = φ{Rq(x,Θ)} is
a q-credible region for φ. However, for any given q there are generally
infinitely many credible regions. Many efforts have been devoted to the
selection of an appropriate credible region.

Sometimes, credible regions are selected to have minimum size (length,
area, volume), resulting in highest posterior density (HPD) regions, where
all points in the region have larger posterior probability density than all
points outside. However, HPD regions are not invariant under reparametri-
zation: the image Rq(x,Φ) = φ{Rq(x,Θ)} of a HPD q-credible region for θ

will be a q-credible region for φ, but will not generally be HPD. Thus, the
apparently intuitive idea behind the definition of HPD regions is found to
be illusory, for it totally depends on the (arbitrary) parametrization chosen
to describe the problem.

In one dimensional problems, posterior quantiles are often used as an
alternative to HPD regions to specify credible regions. Thus, if θq = θq(x)
is the posterior q-quantile of θ, then Rq(x,Θ) = {θ; θ ≤ θq} is a one-sided,
typically unique q-credible interval, and it is invariant under reparametriza-
tion. Posterior quantiles may be used to define probability centred q-credible
intervals of the form

Rq(x,Θ) = {θ; θ(1−q)/2 ≤ θ ≤ θ(1+q)/2},
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so that there is the same probability, namely (1− q)/2, that the true value
of θ is at either side of the interval. Probability centred intervals are easier
to compute, and they are often quoted in preference to HPD regions. How-
ever, probability centred credible intervals are only really appealing when
the posterior density has a unique interior mode and, moreover, they have
a crucial limitation: they are not uniquely defined in problems with more
than one dimension.

Example 1.1 (Credible intervals for a binomial parameter). Con-
sider a set x = {x1, . . . , xn} of n independent Bernoulli observations with
parameter θ ∈ Θ = (0, 1), so that p(x | θ) = θx(1− θ)1−x, and the likelihood
function is p(x | θ) = θr(1 − θ)n−r, with r =

∑n
j=1 xj. The reference prior,

which in this case is also Jeffreys prior, is π(θ) = Be(θ | 1
2 ,

1
2), and the refer-

ence posterior is π(θ | r, n) = Be(θ | r+ 1
2 , n−r+ 1

2) ∝ θr−1/2(1−θ)n−r−1/2.
A (posterior) q-credible region for θ is any subset of Rq of (0, 1) such that
∫

Rq
Be(θ | r + 1

2 , n− r + 1
2) dθ = q.

Consider now the one-to-one (variance stabilizing) reparametrization
φ = 2arcsin

√
θ, φ ∈ Φ = (0, π), so that θ = sin2(φ/2). Changing variables,

the reference posterior density of φ is

π(φ | r, n) =
π(θ | r, n)

|∂φ(θ)/∂θ|

∣

∣

∣

∣

θ=sin2(φ/2)

∝ (sin2[φ/2])r(cos2[φ/2])n−r, (1.4)

which conveys precisely the same information that π(θ | r, n). Clearly, if the
set Rq(r, n,Θ) is a q-credible region for θ then Rq(r, n,Φ) = φ{Rq(r, n,Θ)}
will be a q-credible region for φ; however, if Rq(r, n,Θ) is HPD for θ, then
Rq(r, n,Φ) will generally not be HPD for φ.

For a numerical illustration, consider the case n = 10, r = 2, so that the
reference posterior is the beta density Be(θ | 2.5, 8.5) represented in the left
panel of Figure 1. Numerical integration or the use of the incomplete beta
integral shows that the 0.95 HPD credible interval is the set (0.023, 0.462) of
those θ values whose posterior density is larger than 0.585 (shaded region
in that figure). The reference posterior of φ, given by Equation (1.4), is
shown on the right panel of Figure 1; the θ-HPD interval transforms into
φ[(0.023, 0.462)] = (0.308, 1.495) which is a 0.95-credible interval for φ,
but clearly not HPD. The 0.95 probability centred credible interval for θ
is (0.044, 0.503), slightly to the right of the HPD interval. Consider now
the case n = 10, r = 0, so that no successes have been observed in ten
trials. The reference posteriors densities of θ and φ are now both monotone
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Figure 1: HPD credible regions do not remain HPD under reparametrization.
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Figure 2: Probability centred credible intervals are not appropriate if posteriors

have not a unique interior mode.

decreasing from zero (see Figure 2). The HPD interval for θ is (0, 0.170);
this transforms into φ[(0, 0.170)] = (0, 0.852), which now is also HPD in φ.
Clearly, probability centred intervals do not make much intuitive sense in
this case, for they would leave out the neighbourhood of zero, which is by
far the region more likely to contain the true parameter value.

bernardo/bernardofigbin.eps
bernardo/bernardofigbin2.eps
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Conventional frequentist theory fails to produce a convincing confidence
interval in this (very simple) example. Indeed, since data are discrete, an
exact non-randomized confidence interval of level 1 − q does not exist for
most q-values. On the other hand the frequentist coverage of (exact) ob-
jective q-credible intervals may generally be shown to be q + O(n−1); thus,
Bayesian q-credible regions typically produce approximate confidence inter-
vals of level 1 − q. See Section 5 for further discussion.

As the preceding example illustrates, even in simple one-dimensional
problems, there is no generally agreed solution on the appropriate choice
of credible regions. As one would expect, the situation only gets worse in
many dimensions.

In the next section, a decision theory argument is used to propose a
new procedure for the selection of credible intervals, a procedure designed
to overcome the problems discussed above.

2 Lowest posterior loss (LPL) credible regions

Let θ ∈ Θ be some vector of interest and suppose that available data x are
assumed to consist of one observation from

M ≡ { p(x |θ,λ), x ∈ X , θ ∈ Θ, λ ∈ Λ },
where λ ∈ Λ is some vector of nuisance parameters. Let p(θ,λ) the the
joint prior for (θ,λ), let p(θ |x) ∝

∫

Λ
p(x |θ,λ) p(θ,λ) dλ be the corre-

sponding marginal posterior for θ, and let `{θ0,θ} the loss to be suffered
if a particular value θ0 ∈ Θ of the parameter were used as a proxy for the
unknown true value of θ in the specific application under consideration.
The expected loss from using θ0 is then

l{θ0 |x} = Eθ |x[`{θ0,θ}] =

∫

Θ

`{θ0,θ} p(θ |x) dθ (2.1)

and the optimal (Bayes) estimate of θ with respect to this loss (given the
assumed prior), is

θ∗(x) = arg inf
θ0∈Θ

l{θ0 |x}. (2.2)

As mentioned before, with no commonly agreed prior information on (θ,ω)
the prior p(θ,λ) will typically be taken to be the reference prior function
for the quantity of interest, π(θ)π(ω |θ).
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More generally, the loss to be suffered if θ0 were used as a proxy for θ

could also depend on the true value of the nuisance parameter λ. In this
case, the loss function would be of the general form `{θ0, (θ,λ)} and the
expected loss from using θ0 would be

l{θ0 |x} =

∫

Θ

∫

Λ

`{θ0, (θ,λ)} p(θ,λ |x) dθ dλ, (2.3)

where p(θ,λ |x) ∝ p(x |θ,λ) p(θ,λ) is the joint posterior of (θ,λ).

With a loss structure precisely defined, coherence dictates that param-
eter values with smaller expected loss should always be preferred. For rea-
sonable loss functions, a typically unique credible region may be selected
as a lowest posterior loss (LPL) region, where all points in the region have
smaller posterior expected loss than all points outside.

Definition 2.1 (Lowest posterior loss credible region). Let data x

consist of one observation from M ≡ {p(x |θ,λ),x ∈ X ,θ ∈ Θ,λ ∈ Λ},
and let `{θ0, (θ,λ)} be the loss to be suffered if θ0 were used as a proxy
for θ. A lowest posterior loss q-credible region is a subset R`

q = R`
q(x,Θ)

of the parameter space Θ such that,

(i).
∫

R`
q
p(θ |x) dθ = q,

(ii). ∀θi ∈ R`
q, ∀θj /∈ R`

q, l(θi |x) ≤ l(θj |x),

where l(θi |x) =
∫

Θ

∫

Λ
`{θi, (θ,λ)} p(θ,λ |x) dθ dλ.

Lowest posterior loss regions obviously depend on the particular loss
function used. In principle, any loss function could be used. However, in
scientific inference one would expect the loss function to be invariant under
one-to-one reparametrization. Indeed, if θ is a positive quantity of interest,
the loss suffered from using θ0 instead of the true value of θ should be pre-
cisely the same the same as, say, the loss suffered from using log θ0 instead
of log θ. Moreover, the (arbitrary) parameter is only a label for the model.
Thus, for any one-to-one transformation φ = φ(θ) in Φ = Φ(Θ), the model
{p(x |θ), x ∈ X , θ ∈ Θ} is precisely the same as the (reparametrized)
model {p(x |φ), x ∈ X , φ ∈ Φ}; the conclusions to be derived from avail-
able data x should be precisely the same whether one chooses to work in
terms of θ or in terms of φ. Thus, in scientific inference, where only truth
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is supposed to matter, the loss suffered `{θ0,θ} from using θ0 instead of θ

should not measure the (irrelevant) discrepancy in the parameter space Θ
between the parameter values θ0 and θ, but the (relevant) discrepancy in
the appropriate functional space between the models px | θ0

and px |θ which
they label. Such a loss function, of general form `{θ0,θ} = `{px |θ0

, px | θ},
will obviously be invariant under one-to-one reparametrizations, so that for
any such transformation φ = φ(θ), one will have `{θ0,θ} = `{φ0,φ}, with
φ0 = φ(θ0), as required.

Loss functions which depend on the models they label rather than on the
parameters themselves are known as intrinsic loss functions (Robert, 1996).
This concept is not related to the concepts of “intrinsic Bayes factors” and
“intrinsic priors” introduced by Berger and Pericchi (1996).

Definition 2.2 (Intrinsic loss function). Consider the probability model
M ≡ { p(x |ω), x ∈ X , ω ∈ Ω }. An intrinsic loss function for M is a
symmetric, non-negative function `{ω0,ω} of the general form

`{ω0,ω} = `{ω,ω0} = `{px |w0
, px |w}

which is zero if, and only if, p(x |ω0) = p(x |ω) almost everywhere.

Well known examples of intrinsic loss functions include the L1 norm,

`1{ω0,ω} =

∫

X
|p(x |ω0) − p(x |ω)|dx (2.4)

and the L∞ norm

`∞{ω0,ω} = sup
x∈X

|p(x |ω0) − p(x |ω)|. (2.5)

All intrinsic loss functions are invariant under reparametrization, but they
they are not necessarily invariant under one-to-one transformations of x.
Thus, `1 in Equation (2.4) is invariant in this sense, but `∞ in Equation (2.5)
is not. Intrinsic loss functions which are invariant under one-to-one trans-
formations of the data are typically also invariant under reduction to suf-
ficient statistics. For example, if t = t(x) ∈ T is sufficient for the model
under consideration, so that p(x |ω) = p(t |ω) p(s | t), where s = s(x) is
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an ancillary statistic, the intrinsic `1 loss becomes

`1{ω0,ω} =

∫

X
p(x |ω)

∣

∣

∣

∣

p(x |ω0)

p(x |ω)
− 1

∣

∣

∣

∣

dx

=

∫

T
p(t |ω)

∣

∣

∣

∣

p(t |ω0)

p(t |ω)
− 1

∣

∣

∣

∣

dt

=

∫

T
|p(t |ω0) − p(t |ω)|dt.

Hence, the `1 loss would be the same whether one uses the full model
p(x |ω) or the marginal model p(t |ω) induced by the sampling distribution
of the sufficient statistic t. The loss `∞ however is not invariant is this
statistically important sense.

The conclusions to be derived from any data set x should obviously the
same as those derived from reduction to any sufficient statistic; hence, only
intrinsic loss functions which are invariant under reduction by sufficiency
should really be considered.

Example 2.1 (Credible intervals for a binomial parameter (con-
tinued)). Consider again the problem considered in Example 1.1 and take
the `1 loss function of Equation (2.4). Since this loss is invariant under re-
duction to a sufficient statistic, the expected loss from using θ0 rather than
θ may be found using the sampling distribution p(r | θ) = Bi(r |n, θ) of the
sufficient statistic r. This yields

l1{θ0 | r, n} =

∫ 1

0
`1{θ0, θ}Be(θ | r + 1

2 , n− r + 1
2) dθ

`1{θ0, θ} =

n
∑

r=0

|Bi(r |n, θ0) − Bi(r |n, θ)|.

The expected loss l1{θ0 | r, n} is shown in the upper panel of Figure 3 for
the case r = 2 and n = 10 discussed before. This has a unique minimum
at θ∗ = 0.210 which is therefore the Bayes estimator for this loss (marked
with a solid dot in the lower panel of Figure 3). The 0.95-LPL credible
interval for this loss is numerically found to consist of the set (0.037, 0.482)
whose expected loss is lower than 1.207 (shaded region in the lower panel of
Figure 3). Since intrinsic loss functions are invariant under reparametriza-
tions, the Bayes estimate φ∗ and LPL q-credible region of some one-to-one
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Figure 3: Bayes estimator and LPL 0.95-credible region for a binomial parameter

using the L1 intrinsic loss.

function of φ will simply be φ(θ∗) and φ[R`
q(r, n,Θ)]. For the variance-

stabilizing transformation φ(θ) = 2 arcsin
√
θ already considered in Exam-

ple 1.1 these are, respectively, 0.952 and (0.385, 1.535).

Notice that if one were to use a conventional, not invariant loss func-
tion, the results would not be invariant under reparametrization. For in-
stance, with a quadratic loss `{θ0, θ} = (θ0 − θ)2, the Bayes estimator is
the posterior mean, E[θ | r, n] = 0.227; similarly, the Bayes estimator for
φ would be its posterior mean E[φ | r, n] = 0.965, which is different from
φ(0.227) = 0.994; credible regions would be similarly inconsistent. Yet, it
would be hard to argue, say to a quality engineer, that your best guess for
the proportion of defective items is θ∗, but that your best guess for log θ is
not log θ∗.

bernardo/bernardofigbinl1.eps
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In the next section, a particular, invariant intrinsic loss, the intrinsic
discrepancy will be introduced. It is argued that this provides a far better
conventional loss function of choice for mathematical statistics than the
ubiquitous, overused quadratic loss.

3 The intrinsic discrepancy loss

Probability theory makes frequent use of divergence measures between prob-
ability distributions. The total variation distance, Hellinger distance, Kull-
back-Leibler logarithmic divergence, and Jeffreys logarithmic divergence
are all frequently cited; see, for example, Kullback (1968), and Gutiérrez-
Peña (1992) for precise definitions and properties. Each of those divergence
measures may be used to define a type of convergence. It has been found,
however, that the behaviour of many important limiting processes, in both
probability theory and statistical inference, is better described in terms of
another information-theory related divergence measure, the intrinsic dis-
crepancy (Bernardo and Rueda, 2002), which is now defined and illustrated.

Definition 3.1 (Intrinsic discrepancy). Consider two probability dis-
tributions of a random vector x ∈ X , specified by their density functions
p1(x), x ∈ X 1 ⊂ X , and p2(x), x ∈ X 2 ⊂ X , with either identical or
nested supports. The intrinsic discrepancy δ{p1, p2} between p1 and p2 is

δ{p1, p2} = min

{
∫

X 1

p1(x) log
p1(x)

p2(x)
dx,

∫

X 2

p2(x) log
p2(x)

p1(x)
dx

}

, (3.1)

provided one of the integrals (or sums) is finite. The intrinsic discrepancy
δ{F1,F2} between two families F1 and F2 of probability distributions is the
minimum intrinsic discrepancy between their elements,

δ{F1,F2} = inf
p1∈F1, p2∈F2

δ{p1, p2}. (3.2)

It is immediate from Definition 3.1 that the intrinsic discrepancy be-
tween two probability distributions may be written in terms of their two
possible directed divergences (Kullback and Leibler, 1951) as

δ{p2, p1} = min
{

κ{p2 | p1}, κ{p1 | p2}
}

(3.3)

where the κ{pj | pi}’s are the non-negative quantities defined by

κ{pj | pi} =

∫

X i

pi(x) log
pi(x)

pj(x)
dx, with X i ⊆ X j. (3.4)
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which are invariant under one-to-one transformations of x. Since κ{pj | pi}
is the expected value of the logarithm of the density (or probability) ratio
for pi against pj when pi is true, it also follows from Definition 3.1 that, if p1

and p2 describe two alternative models, one of which is assumed to generate
the data, their intrinsic discrepancy δ{p1, p2} is the minimum expected log-
likelihood ratio in favour of the model which generates the data (the “true”
model).

The intrinsic discrepancy δ{p1, p2} is a divergence measure (i.e., it is
symmetric, non-negative and zero iff p1 = p2 a.e.) with two added impor-
tant properties which make it virtually unique: (i) the intrinsic discrepancy
is still defined when the supports are strictly nested; hence, the intrinsic
discrepancy δ{p, p̂} between, say a distribution p with support on R and
its approximation p̂ with support on some compact subset [a, b] may be
computed; and (ii) the intrinsic discrepancy is additive for independent
observations. As a consequence of (ii), the intrinsic discrepancy δ{θ1, θ2}
between two possible joint models

∏n
j=1 p1(xj | θ1) and

∏n
j=1 p2(xj | θ2) for a

random sample x = {x1, . . . , xn} is simply n times the discrepancy between
p1(x | θ1) and p2(x | θ2).

Theorem 3.1 (Properties of the intrinsic discrepancy). Let p1 and p2

be any two probability densities for the random vector x ∈ X with ei-
ther identical or nested supports X 1 and X 2. Their intrinsic discrepancy
δ{p1, p2} is

(i). Symmetric: δ{p1, p2} = δ{p2, p1}

(ii). Non-negative: δ{p1, p2} ≥ 0, and
δ{p1, p2} = 0 if, and only if, p1(x) = p2(x) a.e.

(iii). Defined for strictly nested supports:
if X i ⊂ X j, then δ{pi, pj} = δ{pj , pi} = κ{pj | pi}.

(iv). Invariant: If z = z(x) is one-to-one and qi(z) is the probability den-
sity of z induced by pi(x), then δ{p1, p2} = δ{q1, q2}

(v). Additive for independent observations: If x = {y1, . . . ,yn}, and
pi(x) =

∏n
l=1 qi(yl), then δ{p1, p2} = n δ{q1, q2}.

Proof. (i) From Definition 3.1, δ{p1, p2} is obviously symmetric. (ii) More-
over, δ{p1, p2} = min{κ{p1 | p2}, κ{p2 | p1}}; but κ{pi | pj} is non-negative
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(use the inequality logw ≤ w − 1 with w = pi/pj , multiply by pj and inte-
grate), and vanishes if (and only if) pi(x) = pj(x) almost everywhere. (iii)
If p1(x) and p2(x) have strictly nested supports, one of the two directed di-
vergences will not be finite, and their intrinsic discrepancy simply reduces to
the other directed divergence. (iv) The new densities are qi(x) = pi(x)/|J |,
where J is the jacobian of the transformation; hence,

κ{qi | qj} =

∫

Z

pj(x) |J | log pj(x) |J |
pi(x) |J | dz =

∫

X

pj(x) log
pj(x)

pi(x)
dx

which is κ{pi | pj}. (v) Under independence, pi(x) =
∏n

j=1 qi(yj); thus

κ{pi | pj} =

∫

Yn

n
∏

l=1

qj(yl) log

∏n
l=1 qj(yl)

∏n
l=1 qi(yl)

dy1 . . . dyl

= n

∫

Y

qj(y) log
qj(y)

qi(y)
dy = n κ{qi | qj}

and the result follows from Definition 3.1.

The statistically important additive property is essentially unique to
logarithmic discrepancies; it is basically a consequence of two facts (i)
the joint density of independent random quantities is the product of their
marginals, and (ii) the logarithm is the only analytic function which trans-
forms products into sums.

The intrinsic discrepancy may be used to define a new type of conver-
gence for probability distributions which finds many applications in both
probability theory and Bayesian inference.

Definition 3.2 (Intrinsic convergence). A sequence of probability dis-
tributions specified by their density functions {pi(x)}∞i=1 is said to converge
intrinsically to a probability distribution with density p(x) whenever the
sequence of their intrinsic discrepancies {δ(pi, p)}∞i=1 converges to zero.

Example 3.1 (Poisson approximation to a Binomial distribution).
The intrinsic discrepancy between a Binomial distribution with probability
function Bi(r |n, θ) and its Poisson approximation Po(r |n θ), is

δ{Bi,Po |n, θ} =

n
∑

r=0

Bi(r |n, θ) log
Bi(r |n, θ)
Po(r |n θ)

,
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since the second sum in Definition 3.1 diverges. It may easily be verified that
limn→∞ δ{Bi,Po |n, λ/n} = 0 and limθ→0 δ{Bi,Po |λ/θ, θ} = 0; thus, the
sequences of Binomials Bi(r |n, λ/n) and Bi(r |λ/θi, θi) both intrinsically
converge to a Poisson Po(r |λ) when n→ ∞ and θi → 0, respectively. No-
tice however that in the approximation a Binomial Bi(r |n, θ) by a Poisson
Po(r |n θ) the rôles of n and θ are very far from similar; the crucial con-
dition for the approximation to work is that the value of θ must be small,
while the value of n is largely irrelevant. Indeed, as shown in Figure 4,
limθ→0 δ{Bi,Po |n, θ} = 0, for all n > 0, so arbitrarily good approxima-
tions are possible with any n, provided θ is sufficiently small. However,
limn→∞ δ{Bi,Po |n, θ} = 1

2 [−θ− log(1− θ)] for all θ > 0; thus, for fixed θ,
the quality of the approximation cannot improve over a certain limit, no
matter how large n might be.

0.1 0.2 0.3 0.4 0.5
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0.05

0.1

0.15 n=1

n=3
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n=¥

Θ

∆ HBi, Po È n, Θ <

Figure 4: Intrinsic discrepancy δ{Bi,Po |n, θ} between a Binomial Bi(r |n, θ) and

a Poisson Po(r |nθ) as a function of θ, for n = 1, 3, 5 and ∞.

Definition 3.3 (Intrinsic discrepancy loss). For any given parametric
model M = {p(x |ω), x ∈ X , ω ∈ Ω}, the intrinsic discrepancy loss asso-
ciated to the use of ω0 as a proxy for ω is the intrinsic discrepancy

δx{ω0,ω} = δ{px |w0
, px |w}

between the models identified by ω0 and ω. More generally, if ω = (θ,λ),
so that the model is M ≡ {p(x |θ,λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, the intrinsic
discrepancy loss associated to the use of θ0 as a proxy for θ is the intrinsic
discrepancy

δx{θ0, (θ,λ)} = inf
λ0∈Λ

δ{px |θ0,λ0
, px |θ,λ}

bernardo/bernardoFigBinApprox.eps
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between the assumed model p(x |θ,λ), and its closest element in the family
{p(x |θ0,λ0),λ0 ∈ Λ}.

Example 3.2 (Intrinsic discrepancy loss in a Binomial model). The
intrinsic discrepancy loss δr{θ0, θ |n} associated to the use of θ0 as a proxy
for θ with Binomial Bi(r |n, θ) data is

δr{θ0, θ |n} = n δx{θ0, θ}, (3.5)

δx{θ0, θ} = min[κ{θ0 | θ}, κ{θ | θ0} ]

κ(θi | θj) = θj log[θj/θi] + (1 − θj) log[(1 − θj)/(1 − θi)],

where δx{θ0, θ} is the intrinsic discrepancy between Bernoulli random vari-
ables with parameters θ0 and θ. The intrinsic loss function δx{θ0, θ} is
represented in Figure 5.
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Figure 5: Intrinsic discrepancy loss δx{θ0, θ} from using θ0 as a proxy for θ in a

binomial setting.

The intrinsic discrepancy loss, was introduced by Bernardo and Rueda
(2002) in the context of hypothesis testing. It is an intrinsic loss function
(Definition 2.2) and, hence, it is invariant under reparametrization. More-
over, as one would surely require, (i) the intrinsic discrepancy between

bernardo/bernardoFigBinDis.eps


334 J. M. Bernardo

two elements of a parametric family of distributions is also invariant un-
der marginalization to the model induced by the sampling distribution of
any sufficient statistic, and (ii) the intrinsic discrepancy loss is additive for
conditionally independent observations. More precisely,

Theorem 3.2 (Properties of the intrinsic discrepancy loss). Con-
sider model M ≡ {p(x |θ,λ), x ∈ X , θ ∈ Θ, λ ∈ Λ} and let δx{θ0, (θ,λ)}
be the loss associated to the use of θ0 as a proxy for θ.

(i). Consistent marginalization: If t(x) ∈ T is sufficient for M, then
δt{θ0, (θ,λ)} = δx{θ0, (θ,λ)}. In particular, δx{θ0, (θ,λ)} is in-
variant under one-to-one transformations of x.

(ii). Additivity: If x = {y1, . . . ,yn} and the yj’s are independent given
(θ,λ), then δx{θ0, (θ,λ)} =

∑n
j=1 δyj

{θ0, (θ,λ)}. If they are also
identically distributed, then δx{θ0, (θ,λ)} = n δy{θ0, (θ,λ)}.

Proof. (i) If t(x) ∈ T is sufficient for M and s(x) is an ancillary statistic,
so that, in terms of ω = (θ,λ), p(x |ω) = p(t |ω) p(s | t), the required
directed divergences κ{p(x |ωi) | p(x |ωj)} may be written as

∫

X

p(t |ωj) p(s | t) log
p(t |ωj) p(s | t)
p(t |ωi) p(s | t)

dx =

∫

T

p(t |ωj) log
p(t |ωj)

p(t |ωi)
dt.

It follows that the intrinsic discrepancy loss δx{θ0, (θ,λ)} calculated from
the full model is the same as the intrinsic discrepancy δt{θ0, (θ,λ)} calcu-
lated from the marginal model {p(t |θ,λ), t ∈ T , θ ∈ Θ, λ ∈ Λ} induced
by the sufficient statistic. (ii) Additivity is a direct consequence of the last
statement in Theorem 3.1.

Computation of intrinsic loss functions in well-behaved problems may
be simplified by the use of the result below:

Theorem 3.3 (Computation of the intrinsic loss function). Consider
a model M ≡ {p(x |θ,λ), x ∈ X , θ ∈ Θ, λ ∈ Λ} such that the support of
p(x |θ,λ) is convex for all pairs (θ,λ). Then

δx{θ0, (θ,λ)} = inf
λ0∈Λ

δ{px | θ0,λ0
, px | θ,λ}

= min

{

inf
λ0∈Λ

κ(θ,λ |θ0,λ0), inf
λ0∈Λ

κ(θ0,λ0 |θ,λ)

}

.
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Proof. This follows from the fact that the directed divergences are convex
functions which are bounded above zero; for details, see Juárez (2004).

Example 3.3 (Intrinsic discrepancy loss in a normal model). By
Theorems 3.2 and 3.3, the intrinsic discrepancy loss δx{µ0, (µ, σ)} as-
sociated to the use of µ0 as a proxy for µ with a random sample x =
{x1, . . . , xn} of normal N(x |µ, σ) data is n δx{µ0, (µ, σ)}, where

δx{µ0, (µ, σ)} = min[ inf
σ0>0

κ{µ, σ |µ0, σ0}, inf
σ0>0

κ{µ0, σ0 |µ, σ}].

If σ is known, then the two directed divergences are equal; indeed, given σ,

κ{µi |µj} =

∫

R

N(x |µj , σ) log
N(x |µj , σ)

N(x |µi, σ)
dx =

1

2

(µi − µj)
2

σ2

and, therefore,

δx{µ0, µ |σ)} =
n

2

[

(µ0 − µ)2

σ2

]

=
1

2

[

µ0 − µ

σ/
√
n

]2

, (3.6)

just one half the square of the standardized difference between µ0 and µ.

If σ is not known, using Theorem 3.3,

inf
σ0>0

κ{µ0, σ0 |µ, σ} = inf
σ0>0

∫

R

N(x |µ, σ) log
N(x |µ, σ)

N(x |µ0, σ0)
dx

=
1

2
log

[

1 +
(µ− µ0)

2

σ2

]

(3.7)

inf
σ0>0

κ{µ, σ |µ0, σ0} = inf
σ0>0

∫

R

N(x |µ0, σ0) log
N(x |µ0, σ0)

N(x |µ, σ)
dx

=
1

2

[

(µ− µ0)
2

σ2

]

. (3.8)

Since, for all w > 0, w ≥ log(1+w), this implies that the required minimum
is achieved by (3.7) and, therefore,

δx{µ0, (µ, σ)} =
n

2
log

[

1 +
(µ− µ0)

2

σ2

]

, (3.9)

a one-to-one function δ(z, n) = (n/2) log[1+z2] of the Mahalanobis distance
z2 = (µ− µ0)

2/σ2 between N(x |µ0, σ) and N(x |µ, σ). This generalizes to
a multivariate normal setting.
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Figure 6: Intrinsic discrepancy loss δx{z, n} of using µ0 as a proxy for µ given n

normal N(x |µ, σ) observations, as a function of z = |µ0 − µ|/σ, for n = 1, 2, 10.

The intrinsic discrepancy loss function δx{µ0, (µ, σ)} is represented in
Figure 6 as a function of the standardized distance z = (µ0 − µ)/σ between
µ0 and µ, for several values of n. Notice that for |z| ≥ 1, the intrinsic
discrepancy loss is concave, showing a very reasonable decreasing marginal
loss, which is not present in conventional loss functions.

4 Intrinsic credible regions

Lowest posterior loss credible regions (Definition 2.1) depend both on the
loss function and on the prior distribution. It has been argued that, in
scientific inference, loss functions should be invariant under reparametriza-
tion; this is always achieved by intrinsic loss functions (Definition 2.2),
which measure the discrepancy between the models identified by the pa-
rameters, rather than the discrepancy between the parameters themselves.
It has further been argued that intrinsic loss functions should be required
to be symmetric and consistent with the use of sufficient statistics. The in-
trinsic discrepancy loss (Definition 3.3) meets these requirements, and has
many additional attractive properties, notably its additivity under condi-
tional independence. It may therefore be reasonable to propose the intrin-
sic discrepancy loss as an appropriate conventional loss for routine use in
mathematical statistics.

bernardo/bernardoFigNorLoss.eps
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On the other hand, as already mentioned in the introduction, scientific
communication typically requires the use of some sort objective prior, one
which captures, in a well-defined sense, the notion of the prior having a
minimal effect, relative to the data in the final inference. This should be a
conventional prior to be used when a default specification, having a claim to
being non-influential in the sense described above, is required. In the long
historical quest for these objective priors several requirements have emerged
which may reasonably be requested as necessary properties of any proposed
solution; this includes generality, consistency under reparametrization, con-
sistency under marginalization, and consistent sampling properties. Ref-
erence analysis, introduced by Bernardo (1979b) and further developed
Berger and Bernardo (1989, 1992a,b,c), appears to be the only available
method to derive objective prior functions which satisfy all these desider-
ata. For an introduction to reference analysis, see Bernardo and Ramón
(1998); for a recent review of reference analysis, see Bernardo (2005b).

The Bayes estimator which corresponds to the intrinsic discrepancy loss
and the appropriate reference prior is the intrinsic estimator. Introduced by
Bernardo and Juárez (2003), this is a completely general objective Bayesian
estimator, which is invariant under reparametrization.

Definition 4.1 (Intrinsic estimate). Consider data x which consist of
one observation from M ≡ {p(x |θ,λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, and let
δx{θ0, (θ,λ)} be the intrinsic discrepancy loss to be suffered if θ0 were used
as a proxy for θ. The intrinsic estimate of θ

θ∗(x) = arg min
θi∈Θ

d(θi |x),

is that parameter value which minimizes the reference posterior expected
intrinsic loss d(θi |x), where

d(θi |x) =

∫

Θ

∫

Λ

δx{θi, (θ,λ)}π(θ,λ |x) dθ dλ, (4.1)

π(θ,λ |x) ∝ p(x |θ,λ)π(λ |θ)π(θ), (4.2)

and π(λ |θ)π(θ) is the joint reference prior of (θ,λ) when θ is the quantity
of interest.

Moving from point estimation to region estimation, intrinsic credible
regions are defined as the lowest posterior loss credible regions which cor-
respond to the use of the intrinsic discrepancy loss and the appropriate
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reference prior. As one would expect, the intrinsic estimate is contained in
all intrinsic credible regions.

Definition 4.2 (Intrinsic credible region). Consider data x which con-
sist of one observation from M ≡ {p(x |θ,λ), x ∈ X , θ ∈ Θ, λ ∈ Λ},
and let δx{θ0, (θ,λ)} be the intrinsic discrepancy loss to be suffered if θ0

were used as a proxy for θ. An intrinsic q-credible region is a subset
R∗

q = R∗
q(x,Θ) ⊂ Θ of the parameter space Θ such that,

(i).
∫

R∗

q
π(θ |x) dθ = q,

(ii). ∀θi ∈ R∗
q , ∀θj /∈ R∗

q , d(θi |x) ≤ d(θj |x),

where d(θi |x), the reference intrinsic posterior expected loss from using θ i

as a proxy for the value of the parameter, is given by Equation (4.1).

The analytical expression of the intrinsic discrepancy loss δx{θ0, (θ,λ)}
is often complicated and, hence, exact computation of its posterior expecta-
tion, d(θi |x) typically requires numerical integration. Although these days
this is seldom a serious practical problem, it is both theoretically interesting
and pragmatically useful to derive appropriate asymptotic approximations.
Attention to approximations will be limited here to one-dimensional reg-
ular models, but the results may be extended to both non-regular and
multiparameter problems.

Let data x = {x1, . . . , xn}, xj ∈ X , consist of a random sample of size n
from a distribution p(x | θ) with one continuous parameter θ ∈ Θ ⊂ R.
Under appropriate regularity conditions, there exists a unique maximum
likelihood estimator θ̂n = θ̂n(x) whose sampling distribution is asymptot-
ically normal with mean θ and variance i−1(θ)/n, where i(θ) is Fisher’s
information function,

i(θ) = −
∫

X
p(x | θ) ∂2

∂θ2
log p(x | θ) dx. (4.3)

Moreover, the function defined by the indefinite integral

φ(θ) =

∫

√

i(θ) dθ (4.4)

provides a variance stabilizing transformation. Indeed, it is easily veri-
fied that, under the assumed conditions, the maximum likelihood estimate
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φ̂n = φ̂n(x) is asymptotically normal with mean φ = φ(θ) and variance
1/n, and that the approximate marginal model

p(φ̂n |φ) = N(φ̂n |φ, 1/
√
n), φ ∈ Φ = φ(Θ),

is asymptotically equivalent to the original model p(x | θ) =
∏n

j=1 p(xj | θ).
It follows that φ asymptotically behaves as location parameter and, hence,
the reference prior for φ is the uniform prior π(φ) = 1. All this suggests
that φ(θ) is, in a sense, a fairly natural parametrization for the model.

More generally, if θ̃n = θ̃n(x) is an asymptotically sufficient, consis-
tent estimator of θ whose asymptotic sampling distribution is p(θ̃n | θ), the
reference prior for θ is (Bernardo and Smith, 1994, Section 5.4)

π(θ) = p(θ̃n | θ)
∣

∣

∣

∣

θ̃n=θ

(4.5)

and, therefore, the reference prior of the monotone transformation defined
by the indefinite integral φ(θ) =

∫

π(θ) dθ is π(φ) = π(θ)/|∂φ/∂θ| = 1, a
uniform prior.

The reference parametrization of a probability model is defined as that
for which the reference prior is uniform:

Definition 4.3 (Reference parametrization). Let x = {x1, . . . , xn} be
a random sample from M = {p(x | θ), x ∈ X , θ ∈ Θ} and let θ̃n = θ̃n(x)
be an asymptotically sufficient, consistent estimator of θ whose asymptotic
sampling distribution is p(θ̃n | θ). A reference parametrization for model M
is then defined by the indefinite integral

φ(θ) =

∫

π(θ) dθ, where π(θ) = p(θ̃n | θ)
∣

∣

∣

∣

θ̃n=θ

. (4.6)

When the sample space X does not depend on θ and the likelihood
function p(x | θ) is twice differentiable as a function of θ, the sampling dis-
tribution of maximum-likelihood estimator θ̂ is often asymptotically normal
with variance i−1(θ)/n, where i(θ) is Fisher’s information function given by
Equation (4.3); see, e.g., Schervish (1995, Section 7.3.5) for precise condi-
tions. In this case, the reference parametrization is given by Equation (4.4),
and this may be used to obtain analytical approximations. More generally,
if a model has an asymptotically sufficient, consistent estimator of θ whose
sampling distribution is asymptotically normal, a reference parametrization
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may be used to obtain a simple asymptotic approximation to its intrinsic
discrepancy loss δx(θ0, θ), and to the corresponding reference posterior ex-
pectation d(θ0 |x). This provides analytical asymptotic approximations to
the required credible regions.

Theorem 4.1 (Asymptotic approximations). Let x = {x1, . . . , xn} be
a random sample from M = {p(x | θ), x ∈ X , θ ∈ Θ} and let θ̃n = θ̃n(x)
be an asymptotically sufficient, consistent estimator of θ whose sampling
distribution is asymptotically normal N(θ̃n | θ, s(θ)/

√
n). Then,

(i). The reference prior for θ is π(θ) = s−1(θ), a reference parametriza-
tion is φ(θ) =

∫

s−1(θ) dθ, the reference prior for φ is π(φ) = 1, and
the reference posterior of φ, in terms of the inverse function θ(φ), is
π(φ |x) ∝ p{x | θ(φ)} |∂θ(φ)/∂φ|.

(ii). The intrinsic discrepancy loss is

δx(θ0, θ) = n
2

[

φ(θ0) − φ(θ)
]2

+ o(1).

(iii). The expected posterior loss is
d(θ0 |x) = n

2

[

σ2
φ(x) + {µφ(x) − φ(θ0)}2

]

+ o(1),

where µφ(x) and σ2
φ(x) are, respectively, the mean and variance of

the reference posterior distribution of φ, π(φ |x).

(iv). The intrinsic estimator of φ is µφ(x) + o(1), and the intrinsic esti-
mator of θ is θ∗(x) = θ{µφ(x)} + o(1)

(v). The intrinsic q-credible region of φ is the interval
[φq0(x), φq1(x)] = µφ(x) ± zq σφ(x) + o(1),
where zq is the (q + 1)/2 normal quantile.

The intrinsic q-credible region of θ is the interval
[θq0(x), θq1(x)] = θ{ [φq0(x), φq1(x)] } + o(1).

Proof. (i) is an immediate application of Equation (4.5), Definition 4.3 and
standard probability calculus. (ii) Under the assumed conditions, the sam-
pling distribution of φ̃n(x) will be, for sufficiently large n, approximately
normal N(φ̃n |φ, 1/√n). Since the intrinsic discrepancy loss is invariant
under marginalization (Theorem 3.2), δx(θ0, θ) = δφ̃n

(φ0, φ) and, using
Equation (3.6) of Example 3.3,

δφ̃n
(φ0, φ) ≈ δx{N(φ̃n |φ0, 1/

√
n), N(φ̃n |φ, 1/

√
n)} =

n

2
(φ0 − φ)2.
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(iii) Using the invariance of the intrinsic discrepancy loss under reparametri-
zation,

d(θ0 |x) =

∫

Θ
δx(θ0, θ)π(θ |x) dθ =

∫

Φ
δx(φ0, φ)π(φ |x) dφ

≈
∫

Φ

n

2
(φ0 − φ)2 π(φ |x) dφ

=
n

2

[

E(φ− µφ)2 + (µφ − φ0)
2
]

=
n

2

[

σ2
φ + (µφ − φ0)

2
]

,

where φ0 = φ(θ0). (iv) As a function of φ0, d(φ0 |x) is minimised when
φ0 = µφ and, hence this provides the intrinsic estimate of φ; by invari-
ance, the intrinsic estimate of θ is simply θ(µφ), where θ(φ) is the inverse
function of φ(θ). (v) Since the expected intrinsic loss d(φ0 |x) is symmet-
ric around µφ, all lowest posterior loss credible regions will be symmetric
around µφ Hence, the intrinsic q-credible interval for φ will be of the form
R∗

q(x,Φ) = µφ ± zq σφ, with zq chosen such that

∫ µφ+zq σφ

µφ−zq σφ

π(φ |x) dφ = q.

Moreover, since φ̃n(x) is asymptotically sufficient, and its sampling distri-
bution is asymptotically normal, the reference posterior distribution of φ
will also be asymptotically normal and, therefore, zq will approximately be
the (q + 1)/2 quantile of the standard normal distribution. By invariance,
the intrinsic q-credible interval for θ will simply be given by inverse image
of q-credible interval for φ, R∗

q(x,Θ) = θ{R∗
q(x,Φ)}.

The posterior moments µφ(x) and σ2
φ(x) of the reference parameter

required in Theorem 4.1 may often be obtained analytically. If this is
not the case, the delta method may be used to derive µφ(x) and σ2

φ(x) in
terms of the (typically easier to obtain) reference posterior mean µθ(x) and
reference posterior variance σ2

θ(x) of the original parameter θ:

µφ(x) ≈ φ{µθ(x)} + 1
2 σ

2
θ(x)φ′′{µθ(x)} (4.7)

σ2
φ(x) ≈ σ2

θ(x) [φ′{µθ(x)}]2 (4.8)

(see e.g., Schervish (1995, Section 7.1.3) for precise conditions). The delta
method yields a particularly simple approximation for the posterior vari-
ance of the reference parameter. Indeed, σ2

θ ≈ s(θ̃n)/n and φ
′

(θ) = s(θ);
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hence, using Equation (4.8), σ2
φ ≈ 1/n. This provides much simpler (but

less precise) approximations than those in Theorem 4.1.

Corollary 4.1. Under the conditions of Theorem 4.1, simpler (less precise)
approximations are given by:

(i). d(θ0 |x) ≈ 1
2 + n

2

[

µφ(x) − φ(θ0)
]2

(ii). θ∗ ≈ θ{µφ(x)}

(iii). R∗
q(x,Φ) ≈ µφ(x) ± zq/

√
n, R∗

q(x,Θ) = θ{R∗
q(x,Φ)},

where zq is the (q+1)/2 quantile of the standard normal distribution.

(iv). If µφ(x) is not analytically available, it may be approximated in terms
of the first reference posterior moments of θ, µθ(x) and σθ(x), by
µφ(x) ≈ φ{µθ(x)} + 1

2 σ
2
θ(x)φ

′′{µθ(x)}

As illustrated below, Corollary 4.1 may actually provide reasonable approx-
imations even with rather small sample sizes.

Example 4.1 (Credible intervals for a binomial parameter (contin-
ued)). Consider again the problem considered in Examples 1.1, 2.1 and 3.2,
and use the corresponding intrinsic discrepancy loss (Equation 3.5). The
reference prior is π(θ) = θ−1/2(1 − θ)−1/2, and the reference posterior is
π(θ | r, n) = Be(θ | r + 1

2 , n − r + 1
2). The reference posterior expected loss

from using θ0 rather than θ will be

d{θ0 | r, n} = n

∫ 1

0
δx{θ0, θ}Be(θ | r + 1

2 , n− r + 1
2) dθ.

Simple numerical algorithms may be used to obtain the intrinsic estimate,
namely the value of θ0 which minimizes d{θ0 | r, n}, and intrinsic credible
intervals, that is the lowest posterior loss intervals with the required poste-
rior probability.

The function d{θ0 | r, n} is represented in the upper panel of Figure 7
for the case r = 0 and n = 10 discussed before. This is minimized by
θ∗ = 0.031, which is therefore the intrinsic estimate; the result may be
compared with the maximum-likelihood estimate θ̂ = 0, utterly useless in
this case. Similarly, for r = 1 and n = 10 the intrinsic estimate is found
to be θ∗ = 0.123; by invariance, the intrinsic estimate of any one to one
function ψ = ψ(θ) is simply ψ(θ∗); thus the intrinsic estimate of, say θ2, is
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Figure 7: Reference posterior density, intrinsic estimate and intrinsic 0.95-credible

region for a binomial parameter, given n = 10 and r = 0.

θ∗2 = 0.015; this may be compared with the corresponding unbiased estimate
of θ2, which is {r(r−1)}/{n(n−1)} and hence zero in this particular case,
a rather obtuse estimation for the square of the proportion of something
which has actually been observed one in ten times. For r = 2, n = 10 the
intrinsic estimate is θ∗ = 0.218, somewhere between the posterior median
(0.210) and the the posterior mean (0.227).

Intrinsic credible regions are also easily found numerically. Thus, for
r = 0 and n = 10, the 0.95 intrinsic credible interval for θ is (0, 0.170)
(shaded region in Figure 7); in this case, this is also the HPD interval. For
r = 2 and n = 10 the 0.95 intrinsic credible interval is (0.032, 0.474), very
close to (0.037, 0.482), the LPL 0.95-credible interval which corresponds to
the L1 loss (see Example 2.1).
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Since the reference prior for this problem is π(θ) = θ−1/2(1 − θ)−1/2, a
reference parameter is φ(θ) =

∫

π(θ) dθ = 2arcsin
√
θ, with inverse func-

tion θ(φ) = sin2(φ/2). Changing variables, the reference posterior of the
reference parameter φ is Equation (1.4), a distribution whose first moments
do not have a simple analytical expression. The use of Corollary 4.1 with
the exact reference posterior moments of θ, µθ = (r + 1/2)/(n + 1) and
σ2

θ = µθ(1 − µθ)/(n+ 2) leads, with φ
′

(θ) = θ−1/2(1 − θ)−1/2 and φ
′′

(θ) =
1
2 (2θ − 1) θ−3/2(1 − θ)−3/2, to simple analytical approximations for the in-
trinsic estimates and the intrinsic credible regions. In particular, with r = 2
and n = 10, µθ = 0.227, σ2

θ = 0.015, and the delta method yields µφ ≈ 0.967
and θ∗ = θ(µφ) ≈ 0.216, quite close to the exact value 0.218. Moreover
R∗

0.95(Θ) ≈ θ{ (0.967 ± 1.96 × 1/
√

10) } = (0.030, 0.508), close to its ex-
act value (0.032, 0.474). As one would expect the approximation is not that
good in extreme cases, when either r = 0 or r = n. For instance, with r = 0
and n = 10, Corollary 4.1 yields θ∗ ≈ 0.028 and R∗

0.95(Θ) ≈ (0.020, 0.213),
compared with the exact values 0.031 and (0, 0.170) respectively.

Example 4.2 (Intrinsic credible interval for the normal mean).
Consider a random sample x = {x1, . . . , xn} from a normal distribution
N(x |µ, σ), and let x = Σjxj/n, and s2 = Σj(xj −x)2/n be the correspond-
ing mean and variance. The reference prior when µ is the parameter of
interest is π(µ)π(σ |µ) = σ−1, and the corresponding joint reference poste-
rior is

π(µ, σ |x) = π(µ, σ |x) = N[µ |x, σ/
√
n] Ga−1/2[σ | 1

2(n− 1), 1
2n s

2]

∝ σ−(n+1) exp[− n

σ2
{s2 + (x− µ)2}]. (4.9)

Thus, using Equation (3.9), the reference posterior expected intrinsic loss
from using µ0 as a proxy for µ is

d(µ0 |x) =

∫ ∞

∞

∫ ∞

0

n

2
log

[

1 +
(µ− µ0)

2

σ2

]

π(µ, σ |x) dµ dσ. (4.10)

As one could expect, and may directly be verified by appropriate change
of variables in Equation (4.10), this is a symmetric function of µ0 − x.
It follows that q-credible regions for µ must be centred at x. Moreover,
the (marginal) reference posterior of µ is Student St(µ|x, s/

√
n− 1, n− 1).

Consequently, the intrinsic q-credible interval for the normal mean µ is

R∗
q(x,R) = x± tq(n− 1) s/

√
n− 1
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where tq(n− 1) is the (q + 1)/2 quantile of a standard Student distribution
with n− 1 degrees of freedom. As one could expect in this example, this is
also the HPD interval, and the frequentist confidence interval of level 1−q.
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Figure 8: Expected intrinsic loss from using µi as a proxy for a normal mean,

given n = 10 observations, with x = 2.165 and s = 1.334.

Figure 8 describes the behaviour of d(µ0 |x) given n = 10 observations,
simulated from N(x | 2, 1) which yielded x = 2.165 and s = 1.334. The
intrinsic estimate is obviously x (marked with a solid dot) and the 0.95
intrinsic credible interval consists of values (1.159, 3.171) whose intrinsic
posterior expected loss is smaller than 2.151.

5 Frequentist coverage

As Example 4.2 illustrates, the frequentist coverage probabilities of the
q-credible regions which may be derived from objective posterior distribu-
tions are sometimes identical to their posterior probabilities. This exact
numerical agreement is however the exception, not the norm. Nevertheless,
for large sample sizes, Bayesian credible intervals are always approximate
confidence intervals. Although this is an asymptotic property, it has been
found that, even for moderate samples, the frequentist coverage of reference
q-credible regions, i.e., credible regions based of the reference posterior dis-
tribution, is usually very close to q. This means that, in many problems,
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reference q-credible regions are also approximate frequentist confidence in-
tervals with significance level 1−q; thus, under repeated sampling from the
same model, the proportion of reference q-credible regions containing the
true value of the parameter will be approximately q.

More precisely, let data x = {x1, . . . , xn} consist of n independent ob-
servations from the one parameter model M = {p(x | θ), x ∈ X , θ ∈ Θ}, and
let θq(x, pθ) denote the q-quantile of the posterior p(θ |x) ∝ p(x | θ) p(θ)
which corresponds to the prior p(θ); thus,

Pr
[

θ ≤ θq(x, pθ) |x
]

=

∫

{θ≤θq(x, pθ)}
p(θ |x) dθ = q.

and, for any fixed data x, Rq(x) = {θ; θ ≤ θq(x, pθ)} is a left q-credible
region for θ. For fixed θ, consider now Rq(x) as a function of x. Standard
asymptotic theory may be used to establish that, for any sufficiently regular
pair {pθ, M} of prior pθ and model M, the coverage probability of Rq(x)
converges to q as n→ ∞. Specifically, for all sufficiently regular priors,

Pr
[

θq(x, pθ) ≥ θ | θ
]

=

∫

{x; θq(x, pθ)≥θ}
p(x | θ) dx = q +O(n−1/2).

In a pioneering paper, Welch and Peers (1963) established that in the case
of the one-parameter regular models for continuous data Jeffreys prior,
which in this case is also the reference prior, π(θ) ∝ i(θ)1/2, is the only
prior which further satisfies

Pr
[

θq(x, πθ) ≥ θ | θ
]

= q +O(n−1);

Hartigan (1966) later showed that the coverage probabilities of one-dimen-
sional two-sided Bayesian posterior credible intervals satisfy this type of ap-
proximation to O(n−1) for all sufficiently regular prior functions. Moreover,
Hartigan (1983, p. 79) showed that the result of Welch and Peers (1963)
on one-sided posterior credible intervals may be extended to one-parameter
models for discrete data by using appropriate continuity corrections.

This all means that reference priors are often probability matching pri-
ors, that is, priors for which the coverage probabilities of posterior credible
intervals are asymptotically closer to their posterior probabilities than those
derived from any other prior; see Datta and Sweeting (2005) for a recent
review on this topic.
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Although the results described above only justify an asymptotic approx-
imate frequentist interpretation of reference credible regions, the coverage
probabilities of reference q-credible regions derived from relatively small
samples are found to be relatively close to their posterior probability q.
This is now illustrated within the binomial parameter problem.

Example 5.1 (Frequentist coverage of binomial credible regions).
Consider again the intrinsic credible intervals for a binomial parameter
of Example 4.1. The frequentist coverage of the intrinsic q-credible region
R∗

q(r, n,Θ) there defined is

Cov{R∗
q | θ, n} = Pr[θ ∈ R∗

q(r, n,Θ) | θ, n ] =
∑

{r; θ∈R∗

q}

(n
r

)

θr(1 − θ)n−r.

Since r is discrete, this cannot be a continuous function of θ. Indeed the
frequentist coverage Cov{R∗

q | θ, n} of the q-intrinsic credible region is bound
to oscillate around its reference posterior probability q. It may be argued
however that Bayesian reference posterior q-credible regions possibly provide
the best available solution for this particular frequentist problem.
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Figure 9: Frequentist coverage Cov{R∗

q | θ, n} of binomial 0.95-intrinsic credible

regions with n = 10.

For a numerical illustration consider again the case n = 10, so that
r ∈ {0, 1, . . . , 10}. Since there are only 11 different possible values of r,
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Table 1: Intrinsic estimates and intrinsic 0.95-credible intervals for the parameter θ

of a binomial distribution Bi(r |n, θ), with n = 10.

r θ∗(r, 10) R∗
q(r, n,Θ)

0 0.032 (0.000, 0.171)

1 0.124 (0.000, 0.331)

2 0.218 (0.033, 0.474)

3 0.314 (0.082, 0.588)

4 0.408 (0.145, 0.686)

5 0.500 (0.224, 0.776)

6 0.592 (0.314, 0.855)

7 0.686 (0.412, 0.918)

8 0.782 (0.526, 0.967)

9 0.876 (0.669, 1.000)

10 0.968 (0.829, 1.000)

there are only 11 distinct intrinsic 0.95-credible intervals; those are listed
in Table 1. If the true value of θ were, say, 0.25, it would be contained
in the intrinsic credible region R∗

q(r, n,Θ) if, and only if, r ∈ {1, 2, 3, 4, 5},
and this would happen with probability

Cov{R∗
0.95 | θ = 0.25, n = 10} =

5
∑

r=1

Bi(r | θ = 0.25, n = 10) = 0.934.

Figure 9 represents the frequentist coverage Cov{R∗
q | θ, n} as a function

of θ for q = 0.95 and n = 10. It may be appreciated the proportion
Cov{R∗

0.95 | θ, n} of intrinsic 0.95-credible intervals which may be expected to
contain the true value of θ under repeated sampling oscillates rather wildly
around its posterior probability 0.95, with discontinuities at the points which
define the credible regions. Naturally, Cov{R∗

q | θ, n} will converge to q for
all θ values as n → ∞, but very large n values would be necessary for a
good approximation, especially for extreme values of θ.

6 Further Examples

The canonical binomial and normal examples have systematically been used
above to illustrate the ideas presented. In this final section a wider range
of examples is presented.
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6.1 Exponential data

Consider a random sample x = {x1, . . . , xn} from an exponential distribu-
tion Ex(x | θ) = θe−xθ, and let t =

∑n
j=1 xj .

The exponential intrinsic discrepancy loss is

δx(θ0, θ) = n min[κ{θ | θ0}, κ{θ0 | θ}]

κ{θi | θj} =

∫ ∞

0
Ex(x | θj) log

Ex(x | θj)

Ex(x | θi)
dx

= g(θi/θj),

where g(x) is the linlog function, the positive distance

g(x) = (x− 1) − log x, (6.1)

between log x and its tangent at x = 1. Hence,

δx(θ0, θ) = n δx(θ0, θ), δx(θ0, θ) =

{

g(θ0/θ) θ0 ≤ θ,
g(θ/θ0) θ0 > θ.

A related loss function, `{σ2
0 , σ

2} = g(σ2
0/σ

2), often referred to as the
entropy loss, was used by Brown (1968) (who attributed this to C. Stein) as
an alternative to the quadratic loss in point estimation of scale parameters.

The reference prior (which here is also Jeffreys prior) is π(θ) = θ−1, and
the corresponding reference posterior is π(θ |x) = Ga(θ |n, t) ∝ θn−1e−nt.
Hence, the posterior loss d(θ0 |x) from using θ0 as a proxy for θ is

d(θ0 |x) = d(θ0 | t, n) = n

∫ ∞

0
δx(θ0, θ)Ga(θ |n, t) dθ.

Figure 10 describes the behaviour of d(θo |x) given n = 12 observations,
simulated from Ex(x | 2), which yielded t = 4.88. The intrinsic estimate
is 2.364 (marked with a solid dot), and the intrinsic 0.95-credible interval
consists of the values (1.328, 4.198) whose posterior expected loss is smaller
than 1.954.

A reference parameter for this problem is φ(θ) =
∫

π(θ) dθ = log θ, and
its posterior mean may be analytically obtained as

µφ =

∫ ∞

0
log θ Ga(θ |n, t) dθ = ψ(n) − log t (6.2)
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Figure 10: Expected intrinsic loss from using θ0 as a proxy for the parameter θ of

an exponential distribution, given n = 12 observations, with x = t/n = 0.407. The

intrinsic estimate is θ∗ = 2.364, the intrinsic 0.95-credible region is (1.328, 4.198).

where ψ(·) is the digamma function. Using Equation (6.2) in Corollary 4.1,
with t = 4.88 and n = 12, yields µφ = 0.858, and hence, θ∗ ≈ exp[µφ] =
2.357 very close to its exact value 2.364, even though the sample size,
n = 12, is rather small. Moreover,

R∗
0.95 ≈ (exp[µφ − 1.96/

√
n], exp[µφ + 1.96/

√
n]) = (1.339, 4.151)

quite close again to the exact intrinsic region (1.328, 4.198).

In this problem, all reference posterior credible regions are exact fre-
quentist confidence intervals. Indeed, changing variables, the reference
posterior distribution of τ = t θ is Ga(τ |n, 1); on the other hand, the
sampling distribution of t is Ga(t |n, θ) and, therefore, the sampling distri-
bution of s = t θ is Ga(s |n, 1). Thus, the reference posterior distribution
of t θ, as a function of θ, is precisely the same as the sampling distribu-
tion of t θ, as a function of t; consequently, for any region R(t) ⊂ Θ,
Pr[θ ∈ R(t) | t, n] = Pr[θ ∈ R(t) | θ, n].

6.2 Uniform data

Consider a random sample x = {x1, . . . , xn} from a uniform distribution
Un(x | θ) = θ−1, 0 ≤ x ≤ θ, θ > 0, and let t = max{x1, . . . , xn}. Notice that
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this is not a regular problem, since the sample space, X = [0, θ], depends
on the parameter θ. The function θ̂ = t is a sufficient, consistent estimator
of θ, whose sampling distribution is inverted Pareto,

p(t | θ) = Ip(t |n, θ−1) = n tn−1 θ−n, 0 < t < θ. (6.3)

Using (6.3) and (4.5), the reference prior is immediately found to be

π(θ) ∝ p(t | θ)
∣

∣

t=θ
= θ−1;

notice that in this non-regular problem Jeffreys rule is not applicable. The
corresponding reference posterior is Pareto

π(θ |x) = Pa(θ |n, t) = n tn θ−(n+1), θ ≥ t.

The intrinsic discrepancy loss for this model is

δx(θ0, θ) = n min[κ{θ | θ0}, κ{θ0 | θ}]

κ{θi | θj} =

{

∫ θj

0 θ−1
j log[θi/θj ] dx = log[θi/θj ], θj ≤ θi

∞ θj > θi

Hence, δx(θ0, θ) = n | log(θ/θ0)|, and the posterior loss d(θ0 |x) from us-
ing θ0 as a proxy for θ is

d(θ0 |x) = d(θ0 | t, n) = n

∫ ∞

t
| log(θ/θ0)|Pa(θ |n, t) dθ.

Figure 11 describes the behaviour of d(θ0 | t, n) given n = 12 observations,
simulated from Un(x | 2), which yielded t = 1.806. The intrinsic estimate
is 1.913 (marked with a solid dot) and the 0.95 intrinsic credible interval
consists of the values (1.806, 2.318) whose posterior expected loss is smaller
than 2.096.

A reference parameter for this problem is φ(θ) =
∫

π(θ) dθ = log θ, and
its posterior mean may be analytically obtained as

µφ =

∫ ∞

0
log θPa(θ |n, t) dθ = (1/n) + log t (6.4)

For t = 1.806 and n = 12 yields µφ = 0.674 and θ∗ ≈ eµφ = 1.963 not too
far from the exact value 1.913. Notice, however, that Theorem 4.1 cannot
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Figure 11: Expected intrinsic loss from using θ0 as a proxy for the parameter θ of

a uniform distribution, given n = 12 observations, with t = maxxj = 1.806. The

intrinsic estimate is θ∗ = 1.913, the intrinsic 0.95-credible region is (1.806, 2.318).

be applied to this problem, since neither the sampling distribution of the
consistent estimator t, nor the posterior distribution of φ are asymptotically
normal. In fact, the posterior variance of φ is (exactly) 1/n2; this is O(n−2)
rather than O(n−1), as obtained in regular models.

Once again, all reference posterior credible regions in this problem are
exact frequentist confidence intervals. Indeed, changing variables, the ref-
erence posterior distribution of τ = θ/t is Pareto, Pa(τ |n, 1); on the other
hand, the sampling distribution of t is inverted Pareto Ip(t |n, θ−1) and,
therefore, the sampling distribution of s = θ/t is also Pa(s |n, 1). Hence,
the reference posterior distribution of θ/t as a function of θ is precisely the
same as the sampling distribution of θ/t as a function of t and thus, for
any region R(t) ⊂ Θ, Pr[θ ∈ R(t) | t, n] = Pr[θ ∈ R(t) | θ, n].

6.3 Normal mean and variance

Consider a random sample x = {x1, . . . , xn} from a normal distribution
N(x |µ, σ), and let θ = (µ, σ) be the (bivariate) quantity of interest. The
intrinsic discrepancy loss for this model is

δx{θ0,θ} = δx{(µ0, σ0), (µ, σ)}
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= n min[κ{(µ0, σ0) | (µ, σ)}, κ{(µ, σ) | (µ0, σ0)}]

with

κ{(µi, σi) | (µj , σj} =
1

2

[

g

(

σ2
j

σ2
i

)

+
(µi − µj)

2

σ2
i

]

, (6.5)

where g(x) = (x− 1) − log x is, again, the linlog function; this yields

δx{(µ0, σ0), (µ, σ)} =

{

n κ{(µ, σ) | (µ0, σ0)}, σ ≥ σ0

n κ{(µ0, σ0) | (µ, σ)}, σ < σ0.
(6.6)

The normal is a location-scale model and, thus (Bernardo, 2005b), the ref-
erence prior is π(µ, σ) = σ−1. The corresponding (joint) reference posterior
distribution, π(µ, σ |x), is given in Equation (4.9).

The reference posterior expected intrinsic loss from using (µ0, σ0) as a
proxy for (µ, σ) is then

d(µ0, σ0 |x) =

∫ ∞

0

∫ ∞

−∞
δx{(µ0, σ0), (µ, σ)}π(µ, σ |x) dµdσ.

This is a convex surface with a unique minimum at the intrinsic estimate

{µ∗(x), σ∗(x)} = arg min
µ0∈R,σ0>0

d(µ0, σ0 |x) = {x, σ∗(s, n)} (6.7)

where σ∗ is of the form σ∗(s, n) = kn s and, hence, it is an affine equivariant
estimator. With n = 2, σ∗(x1, x2) ≈ (

√
5/2) |x1−x2|; for moderate or large

sample sizes,

σ∗(s, n) = kn s ≈
√

n

n− 2
s. (6.8)

Since intrinsic estimation is invariant under reparametrization, the intrinsic
estimator of the variance is simply (σ∗)2 ≈ n s2/(n−2), slightly larger than
both the mle estimator s2, and the unbiased estimator n s2/(n− 1).

Intrinsic credible regions are obtained by projecting into the (µ0, σ0)
plane the intersections of the surface d(µ0, σ0 |x) with horizontal planes.

Figure 12 describes the behaviour of d(µ0, σ0 |x) given n = 25 observations,
simulated from N(x | 0, 1), which yielded x = 0.024 and s = 1.077. The
resulting surface has a unique minimum at (µ∗, σ∗) = (0.024, 1.133), which
is the intrinsic estimate; notice that

µ∗ = x, σ∗ ≈ s
√

n/(n− 2) = 1.123.
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Figure 12: Expected intrinsic loss from using (µ0, σ0) as a proxy for the param-

eters (µ, σ) of a normal distribution, given n = 25 observations, with x = 0.024

and s = 1.077.

Figure 13 represents the corresponding intrinsic estimate and contours of
intrinsic q-credible regions, for q = 0.50, 0.95 and 0.99. For instance, R∗

0.95

(middle contour in the figure) is the set of {µ0, σ0} points whose intrinsic
expected loss is not larger that 0.134.

Notice finally that all reference posterior credible regions in this problem
are, once more, exact frequentist confidence intervals. Indeed, for all n, the
joint reference posterior distribution of

µ− x

σ/
√
n
× n s2

σ2
(6.9)

as a function of (µ, σ) is precisely the same as its sampling distribution as
a function of (x, s2). Thus, for any region R = R(m, s, n) ⊂ R × R

+, one
must have Pr[(µ, σ) ∈ R |m, s, n] = Pr[(µ, σ) ∈ R |µ, σ, n].
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Figure 13: Intrinsic estimate (solid dot) and intrinsic q-credible regions (q = 0.50,

0.95 and 0.99) for the parameters (µ, σ) of a normal distribution, given n = 25

observations, with x = 0.024 and s = 1.077.

DISCUSSION

George Casella
Department of Statistics

University of Florida, USA

1 Introduction

The vagaries of email originally sent Professor Bernardo’s paper into Limbo
rather than Florida, and because of that, my time to prepare this discussion
was limited. As a result, I decided to concentrate on one aspect of the paper,
that having to do with discrete intervals.

First, let me say that Professor Bernardo has, once again, brought us a
fundamentally new way of approaching a problem, an approach that is not
only extremely insightful, but also is likely to lead to even more develop-
ments in objective Bayesian analysis. The coupling of interval construction

bernardo/bernardoFigNor2b.eps
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with lowest posterior loss is a very intriguing concept, and the argument
for using an intrinsic loss is compelling.

There is one point about loss functions that I really like. Professor
Bernardo notes that a loss `{θ0,θ} should be measuring the distance be-
tween the models p(x|θ0) and p(x|θ), not the distance between θ0 and θ,
which is often irrelevant to an inference. This is an excellent principle to
focus on in any decision problem. Results that are not invariant to 1 − 1
transformations can sometimes be interesting in theory, but they tend to
be less useful in practice.

2 Convincing Confidence Intervals

Professor Bernardo states that in the binomial problem “Conventional fre-
quentist theory fails to provide a convincing confidence interval” (my ital-
ics), and then comments on the limitations imposed by the discreteness of
the problem. It is not clear what a “convincing” confidence interval is -
it seems to me that any confidence interval that maintains its guaranteed
confidence level is convincing. It is also unclear to me, and has been for a
long time, why the fact that the problem is discrete automatically brings
about criticism.

The discreteness of the data is a limitation. When we impose a contin-
uous criterion, satisfying such a criterion will often require more than the
data can provide. This is not a fault of any procedure, simply a limitation
of the data. The fact that in discrete problems a confidence interval cannot
attain exact level q is not a cause for criticism.

However, what is a cause for criticism is the reliance on Bayesian in-
tervals being approximate frequentist intervals. Although it is true that in
some cases the frequentist coverage may be of the order q + O(n−1), that
O may be so big as to not be useful.

3 Binomial Confidence Intervals

Now I would like to focus on Example 5.1 (also note the companion Exam-
ples 1.1, 3.2, and 4.1). Professor Bernardo is not happy with the frequentist
answer here (or anywhere, I dare say!) however, I claim that in this case the
best frequentist region provides a very acceptable Bayesian region, while
the objective Bayesian region fails as a frequentist region.
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First of all, what is the “best” frequentist answer? To me, it is the
procedure of Blyth and Still (1983) (see also Casella, 1986). This procedure
works within the limitations of the discrete binomial problem to produce
intervals that are not only short, but enjoy a number of other desirable
properties, including equivariance. Figure 1 shows the Blyth-Still intervals
along with the Bernardo intervals for the case n = 10.
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Figure 1: For n = 10, binomial intervals of Bernardo (dashed) and Blyth-Still

(solid). The Bernardo intervals are 95% Bayesian credible intervals, and the Blyth-

Still intervals are 95% frequentist intervals.

It is interesting that the intervals are so close, but we notice that the
Blyth-Still intervals are a bit longer than the Bernardo intervals. Indeed,
if we compare the procedures using the sum of the lengths as a measure
of size, we find that the sum of the lengths of the Blyth-Still intervals
is 5.20, while that of the Bernardo intervals is 4.53. However, one of the
criteria that the Blyth-Still intervals satisfy is that, among level q confidence
intervals, they minimize the sum of the lengths. Therefore, we know that
the Bernardo intervals cannot maintain level q and, indeed, from Bernardo’s
Figure 9 we see that this is indeed the case. Even though the Bernardo
intervals are approximate frequentist intervals, the approximation is really

commentCasella/casellaIntervals.eps
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quite poor. The nominal 95% interval can have coverage probability as low
as 83% (reading off the graph) which is quite unacceptable. Moreover, the
fluctuations in the coverage probability are quite large, ranging from a low
of 83% to a high of 100%

0.0 0.2 0.4 0.6 0.8 1.0

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

theta

Co
ve

ra
ge

Figure 2: For n = 10, coverage probabilities of the 95% Blyth-Still intervals.

The frequentist intervals, although not convincing to Professor Bernar-
do, do a fine job of controlling the coverage probability within the con-
straints of a discrete problem. As an illustration, compare Bernardo’s Fig-
ure 9 with Figure 2, showing the coverage probability of the Blyth-Still
95% interval. Although there is fluctuation in the probabilities, they are
above 95%, making a true confidence interval, and the range of probabil-
ities ranges only from 95% to 100%, displaying much less variability than
the Bernardo intervals.

Finally, lets look at how the Blyth-Still intervals fare as Bayesian cred-
ible regions. Using the reference prior, we can produce Table 1. There we
see that they are, indeed, 95% credible intervals. Although the credible
probabilities are not exactly 95% for each value of r, they are uniformly
greater than r, varying in the range .951 − .989.

commentCasella/casellaCovProb.eps
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Table 1: Credible probabilities of the 95% Blyth-Still confidence intervals

r 0 1 2 3 4 5

Prob .989 .979 .971 .959 .964 .951

r 6 7 8 9 10

Prob .964 .959 .971 .979 .989

What to conclude from all of this? As a long-time frequentist, it is
supremely gratifying to see the wide development of objective Bayesian
inference, which is defined by Professor Bernardo as a statistical analysis
that only depends on the model and the observed data. With one more
small step, we might include the sample space and then objective Bayesians
will attain the ultimate objective goal of being frequentists!

But, on a more serious note, we see that in “objective” inference, there
is a desire to have a procedure perform well on Bayesian (post-data) and fre-
quentist (pre-data) criteria. What my illustration was supposed to demon-
strate is that one can construct an acceptable objective Bayesian procedure
not just by starting from a Bayesian derivation and then checking frequen-
tist properties, but also by starting from a frequentist derivation and then
checking Bayesian properties.

Edward I. George
Department of Statistics

University of Pennsylvania, USA

Let me begin by congratulating Professor Bernardo on a deep method-
ological contribution that is based on important recent foundational con-
siderations. I must admit that I was skeptical when I began to read this
paper, thinking that this would simply be a new recipe for credible regions
with little in the way of compelling justification. Much to my surprise,
the proposed approach has both a compelling motivation and turns out, at
least in some cases, to dovetail nicely with frequentist procedures that are
routinely used. Going further, I would recommend these intrinsic credible
regions as the new default in the absence of reliable prior information.

As I understand it, the general goal of the objective Bayes approach is to
devise default Bayesian procedures that require minimal, if any, subjective
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input. Towards this end, the basic problem in this paper is to come up with
an objective Bayesian methodology for the construction of credible regions
for an unknown parameter function value θ(ω).

At the heart of the objective Bayesian approach is the choice of prior,
and in this regard, a key development has been the default reference prior
approach put forward by Professor Bernardo and his collaborators. These
attractive reference priors are an essential ingredient for the proposed con-
struction of intrinsic credible regions in so far as they are used to obtain the
reference posterior. However, the central issue tackled in this paper is how
to extract from the reference posterior a unique set of values which are in a
meaningful sense “closest” to θ(ω). As Professor Bernardo correctly points
out, HPD regions are unappealing because of a lack of reparametrization
invariance, and posterior quantile regions may easily exclude sets of highest
posterior concentration.

Instead, Professor Bernardo proposes using a Lowest Posterior Loss
(LPL) region, effectively a neighborhood of the minimum posterior ex-
pected loss estimate. I much prefer such an approach because it treats the
region estimation problem as an extension of the decision theoretic treat-
ment of the point estimation problem. Although a companion coverage
report of (1 −α)% probability, frequentist or Bayesian, is valuable, I think
it has incorrectly been given too much primacy as a construction criterion.
I believe a practitioner is best served by a region containing point estimates
that are superior to point estimates outside the region, which is precisely
what LPL is about. I don’t think it is wise to sacrifice this property simply
to gain a more accurate coverage estimate.

Having settled on LPL, the problem becomes one of choosing a loss
function that is essentially objective. For this purpose, Professor Bernardo
argues convincingly that attention must be restricted to the so-called in-
trinsic losses, losses that are parametrization invariant and so depend only
on discrepancies between models. I agree. Further, divergence measures
are natural candidates for such losses. Especially attractive is the KL di-
vergence which as Professor Bernardo notes is invariant under sample space
transformation, see also George and McCulloch (1993). However, the lack
of symmetry of the KL divergence is problematic for the construction of
LPL regions. By proposing instead to use the intrinsic discrepancy loss,
Professor Bernardo gets to “have his cake and eat it too”. The intrinsic
discrepancy essentially symmetrizes the KL divergence without relinquish-
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ing many of its wonderful features. And I much prefer this symmetrization
to the standard alternative approach of a weighted sum of the two directed
KL divergences.

The examples in Section 3 nicely illustrate how intrinsic discrepancies
between distributions can depend dramatically upon different regions in
the parameter space. Indeed, Example 3.1 shows how clearly the intrin-
sic discrepancy reveals regions of asymptotic equivalence and nonequiva-
lence between the binomial and Poisson models. To me, this highlights the
need to avoid arbitrary loss functions for the construction of LPL regions.
Further investigation into other potential uses of the intrinsic discrepancy
seems to be a fertile new research direction.

Thus, Professor Bernardo arrives at his definition of an intrinsic credi-
ble region – namely an LPL region based on intrinsic discrepancy loss and
the appropriate reference prior – very reasonable and well motivated. But
I then was astonished to see what came next. Applied to several important
examples, namely the normal mean, the exponential, the uniform, and the
normal mean and variance, the intrinsic credible regions are all also exact
frequentist confidence intervals. These intrinsic credible regions they not
only contain a best set of point estimates, but their coverage can be con-
veyed in an objectively meaningful way. I suspect that further investigation
of this agreement may shed valuable new light on the always fascinating
interface between Bayesian and frequentist methods. I wonder if Professor
Bernardo can pinpoint the essential reason behind this matching property
of intrinsic credible regions in these cases, and if he has any sense of how
broadly it will it occur?

The frequentists coverage properties of the intrinsic credible regions for
the discrete binomial distribution are not as nice, but this is fundamentally
a general problem of all interval estimation reports for discrete distribu-
tions, see Brown et al. (2001). My sense is that a different type of report
is needed in such cases, for example, see Geyer and Meeden (2005). In any
case, the asymptotic agreement with frequentist coverage is reassuring.

It is clear that when reliable prior subjective information is unavail-
able, a Bayesian analysis must turn to non-subjective considerations. For
this purpose Professor Bernardo has made wonderful use of the invariance
properties of information theoretic measures. It is interesting that such
invariance is typically lacking in fully subjective Bayesian methods.
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In closing, I must apologize to Professor Bernardo for being so positive
about his paper, as it hardly gives him anything to argue about in his
rejoinder. But that is the price for having such a good idea.

Javier Girón
Department of Statistics

University of Málaga, Spain
Eĺıas Moreno

Department of Statistics
University of Granada, Spain

The advantage of a unifying approach to the basic inference problems,
as the one carried out by Professor Bernardo in this and previous papers on
intrinsic estimation and testing, (see Bernardo, 2001) is always welcomed
and, in this respect, we cannot help but congratulate Professor Bernardo
for his proposal.

Highest posterior density regions (HPD’s) are, as Professor Bernardo
correctly asserts in his paper, a tool we employ to summarize a given pos-
terior density π(θ |x). Sometimes the mode, mean and standard deviation
are also reported.

A natural question to be answered before giving credit to the intrinsic
credible regions proposed in the paper is the following: do we need to replace
HPD’s with another region? Professor Bernardo asserts that HPD’s are
not coherent in the sense of not being invariant under reparametrization.
Therefore, the consequence for him is that a different region is needed. But,
not so fast!

Given a one-to-one differentiable transformation α = g(θ) the posterior
density of α is

π(α |x) = π(g−1(α) |x)|J|, (1)

where |J| stands for the determinant of the Jacobian of the inverse map-
ping. Then, HPD’s for the parameter α are obtained from the posterior
distribution π(α |x). What is wrong with this?

Professor Bernardo claims that the HPD’s are not coherent because the
q-HPD for α does not coincide with the g-transformation of the q-HPD
for θ. This is obviously due to the fact that the Jacobian in Equation (1)
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is not constant unless g be linear. We do not think this coherent notion
to be of such a fundamental nature, and we find such a requirement rather
artificial.

In fact, q-HPD regions are a good summary of the posterior density and
they are defined in the same spirit as the likelihood sets notion. These sets
have been proved to enjoy very nice properties (Cano et al., 1987; Piccinato,
1984; Wasserman, 1989).

But intrinsic credible regions rely more on the properties of the intrinsic
loss discrepancy than on the form of the posterior. Thus, the computation
of intrinsic credible regions appears as a somewhat contrived artifact to
assure coherence, i.e. invariance, rather than a means to show off nice
characteristics of the posterior density for a given parametrization. Fur-
ther, the metric or scale of the expected intrinsic loss is in units of informa-
tion δ∗, while intrinsic credible regions are measured in a probabilistic scale
q; consequently, in order to compute intrinsic credible regions the expected
intrinsic loss has to be calibrated in terms of the probabilistic content q.

Though for one-dimensional parameters when the expected intrinsic
loss is pseudoconvex and the posterior density is unimodal HPD’s and in-
trinsic credible regions are intervals, contours in more than one dimension,
obtained from the expected intrinsic loss may be very different from the
ones obtained from the posterior density, whatever the parametrization,
specially in higher dimensions. This might be very disturbing, and it is the
(sometimes very high) price one has to pay to preserve invariance; for this
reason, we believe that credible regions should capture the properties of the
posterior density not those of the expected intrinsic loss. We note that the
above comments apply to any other loss function we would consider appro-
priate for the estimation problem, as the differences between the contours
of the posterior risk and the posterior density can be very substantial.

One point of some concern is the fact that, as shown in the binomial
Example 4.1 and the uniform example in Section 6.1, the reference pos-
terior expected intrinsic loss displayed in Figures 7 and 11, respectively,
though they are convex they are not increasing. This means that for very
small values of q the intrinsic credible intervals do not contain values in
a small neighborhood of 0, thus ruling out a set of points with highest
posterior density; furthermore, this problem also holds for any monotonic
transformation of the parameter θ.
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It might be argued that intrinsic credible regions do only make sense for
the usual large values of q, say 0.95 and 0.99, but from a formal standpoint
the behavior of the intrinsic credible regions should be consistent whatever
the value of q.

On the other hand, as the two statistical problems of testing a sharp
hypothesis of the form H0 : θ = θ0 and computing a credible region in the
parameter space Ω both use the reference posterior expected intrinsic loss
in a similar way, it is apparent that there exists a duality between the two
problems in the same sense as in the classical approach and in the Bayesian
one advocated by Lindley (1970, pp. 56–69). In fact, to reject the null
H0 : θ = θ0 is equivalent to see if the reference posterior expected intrinsic
loss d(θ0 |x) is greater that some suitable positive value δ∗, where δ∗ is the
expected utility of accepting the null hypothesis when it is true. This is
obviously equivalent to rejecting the null whenever θ0 does not belong to
the credible region R∗

q for some q which depends on δ∗ defined by

R∗
q = {θ; d(θ |x) < δ∗}.

In some sense the computation of δ∗, which is carried out conditioning
on the null hypothesis, resembles that of computing a p-value in frequentist
testing.

Thus, from Bernardo’s approach, intrinsic testing of sharp null hypoth-
esis and intrinsic credible regions are equivalent procedures as there is a one
to one mapping between δ∗’s and q’s. Further, this mapping depends en-
tirely on the reference posterior expected intrinsic loss, thus differing from
Lindley’s approach to significance testing.

While this approach has many advantages —the most important one
being that no new prior but the reference prior is to be used for estimation
and testing and, in some sense, provides a Bayesian simple mechanism for
significance testing from a statistical viewpoint—, the issue of practical
significance seems to be missing in this approach as we believe that point
or interval estimation is quite a different statistical problem than that of
testing sharp nulls, and this in turn means that using a prior different from
the reference one which may take into account the sharp null to be tested
makes sense in this setting.
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Daniel Peña
Departamento de Estad́ıstica

Universidad Carlos III de Madrid, Spain

This article presents an objective way to obtain confidence intervals for
a parameter. In Bayesian inference this problem has not received much at-
tention and the Bayesian literature usually has stressed that the posterior
probability for the parameter incorporates all the information about it and
from this posterior probability it is straightforward to obtain a q-credible
interval, that is, a region on the support of the random variable with has
a probability equal to q. Among all the infinite regions that can be built a
natural criterion is that values inside the interval must have higher proba-
bility than values outside, but in order to apply this rule it is well known, see
for instance Lindley (1970, p. 35), that we have to decide which parameter
is to be used, as this rule is not invariant under one-to-one transformations
of the parameter.

In this article an objective solution is proposed to solve this ambiguity.
The procedure is to use a reference prior and a reference loss function and
one key contribution in this paper is the use of the intrinsic discrepancy
loss, introduced by Bernardo and Rueda (2002) for hypothesis testing. The
author has to be congratulated for proposing a clear and objective way to
solve this ambiguity in building credible regions.

The intrinsic discrepancy is defined as the minimum of κ(p2 | p1) and
κ(p1 | p2) where

κ(p2 | p1) =

∫

p1(x) log
p1(x)

p2(x)
dx ≥ 0

is the Kullback-Leibler information in favor of p1 against p2. This measure
is invariant under reparametrization and also with respect to one to one
transformations of the variable. It is also additive for independent observa-
tions. These properties are shared with the divergence κ(p2 | p1)+κ(p1 | p2),
introduced by Kullblack and Leibler. However it has the advantage over
the later that it is well defined when one of the two measures of informa-
tion is infinite. To avoid this problem, Kullback (1968) assumed that the
two probability measures were absolutely continuous with respect to each
other, so that the two integrals could exist. The intrinsic discrepancy does
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not need this constrain and therefore it has a wider applicability. However,
in the application considered in this paper, building credible regions, it is
to be expected that the two probability measures used verify Kullback con-
ditions, that is they are absolutely continuous with respect to each other,
and therefore this property may not be crucial. Assuming that in most
cases both discrepancies can be used, which are the advantages for build-
ing credible regions of the intrinsic discrepancy with respect to the standard
Kullblack Leibler divergence?, how different the results would be of using
one instead of the other?

The derivation of intrinsic credible regions may be complicated and may
require numerical integration and thus an interesting contribution from the
point of view of applications is Theorem 4.1, where simple asymptotic ap-
proximations are obtained. This result will facilitate the use of the pre-
sented theory in practice.

My final comments on this interesting and though-provoking paper are
on three directions. First, it would be useful to have a better understanding
of the advantages of the proposed approach over the standard HPD regions.
Suppose that I have a HPD region for θ. Would it be possible to compute
a measure of the maximum loss that we may have if we translate this HPD
for θ to build a credible interval for a one-to-one transformation of the
parameter φ? From my point of view in order to convince people to use
these ideas is important to provide some bounds of the advantages that we
may obtain with respect to conventional methods.

Second, how this ideas can be extended for building prediction credi-
ble regions for future values of the observed random variable of interest?
As in the Bayesian approach parameters are random variables, I suppose
the extension is straightforward but it would be interesting to have some
comments on this topic.

Third, how these ideas can be extended for dependent observations
as, for instance, time series or spatial data? When the data have some
dependency structure prediction of the observed random variable is usually
the key problem, and an approach to develop prediction intervals which
does not depend on the parametrization could be very appealing. For time
series a popular measure of information is the mutual information or relative
entropy (Joe, 1989) given by

K(x, y) =

∫ ∫

f(x, y) log
f(x, y)

f(x)f(y)
dxdy,



Intrinsic Credible Regions 367

which is nonnegative and it is zero only if the two variables are independent.
This measure has been used to build a test of independence (Robinson,
1991), identifying lags in the relationship in nonlinear time series model-
ing (Granger and Lin, 1994) or building measures of general dependency
among vector random variables (Peña and van der Linde, 2005), among oth-
ers applications. Taking p1(x) = f(x, y) and p2(x) = f(x)f(y) the intrinsic
discrepancy between dependency and independency of the two random vari-
ables x and y can be defined and this idea might be used for credible regions
and hypothesis testing in time series. It would be interesting to explore this
possibility.

Finally I would like to congratulate the author for a very interesting
piece of research.

Judith Rousseau and Christian P. Robert
CEREMADE, Université Paris Dauphine

and CREST, INSEE, France

In this paper, Professor Bernardo presents a unified and structured ob-
jective approach to (decisional) statistical inference, based on information
theoretic ideas he has used previously to define reference priors. He fo-
cusses here on the estimation of credible regions, keeping those values of
the parameter that are the least costly rather than the most probable, as
in HPD regions. This is an interesting and novel approach to an efficient
construction of credible regions when lacking a decision-theoretic basis. As
noted in Casella et al. (1993, 1994) (see also Robert, 2001, Section 5.5.3,
for a review), the classical decision-theoretic approaches to credible regions
are quite behind their counterpart for point estimation and testing and in-
corporating loss perspectives in credible sets was then suggested in Robert
and Casella (1994).

1 On invariance: link with HPD regions

A possible drawback of HPD regions, in particular in objective contexts,
is their lack of invariance under reparameterization as was pointed out by
Professor Bernardo. Obviously, HPD regions are defined in terms of a
volume-under-fixed-coverage loss and they do minimize the volume among
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q-credible regions. The lack of invariance hence stems from the lack of in-
variance in the definition of the volume, which is based on the Lebesgue
measure for the considered parametrization θ. Therefore, simply consider-
ing a different type of volume based on an invariant measure would result
in an HPD region that is invariant under reparameterization. A natural
invariant measure in this setup is Jeffreys’ measure, due to its geometric
and information interpretations (among others). The resulting HPD region
is thus constructed as the region C that minimizes

∫

C

√

i(θ)dθ, u.c. P π[C|X] ≥ q. (1)

This region also corresponds to the transform of the (usual) HPD region
constructed using the reference parametrization as defined by Professor
Bernardo.

Note that, in the above construction, there is absolutely no need in
having the prior be Jeffreys prior and this construction could be used in
(partially) informative setups. It is also interesting to note that, in regular
cases, the above HPD region is asymptotically equivalent to the intrinsic
credible region of Professor Bernardo. Which of both approaches is the
most appealing is probably a question of taste or depends on how they will
be used.

On a more philosophical basis, we think that invariance is less com-
pelling an argument for (credible) regions than for point estimations. In-
deed, while it is difficult to sell to a customer that the estimator of h(θ) is
not necessarily the transform h(θ̂) of the estimator θ̂ of θ, the transform
of a crebible region does remain a credible region, even though it is not
always the optimal region. Moreover, invariance under reparameterization
should be weighted against shape poor modifications. Indeed, if we impose
that the credible region Ch on h(θ) is the transform by h of the credible
region Cid on θ, we get exposed to strange shapes for less regular functions
h! For instance, if the transform h is not monotonic (but still one-to-one),
it is possible to obtain the transform of a credible interval as a collection of
several disjoint intervals, always a puzzling feature! Connexity (and maybe
to some extent convexity) should be part of the constraints on a credible
region.
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2 Asymptotic coverage : matching properties

Under regularity properties, the HPD region defined by (1) is a second order
matching region for any smooth prior π, in the sense that its frequentist
coverage is equal to its posterior coverage to the order O(n−1). Third order
coverage does not necessarily apply for Jeffreys’ prior, though (see Datta
and Mukerjee, 2004 or Rousseau, 1997). As Bernardo’s intrinsic credible
region is asymptotically equivalent to the HPD region defined by (1) there
is a chance that second order matching is satisfied, which would explain the
good small sample properties mentioned in the paper. In particular, the
perturbation due to using the intrinsic loss, compared to using the posterior
density, is of order O(n−1), so second order asymptotics should be the same
between (1) and the intrinsic credible region.

Investing further the higher order matching properties of this credible
region would be worthwhile though. Regarding the discrete case, how-
ever, things are more complicated than what was mentioned by Professor
Bernardo since there is usually no matching to orders higher than O(n−1/2)
or sometimes o(n−1/2) for higher dimensional cases. Whether reference
posterior q-credible regions provide the best available solution for this par-
ticular problem is somehow doubtful as there are many criteria which could
reasonably be considered for comparing credible regions or their approxi-
mations in the discrete case, see Brown et al. (2002).

3 Computations

Adopting this approach to credible set construction obviously makes life
harder than computing HPD regions: while HPD regions do simply re-
quire the derivation of a posterior level % for the set {θ : π(θ|x) ≥ %}
to have coverage q, an intrinsic credible set involves the intrinsic loss—
not easily computed outside exponential families—, the posterior intrinsic
loss—possibly integrated over a large dimensional space—, the posterior
coverage of the corresponding region and at last the bound on d(θ|x) that
garantees q coverage. In large dimensional settings or outside exponential
frameworks, the tasks simply seems too formidable to be contemplated, es-
pecially given that standard numerical features like convexification cannot
be taken for granted since the credible region is not necessarily convex or
even connected.
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Rejoinder by J. M. Bernardo

I am most grateful to the editors for inviting so many fine statisticians to
comment on this paper, and to the discussants for their kind remarks and
thought-provoking comments. I will try to provide a personalized answer
to each of them.

1 Casella

I am obviously flattered by the opening paragraphs of Professor Casella’s
comment, and I am glad to read that he appreciates the importance of re-
quiring that statistical procedures should be invariant under reparametriza-
tion.

Given his mainly frequentist standpoint, it is not surprising that he
finds convincing a confidence interval even if this cannot exactly obtain
a required level. He claims that this is a consequence of the limitation
imposed by the discreteness of the data and, mathematically, this is cer-
tainly true. My point, however, is that, since the parameter is continuous,
one should expect to be able to provide region estimates for the parameter
in a continuous manner, and this obviously requires a Bayesian approach.
It may be argued that what scientists need is a set of parameter values
which, given the available data, may be expected to be close to the true
value; the average properties under sampling of the procedure are certainly
worth investigating but, I believe, they should not be the overwhelming
consideration.

We should all be grateful to Professor Casella for the detailed com-
parison between the solution to interval estimation of a binomial param-
eter proposed in the paper and that of Blyth-Still (that Professor Casella
considers the best frequentist answer), for this provides a nice example
where the practical implications of foundational issues may usefully be dis-
cussed. I should first mention an important foundational difference: while
the Bayesian approach provides general procedures, which may be applied
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without modification to any particular example, good frequentist proce-
dures often require a great deal of ingenuity to taylor the procedure to
the specific needs of the example (“adhockeries” in de Finetti, 1970, ter-
minology); this is clearly demonstrated by the long history of frequentist
confidence intervals in the binomial case.

The practical differences between the two solutions compared mirror
their very different foundational basis. Indeed, if one takes the frequentist
view that the criterion is to have at least 95% coverage with a minimum
length, then Blyth-Still solution does a very good job and, as one could
expect, this produces longer intervals than the Bayesian solution, with pos-
terior probability larger than 0.95. If, on the other hand, one takes the
Bayesian view that the criterion is to have precisely 0.95 posterior proba-
bility, one has shorter intervals with an average 95% coverage. Professor
Casella finds a particular 83% coverage unacceptable from a frequentist
viewpoint if 95% was the desired level; I similarly find unacceptable from
a Bayesian viewpoint a posterior probability 0.989 if 0.95 was required.
I suspect that the two methods would give very close numerical answers
if either the Bayesian procedure were set to a credible level equal to the
average confidence level reached by the frequentist procedure or, alterna-
tively, if the frequentist procedure were set to a confidence level equal to
the minimum coverage attained by the Bayesian procedure.

The main difference however, is not numerical but foundational; it does
not lie with the numerical differences (in many other examples, as illus-
trated in the paper, the numbers are precisely equal) but with their inter-
pretation. The main point, I believe, is whether a scientist is best served by
a given interval estimate and the knowledge, that had he obtained the data
he had not, the resulting intervals would have contained the true value
95% of the time, or by a (possibly different) interval and the knowledge
the he is entitled to a 0.95 measure of uncertainty, in a (0, 1) scale, that
this particular interval contains the true value. I firmly believe that most
scientists, if given the choice, would prefer the second scenario.

That said, I must applaud Professor Casella’s suggestion that frequen-
tist statisticians should check the Bayesian properties of their proposals.
As this paper illustrates, good Bayesian and frequentist solutions are of-
ten numerically very close, and both paradigms (and their fertile interface)
should make part of any decent education in mathematical statistics.
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2 George

I must warmly thank Professor George for his excellent review of the moti-
vation and contents of the paper. As he states in the last paragraph of his
comment, it hardly leaves me anything to argue about!

Professor George wonders about the essential reasons behind the match-
ing properties of intrinsic credible regions. The set of examples I have cho-
sen to include possibly has an over-representation of exact matching cases.
Indeed, except for the binomial case (where, as in any problem with dis-
crete data, exact matching is impossible), all the other examples show exact
matching in the sense that the frequentist coverage of q-credible regions is
exactly q for any sample size. In all these examples, this is due to the
existence of a pivotal quantity whose sampling distribution as a function
of the data is precisely the same as its reference posterior distribution as a
function of the parameters. I suspect the existence of such a pivotal quan-
tity is the basic condition for exact matching to exist; related pioneering
papers are Lindley (1958) and Barnard (1980). Whether or not the refer-
ence posterior of the pivotal quantity (whenever this exists) is always the
same as its sampling distribution is an interesting open problem. I would
think that this is probably true (under appropriate regularity conditions) in
one-dimensional problems, but I doubt that such a result would generalize
to multivariate settings. More work is certainly needed in that direction.

A superficial reading of the exact matching properties may however lead
to think that, when pivotal quantities do exist, intrinsic credible regions give
the same numerical result than conventional frequentist confidence sets,
but this is certainly not the case. Indeed, q-credible regions may well have
exact q-coverage and yet be numerically very different from the common
frequentist q-confidence sets. For instance, the conventional q-confidence
interval for the normal variance when the mean is unknown, based on a
probability centred interval on the χ2

n−1 distribution of the pivotal quantity
ns2/σ2, is

Cq =

[

ns2

Qn−1{(1 + q)/2)}
, ns2

Qn−1{(1 − q)/2}

]

(1)

whereQν{p} is the p-quantile of a χ2
n−1 distribution. On the other hand, ex-

tending the results in (Bernardo, 2005a) to region estimation, the q-intrinsic
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credible region is the set R∗
q of the σ2

i values such that
∫

R∗

q

π(σ2 |n, s2) dσ2 = q, ∀σ2
i ∈ R∗

q , ∀σ2
j /∈ R∗

q , d(σ
2
i |n, s2) ≤ d(σ2

j |n, s2)

where π(σ2 |n, s2), the reference posterior of σ2, is an inverted gamma
Ig(σ2 | (n− 1)/2, ns2/2),

d(σ2
i |n, s2) =

1

2

∫ ∞

0
δ

(

σ2
i τ

ns2

)

χ2(τ |n− 1) dτ, (2)

and δ(θ) = g(θ) if θ < 1, δ(θ) = g(θ−1) if θ > 1, with g(x) = (x− 1) − log x.
Using the results in Theorem 4.1, this may approximated by

R∗
q ≈ exp

[{(

log[
ns2

2
] − ψ(

n− 1

2
)

)

± zq

√

ψ′(
n− 1

2
)

}]

, (3)

where ψ(·) is the digamma function, and zq is the standard normal quantile
of order (1+ q)/2. Using Stirling to approximate the polygamma functions
this further reduces to

R∗
q ≈ exp

[{(

1

n− 1
+ log

n s2

n− 1

)

± zq

√
2n

n− 1

}]

. (4)

With a simulated sample of size n = 20 from a N(x | 0, 1) distribution,
which yielded x = 0.069 and s2 = 0.889, the conventional 0.95-confidence
set for σ2 is C0.95 = (0.5376, 1.9828), while the exact intrinsic interval
is R∗

0.95 = (0.5109, 1.8739), the approximation (3) yields (0.5104, 1.8840),
and (4) gives (0.5102, 1.8812). As one would expect, the differences between
confidence sets and credible regions increase as the sample size decreases.
To show an extreme case, with only two observations, x1 = −1 and x2 = 1,
the 0.95-confidence set is C0.95 = (0.398, 2037), while the intrinsic interval is
the far better centred R∗

0.95 = (0.004, 509); even in this extreme case the ap-
proximation (3) is useful, yielding (0.092, 554), while (4) gives (0.108, 274).
Again, the dual behaviour of the pivotal quantity ns2/σ2 guarantees in this
example that the coverage probability of a Bayesian credible interval Rq,
and reference posterior probability of a frequentist confidence interval Cq

are both exactly q, whatever the sample size.

3 Girón and Moreno

Professors Girón and Moreno question the use of the emotionally charged
adjective “incoherent” to refer to the lack of invariance under one-to-one
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reparametrization shown by HPD intervals, which was the terminology I
used in the first draft of this paper. They are probably right, and I have
replaced this by simply “non-invariant” is the final version. That said,
I still believe invariance under (irrelevant) one-to-one reparametrization
should be a requirement for any statistical procedure, an in particular, this
should be a property of appropriate region estimators.

Professors Girón and Moreno suggest that the use of an invariant loss
function may be a contrived artifact to achieve invariance rather than a
means to show the properties of the posterior. I disagree. They seem to
miss the point that any feature of the posterior which is not invariant under
reparametrization is completely illusory, since the parametrization is arbi-
trary. Points with relatively large posterior density in one parametrization
may well correspond to points with relatively low posterior density in an-
other. The need for invariant interval regions stems from the fact that the
main objective of a region estimate, which is to give the scientist a set of
values of the parameter of interest which (given the available data) could
reasonably be expected to be close to the true value, requires invariance.
Would anyone be happy to report a set of, say, credible speed values for a
remote galaxy given available measurements to a group of scientists work-
ing in speed units, and a different set to another group working in a log
scale?

I have chosen to define the low posterior loss regions in terms of cred-
ible regions to facilitate comparison with conventional interval estimates.
However, there is no need to specify the threshold level δ∗ indirectly, in
probability terms, as implied by a posterior probability content. Indeed, δ∗

may directly be specified in terms of the maximum expected loss one is
prepared to suffer. If the intrinsic discrepancy loss is used, this simply
means to exclude from the region estimate those parameter values which
label models leading to expected log-likelihood ratios against them larger
than δ∗. As Professors Girón and Moreno correctly point out this is closely
related to precise hypothesis testing and, in hypothesis testing, it leads to
a different (and I would claim better) solution than the conventional Bayes
factor approach. There is no space here however to discuss this important
issue, and the interested reader is referred to Bernardo and Rueda (2002)
and Bernardo (2005b).

Professors Girón and Moreno find disturbing the fact that the contours
obtained from LDL regions may be very different, specially in higher di-
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mensions, from those of HPD regions. It is difficult to argue without any
specific example in mind, but what I would definitely find disturbing is to
include in a region estimate parameter values with large expected losses.
The crucial difference between focusing attention on probability density
rather than expected loss is well illustrated by one of their final comments.
The show concern on the fact, illustrated by Example 4.1, that high density
parameter values, such as zero in a binomial situation when no successes
have been observed, may be excluded from an intrinsic credible interval
with an small credible level. Thus, in the n = 10, r = 0 case discussed
in the paper, the 0.50-intrinsic credible interval is (0.006, 0.070), and this
excludes the parameter values close to 0, although the posterior density
of θ is monotonically decreasing from 0. Notice, however, that very few
statisticians would consider the point estimator θ̃ = 0, which is both the
maximum likelihood estimate and the posterior mode in this case, any-
thing but useless; thus, most would use some sort of correction to obtain
an strictly positive point estimate of θ and, indeed, the intrinsic point es-
timate in this case (see Example 4.1) is θ∗ = 0.031. It is then natural to
expect that if an small set of good estimates of θ is desired, these should
concentrate in a small neighbourhood of the optimal choice, which is θ∗.
The important point to notice is that values around θ∗ have a lower ex-
pected loss than the more likely values around zero. In practice, this means
that, after observing r = 0 successes in n trials, if one were to act as if the
true model were Bi(r | θ̃, n) it would be safer to act as if θ̃ were close to
θ∗, the intrinsic estimate, than to act as if θ̃ were close to 0, the posterior
mode. This is, I believe, an eminently sensible conclusion.

4 Peña

Professor Peña wonders whether the results would be very different if, in
those cases where both directed divergences are finite, the conventional
symmetric logarithmic divergence (already suggested by Jeffreys)

`J(p1, p2) = κ{p1 | p2} + κ{p2 | p1}

were used instead of the intrinsic loss in Definition 3.1; I would expect the
two solutions in that case to be pretty similar. However, as illustrated
by the uniform data example of Section 6.2, there are many interesting
problems where one of the directed divergences is infinite, and I believe one
should strive for theories which are as generally applicable as possible. As
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illustrated by the Poisson approximation to the Binomial (see Example 3.1),
the intrinsic discrepancy may be applied to important statistical problems
where Jeffreys divergence cannot.

As stated, Definition 4.2 may be applied to any type of data, includ-
ing those with dependent observations. Indeed, p(x |θ,λ) stands for the
joint distribution of the observed data x (although in all the examples con-
sidered x has been assumed to be a random sample from some underlying
distribution). If Professor Peña, a known expert in dependent data, decided
to try out a particular example with dependent observations, we would all
be grateful.

Professor Peña makes the interesting suggestion of providing a measure
of the expected loss from using a HPD region instead of the optimal LDL
region. The posterior expected loss from using any particular value θ i as
a proxy for the unknown value of the parameter is given by d(θ i |x), in
Equation (4.1). Thus, an upper bound of the expected loss increase from
using a region estimate Rq(x,Θ) rather than the optimal region R∗(x,Θ)
would be the (necessarily positive) quantity

∆(Rq) = sup
θi∈Rq

d(θi |x) − sup
θi∈R∗

q

d(θi |x).

Simple approximations to ∆(Rq) should be available from the results of
Theorem 4.1. A possible use of ∆(Rq) would be to check the possible losses
associated to the use of HPD regions in alternative parametrizations. It
follows from Theorem 4.1 that under regularity conditions, the best choice
would be the reference parametrization since, in that case, intrinsic credible
regions are approximate (and often exact) HPD regions.

Derivation of credible sets for prediction is certainly a natural extension
of the proposed theory. This is not directly contemplated in Definition 4.2
but, as Professor Peña suggests, the main ideas may be indeed applied. In
a prediction situation, the loss from using a predictive density px(·) as a
function of the value x eventually observed may be argued to be of the form

`{px(·), x} = − a log px(x) + b, a > 0, b ∈ R,

for, under regularity conditions, the logarithmic scoring rule is the only
proper local scoring rule (Bernardo, 1979a). The best possible predictive
density is obviously the actual model p(x |θ). Hence, as a function of θ,
the loss suffered from predicting a particular value x0 would be of the form

`{x0,θ} = − a log p(x0 |θ) + b, a > 0, b ∈ R.
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To set an origin for the loss scale, let xθ be some good estimate of x given θ,
say the mean, the mode or the median of p(x |θ), which is arbitrarily given
zero loss. In this case, `{xθ,θ} = − a log p(xθ |θ)+ b = 0, and solving for b
yields b = a log p(xθ |θ). Hence, as a function of θ, the loss suffered from
predicting any other value x0 would be

`{x0,θ} = a log
p(xθ |θ)

p(x0 |θ)
, a > 0. (5)

The corresponding reference posterior expected loss,

l(x0 |x) =

∫

Θ

`{x0,θ}π(θ |x) dθ, (6)

is invariant under both one-to-one reparametrization and one-to-one trans-
formation of the observable x. I would suggest that a function of the
form (5) is an appropriate loss function for prediction. Using the expected
loss (6) in Definition 2.1, the corresponding lower posterior loss (LPL) q-
credible predictive region would be a subset Rq(x,X ) of X such that

∫

Rq

px(x |x) dx = q, ∀xi ∈ Rq, ∀xj /∈ Rq, l(xi |x) ≤ l(xj |x).

For example, in the exponential example of Section 6.1, with the conditional
mean xθ = E[x | θ] = θ−1 used to set the origin of the loss scale, the reference
posterior expected loss (6) is easily found to be d(x0 | t, n) = x0 n/t − 1,
where t is the sum of the observations. Since this is an increasing function of
x0, the LPL q-credible predictive interval would be of the form Rq = (0, a),
where a = a(q, t, n) is such that

∫ a
0 p(x | t, n) dx = q, and p(x | t, n) is the

reference posterior predictive density,

p(x | t, n) =
Γ(n+ 1)

Γ(n)

tn

(t+ x)n
, x > 0.

Analytical integration and some algebra yields the q-predictive interval

Rq =
(

0, [(1 − q)−1/n − 1] t
)

.

For the numerical illustration considered in Section 6.1, where n = 12 and
t = 4.88, the LPL 0.95-credible predictive interval (which in this case is
also HPD) is R0.95(x,X ) = (0, 1.384).
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In his final comment, Professor Peña refers the the relative entropy,
that is the directed logarithmic divergence of the product of the marginals
from the joint distribution, as a sensible measure of dependence. This is a
particular case (Bernardo, 2005b) of the intrinsic dependency,

min

[
∫

X

∫

Y
p(x,y) log

p(x,y)

p(x)p(y)
dy dx,

∫

X

∫

Y
p(x)p(y) log

p(x)p(y)

p(x,y)
dy dx

]

which reduces to the relative entropy (the first integral above) under reg-
ularity conditions, but may be seen to behave better in non-regular cases.
Professor Peña suggests the use of a dependency measure as the basis for a
prediction loss function. This is an interesting idea, well worth exploring.

5 Rousseau and Robert

Professors Rousseau and Robert describe a solution to invariant region es-
timation that, when applicable, is simple and elegant. As they point out,
this is the usual HPD region obtained using the reference parametrization
and thus, their proposal is asymptotically equivalent to ours. Notice, how-
ever, that there are many important non-regular problems where Jeffreys
prior does not exist and hence, their method could not be used.

They correctly point out that there is no need in their construction to
use Jeffreys’ as a formal prior and that their construction could be used in
(partially) informative setups. We note in passing that this is also the case
with intrinsic credible regions: as stated in Definition 2.1, q-credible lowest
posterior loss regions may be found conditional to a posterior probability q
obtained from any desired prior. Indeed, their construction may be formally
seen a particular case or lowest posterior loss regions where the (invariant)
loss function is taken to be the volume based on Jeffreys’ measure.

Professors Rousseau and Robert argue that in region estimation invari-
ance should be weighted against shape poor modifications, and suggest
that connexity should be part of the constraints on a credible region. I
disagree. For instance, a non-connected region might be the only sensible
option if, say, the posterior distribution is strongly bimodal. The particular
parametrization of the problem is irrelevant and thus, as a basic founda-
tional point, the procedure should be independent of the parametrization.
It is certainly true that connected, convex regions may be easier to under-
stand but, precisely because the procedure is invariant under reparametriza-
tion, one is free to choose that parametrization where the required regions
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look better. This will often be the reference parametrization where, as
mentioned above, intrinsic regions will be nearly HPD.

Professors Rousseau and Robert refer to the matching properties of
both their suggestion and the (asymptotically equivalent) intrinsic regions.
While it is certainly nice to know that, asymptotically, the expected pro-
portion of q-credible regions containing the true value is q, I believe that
too much emphasis on numerical coincidence with confidence regions is
misplaced. Indeed, there is a large class of problems (Gleser and Hwang,
1987), which includes for instance the region estimation of the ratio of nor-
mal means, where frequentist confidence regions may be both useless and
misleading, and therefore, one does not want to approximate these.

I certainly share Professors Rousseau and Robert concern with compu-
tational issues: this is why I invested some effort in deriving approximate
solutions. However, I believe that one should derive what the optimal
procedure should be, and then try to find clever ways to obtain either nu-
merical solutions or analytical approximations to the optimal procedure,
rather than using a simple alternative (say a quadratic loss) just because
it it easier to compute, even if it may be shown to be less than appropriate
for the problem considered.
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