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SUMMARY

Point estimation of the normal variance is surely one of the oldest non-trivial problems in mathematical
statistics and yet, there is certainly no consensus about its more appropriate solution. Formally, point
estimation may be seen as a decision problem where the action space is the set of possible values of the
quantity on interest; foundations then dictate that the solutionmust depend on both the utility function and
the prior distribution. An estimator intended for general use should surely be invariant under one-to-one
transformations and this requires the use of an invariant loss function; moreover, an objective solution
requires the use of a priorwhich does not introduce subjective elements. The combined use of an invariant
information-theory based loss function, the intrinsic discrepancy, and an objective prior function, the
reference prior, produces a general Bayesian objective solution to the problemof point estimation. In this
paper, point estimation of the normal variance is considered in detail, and the behaviour of the solution
found is compared with the behaviour of alternative conventional solutions from both a Bayesian and a
frequentist perspective.

Keywords: DECISION THEORY; INTRINSIC DISCREPANCY; INTRINSIC LOSS; NONINFORMATIVE PRIOR;
REFERENCE ANALYSIS; POINT ESTIMATION.

1. INTRODUCTION

Point estimation of the normal variance has a long, fascinating history which is far from set-
tled. As mentioned by Maata and Casella (1990) in their lucid discussion of the frequentist
decision-theoretic approach to this problem, the list of contributors to the twin problems of
point estimation of the normal mean and point estimation of the normal variance reads like a
Who's Who in modern 20th century statistics.

In this paper, an objective Bayesian decision-theoretic solution to point estimation of the
normal variance when the mean is unknown is presented. In marked contrast with most ap-
proaches, this solution is invariant under one-to-one parametrization. The behaviour of this
new solution is compared to the behaviour of known alternatives from both a Bayesian and a
frequentist viewpoint.

José M. Bernardo is Professor of Statistics at the University of Valencia. Research partially funded with grant
MTM2004-05956 of the MEyC, Madrid, Spain.
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1.1. Notation

A brief review of notation is needed to proceed. Probability distributions are described through
their probability density functions, and no notational distinction is made between a random
quantity and the particular values that itmay take. Bold italic roman fonts are used for observable
random vectors (typically data) and bold italic greek fonts for unobservable random vectors
(typically parameters); lower case is used for variables and upper case calligraphic for their
dominion sets. The standard mathematical convention of referring to functions, say fx(·) and
gx(·) of x ∈ X , respectively by f(x) and g(x) will often be used. Thus, the conditional
probability density of observable data x ∈ X given θ will be represented by by either px(· |θ)
or p(x |θ), with p(x |θ) ≥ 0, x ∈ X , and

R
X p(x |θ) dx = 1, and the posterior density of

a non-observable parameter vector θ ∈ Θ given x will be represented by either πθ(· |x) or
π(θ |x), with π(θ |x) ≥ 0, θ ∈ Θ, and

R
Θ π(θ |x) dθ = 1. Density functions of specific

distributions are denoted by appropriate names. In particular, if x has a normal distribution
with mean µ and variance σ2, its probability density function will be denoted N(x |µ, σ). The
maximum likelihood estimators of µ and σ2 given a random sample x = {x1, . . . , xn} from
N(x |µ, σ) will respectively be denoted by

µ̂ = x =
1
n

Xn

j=1
xj , σ̂2 = s2 =

1
n

Xn

j=1
(xj − x)2.

The more common point estimators of the normal variance are members of the family of affine
invariant estimators

σ̃2
∫ =

ns2

∫
=

1
∫

Xn

j=1
(xj − x)2, ∫ > 0; (1)

In particular, the maximum likelihood estimator (MLE) is s2 = σ̃2
n, and the unique unbiased

estimator is σ̃2
n−1.

1.2. Point Estimation

The basic facts on frequentist point estimation of the normal variance are well known.
The MLE of σ2 is s2 and, since maximum likelihood estimation is invariant under one-to-one
transformations, the MLE of σ is s. The uniformly minimum variance unbiased estimator
(UMVUE) of σ2 is σ̃2

n−1 = ns2/(n − 1), but the UMVUE of σ is not its squared root, but
s

p
(n/2)Γ((n− 1)/2)/Γ(n/2) (see e.g., Lehmann and Casella, 1998, p. 91); for n = 2 these

respectively yield
√

2 s and
√

π s, with s = |x1 − x2|/2, a 25% difference using precisely the
same procedure; this a good example of methodological inconsistency.

Despite many warnings on its inappropriate behaviour (“I find it hard to take the problem
of estimating σ2 with quadratic loss very seriously" Stein, 1964; see also Brown, 1968, 1990),
decision theoretical approaches to the normal variance estimation are typically based on the
standardized quadratic loss function

`squad{σ̃2,σ2} = [(σ̃2/σ2)− 1]2, (2)

where overestimation of σ2 is muchmore severely penalized than underestimation, thus leading
to presumably too small estimates. Indeed, the best invariant estimator (minimum risk equivari-
ant estimator, MRE) of σ2 under this loss, which is also minimax, is σ̃2

n+1 (see e.g., , Lehmann
and Casella, 1998, p. 172), smaller than both the MLE and the unbiased estimator, and it is
often considered the “straw man" to beat in this problem (George, 1990). By considering a
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larger class of estimators than (1), namely those of the form φn(z)ns2 where φn is a real valued
function and z = x/s, which are also are scale invariant, Stein (1964) found that

σ̃2
stein = min

n
σ̃2

n+1, σ̃2
(n+2)/(1+z2)

o
, (3)

dominates σ̃2
n+1 under the standardized quadratic loss (2) and, thus, σ̃2

n+1 is inadmissible under
that loss. The intuition behind this is that small z values indicate that µ may be close to 0,
and then σ̃2

n+2, which would the best affine invariant estimator under the quadratic loss (2)
if µ were known to be zero, might be better than σ̃2

n+1. This prompted a whole class of
so-called preliminary test estimators where the estimator takes one of typically two different
forms, depending of the value of z (Brown, 1968; Brewster and Zidek, 1974). For a review of
their performance, see Csörgö and Faraway (1996). Notice however that σ̃2

stein must also be
inadmissible, for admissible estimators are limits of Bayes estimators, and so must be analytic.

The results mentioned above are all obtained under the mathematically convenient—but
otherwise rather unsatisfactory—standardizedquadratic loss. James and Stein (1961) suggested
the use of the far more appropriate entropy loss

`entropy{σ̃2,σ2} =
Z

<
N(x |µ,σ) log

N(x |µ,σ)
N(x |µ, σ̃)

dx =
1
2

∑
σ̃2

σ2 − 1− log
σ̃2

σ2

∏
(4)

and showed that the best invariant estimator for this loss is σ̃2
n−1 (the unbiased estimator). Brown

(1968) proved that, from a frequentist decision theoretic viewpoint, this may be also improved
by appropriate preliminary test estimators. In particular,

σ̃2
brown = min

n
σ̃2

n−1, σ̃2
n/(1+z2)

o
, (5)

dominates σ̃2
n−1 under Stein loss (4), and thus σ̃2

n−1 is inadmissible under that loss. On the other
hand, Lin and Pal (2005) recently found that, from a frequentist viewpoint, σ̃2

n−1 may be argued
to be a good compromise estimator, for it performs moderately well under several alternative
criteria (risk, Pitman nearness and stochastic domination), while the performance of the other
estimators they consider dramatically depends of the criterion used.

It may certainly be argued that the frequentist emphasis of the concept described by the
emotionally chargedword “inadmissible" maywell be inappropriate. Indeed, for some assumed
loss function, a particular estimator is deemed as inadmissible (do not dare to use it!) only
because its average loss under repeated sampling is larger than that of another estimator; whether
or not the “inadmissible" estimator is actually better for most regions of the sampling space
(which are often identifiable) is simply ignored. Yet, one would certainly expect that decent
people would prefer a country where there is no poverty to one with a larger average income
induced a small group of very rich people which over compensates the small income of the
poor people, thus producing a larger average. In more technical terms, one should certainly
analyse the sampling properties of any statistical procedure, and avoid procedures which for
some possible parameter values would give misleading conclusions most of the time (the weak
repeated sampling principle, Cox and Hinkley, 1974, p. 45); however, the crucial properties
of a statistical procedure are those conditional on the observed data, not average over them: a
sensible procedure should produce appropriate answers whatever the data obtained, with special
attention to the parameter values supported by the observed data. But, of course, this type of
analysis requires a Bayesian approach.

Conventional Bayesian point estimation typically consists of some location measure of the
marginal posterior distribution of the quantity of interest. The solution naturally depends on



J. M. Bernardo. Estimation of the normal variance 4

the prior used. Objective Bayesian estimators, which do not involve any information about the
parameters beyond that contained in the assumed model—and may therefore be meaningfully
compared with their frequentist counterparts—require an objective prior, that is a positive prior
function to be formally used in Bayes theorem, which only depends on the assumed model and
on the quantity of interest. In the particular problem where data x = {x1, . . . , xn} consist of
a random sample from a normal N(x |µ,σ) distribution and the quantity of interest is either σ,
or any one-to-one function of σ (say the variance, σ2, the precision 1/σ2, or the approximate
location parameter log σ), there is a clear consensus on the objective prior function to use,
namely

π(µ,σ) = σ−1 (6)

i.e., a uniform prior on both µ and log σ. Indeed, this was already suggested by Barnard (1952)
on invariance arguments, and recommended by Jeffreys (1939, p. 138), Lindley (1965, p. 37)
and Box and Tiao (1973, p. 49) in their pioneering books. As one would expect, this is also the
relevant reference prior (Bernardo, 1979).

The corresponding marginal posterior of the standard deviation, the reference posterior
distribution of σ is

π(σ |x) =∝
Z −1

−1

nY

j=1

N(xj |µ,σ)π(µ,σ) dµ ∝ σ−ne
−n

2
s2
σ2 (7)

and, hence, the reference posterior of the variance σ2 is

π(σ2 |x) ∝ (σ2)−(n+1)/2e
−n

2
s2
σ2 , (8)

an inverted gama Ig(σ2 | (n − 1)/2, ns2/2), and the reference posterior of τ = ns2/σ2 is
π(τ |n) = χ2

n−1, a central chi-squarewithn−1 degrees of freedom. Naïve Bayesian estimators
of σ and σ2 are given by the corresponding posterior means

E[σ |x] =
r

n

2
Γ[(n− 2)/2]
Γ[(n− 1)/2]

s , E[σ2 |x] =
n s2

n− 3
= σ̃2

n−3, (9)

and posterior modes,

Mo[σ |x] = s , Mo[σ2 |x] =
n s2

n + 1
= σ̃2

n+1. (10)

Note that these estimation procedures are not consistent under reparametrization. It may be
appreciated that there aremany direct relations between frequentist and naïve objectiveBayesian
estimators. For instance, the mode of the reference posterior of σ is s, its MLE, and the mode
of the reference posterior of σ2 is σ̃2

n+1, its MRE.
A more formal Bayesian approach to point estimation is to consider this problem as a

decision problem where the action space is the set of possible values of the quantity of interest.
This requires to specify a loss function. Naïve loss functions reproduce naïve estimators. Thus,
the optimal Bayes estimator under quadratic loss is the posterior expectation, leading to the
results in (9), and the optimal Bayes estimator under a zero-one loss is the posterior mode,
leading to the results in (10). Bayesian decision-theoretic point estimation is considered in
detail in Section 2.1.

In this paper, a particular objective Bayesian solution to point estimation of any one-to-one
function of the normal variance is presented. Section 2 is a review of the methodology used,
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intrinsic estimation (Bernardo, 1999; Bernardo and Rueda, 2002; Bernardo and Juárez, 2003;
Bernardo, 2005), an objective Bayesian decision-theoretic approachwhich uses an information-
theory based loss function and a reference prior. Section 3 contains the derivation on the intrinsic
point estimator of the normal variance with unknown mean and, by invariance of the argument
used, that of any one-to-one transformation of the variance. In Section 4, the results obtained
are compared with other solutions in the literature, from both a Bayesian and a frequentist
viewpoint.

2. INTRINSIC ESTIMATION
2.1. Point Estimation as a Decision Problem

Let x be the available data, which are assumed to consist of one observation from model
M ≡ {p(x |ω),x ∈ X ,ω ∈ ≠}, and let θ = θ(ω) ∈ Θ be the vector of interest. Often,
but not necessarily, the data x consist of a random sample x = {x1, . . . , xn} of some simpler
model {q(x |ω),x ∈ X ,ω ∈ ≠}, in which case p(x |ω) =

Qn
j=1 q(xj |ω). Without loss of

generality, the original modelMmay be written asM ≡ {p(x |θ,∏),x ∈ X ,θ ∈ Θ,∏ ∈ Λ},
in terms of the vector of interest θ and a vector ∏ of nuisance parameters. A point estimator
of θ is some function of the data θ̃(x) ∈ Θ such that, for each possible set of observed data x,
θ̃(x) could be regarded as an appropriate proxy for the actual, unknown value of θ.

For each given data set x, to choose a point estimate θ̃ is a decision problem, where the
action space is the class Θ of possible θ values. Foundations dictate (see, e.g., Bernardo and
Smith, 1994, Ch. 2 and references therein) that to solve this decision problem it is necessary to
specify a loss function `{θ̃, (θ,∏)} measuring the consequences of acting as if the true value
of the quantity of interest were θ̃, when the actual parameter values are (θ,∏). Given data x,
the loss to be expected if θ̃ were used as the true value of the quantity of interest is

l{θ̃ |x} =
Z

Θ
`{θ̃, (θ,∏)}π(θ,∏ |x) dθ,

where π(θ |x) ∝ p(x |θ,∏)π(θ,∏) is the joint posterior density of θ and∏, and π(θ,∏) is the
joint prior of the unknown parameters. Given data x, the Bayes estimate is that θ̃ value which
minimizes in Θ the (posterior) expected loos l{θ̃ |x}. The Bayes estimator is the function

θ∗(x) = arg min
θ̃∈Θ

l{θ̃ |x}. (11)

For any given model, the Bayes estimator depends on both the loss function `{θ̃, (θ,∏)}
and the prior distribution π(θ,∏). In the case of the normal variance considered in this paper,
data x = {x1, . . . , xn} are assumed to be a random sample from N(x |µ,σ), the parameter
of interest is either σ or some one-to-one function of σ, and µ is a nuisance parameter. It has
already been mentioned that the undisputed objective prior for this problem is π(µ,σ) = σ−1,
which leads to the reference posterior distributions (7) and (8).

2.2. The Loss Function

The loss function is context specific, and should be chosen in terms of the anticipated uses of
the estimate; however, a number of conventional loss functions have been suggested for those
situations where no particular uses are envisaged. The more common of these conventional
loss functions (which often ignore the possible presence nuisance parameters) is the ubiquitous
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quadratic loss, `{θ̃, (θ,∏)} = (θ̃− θ)t(θ̃− θ); the corresponding Bayes estimator is then the
(marginal) posterior mean θ∗ = E[θ |x], assuming that the mean exists (see, e.g., Bernardo
and Smith, 1994, p. 257).

In the case of the normal variance, the conventional quadratic loss `(σ̃2,σ2) = c (σ̃2−σ2)2
leads to the reference posterior expectation E[σ2 |x] = σ̃2

n−3 quoted in (9). If the slightly more
sophisticated standardized quadratic loss (2) is used, the Bayes estimator is

arg min
σ̃2>0

Z 1

0
[(σ̃2/σ2)− 1]2 π(σ2 |x) dσ2 =

n s2

n + 1
= σ̃2

n+1, (12)

which is also the MRE of σ2 under this loss. Using the entropy loss (4) yields

arg min
σ̃2>0

Z 1

0
[(σ̃2/σ2)− 1− log(σ̃2/σ2)]π(σ2 |x) dσ2 =

n s2

n− 1
= σ̃2

n−1, (13)

which is also both the MRE of σ2 under this loss, and the unbiased estimator.
Conventional loss functions are typically not invariant under reparametrization. As a con-

sequence, the Bayes estimator √∗ of a one-to-one transformation √ = √(θ) of the original
parameter θ is not necessarily√(θ∗). Yet, scientific applications require this type of invariance;
indeed, it would be hard to argue that the best estimate of, say a galaxy speed, is θ∗ but that the
best estimate of the logarithm of that speed is not log(θ∗). Invariant loss functions are required
to guarantee invariant estimators.

With no nuisance parameters, intrinsic loss functions (Robert, 1996), of the general form
`(θ̃,θ) = `{px(. | θ̃), px(. |θ)} shift attention from the discrepancy between the estimate θ̃
and the true value θ, to the more relevant discrepancy between the statisticalmodels they label,
and they are always invariant under one-to-one reparametrization. The intrinsic discrepancy
(Bernardo and Rueda, 2002) is an intrinsic loss with very attractive properties. The intrinsic
discrepancy between two models px(· |θ1) and px(· |θ2) for data x ∈ X is

δ(θ1,θ2) = δ{px(. |θ1), px(. |θ2)} = min{∑(θ1 |θ2), ∑(θ2 |θ1)},

∑(θi |θj) =
Z

X
px(x |θj) log

px(x |θj)
px(x |θi)

dx,
(14)

that is, the minimum Kullback-Leibler logarithmic divergence between them. This is a proper
discrepancy measure; indeed, (i) it is symmetric, (ii) it is non-negative and (iii) it is zero if, and
only if, p(x |θ1) = p(x |θ2) almost everywhere. The intrinsic discrepancy, is invariant under
one-to-one transformations of either the parameter vector θ of the data set x. Moreover, the
intrinsic discrepancy is well defined in irregular models, where the sample space may depend
on the parameter value and, thus, the support of, say, px(. |θ1)may be strictly smaller that that
of px(. |θ2).

In the context of point estimation, this leads to the (invariant) intrinsic loss function

δ{θ̃, (θ,∏)} = min
∏̃∈Λ

δ{(θ̃, ∏̃), (θ,∏)} (15)

which measures the discrepancy between the model px(· |θ,∏) and its closest approximation
within the family {px(· | θ̃, ∏̃), ∏̃ ∈ Λ} of all models with θ = θ̃. Notice that the value of
δ{θ̃, (θ,∏)} does not depend on the particular parametrization chosen to describe the problem.
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Given data x generated by p(x |θ,ω) and no subjective prior information, the (reference
posterior) expected intrinsic loss from using θ̃ as a proxy for θ is the intrinsic statistic function

d{θ̃ |x} =
Z

Θ

Z

≠
δ{θ̃, (θ,ω)}π(θ,ω |x) dθ dω, (16)

where δ{θ̃, (θ,ω)} is the intrinsic discrepancy of the true model from the family of models
with θ = θ̃, and π(θ,ω |x) is the joint posterior distribution which results form formal use of
Bayes theorem with the reference prior π(θ)π(ω |θ) associated to model p(x |θ,ω) when θ
is the quantity of interest.

It immediately follows from (14), (15) and (16) that d{θ̃ |x} is simply the posterior ex-
pectation of the minimum expected likelihood ratio between the true model and a model with
θ = θ̃. This is an explicit measure of the (expected posterior) loss associated to any particular
estimate θ̃.

The intrinsic estimate is the value θ∗ which minimizes d{θ̃ |x}, that is, the Bayes estimate
with respect to the intrinsic discrepancy loss and the reference posterior. Formally, the intrinsic
estimator is then

θ∗(x) = arg minθ̃∈Θ d{θ̃ |x}, (17)

where d{θ̃ |x} is given by (16). Since both the intrinsic loss function and the reference prior are
invariant under one-to-one reparametrization, the intrinsic estimator φ∗(x) of any one-to-one
function φ{θ} of θ will simply be φ∗(x) = φ{θ∗(x)}.

3. INTRINSIC POINT ESTIMATION OF NORMAL VARIANCE
In this section, the intrinsic point estimator of a normal variance (and, by the invariance of the
argument used, the point estimators of any one-to-one function of the variance) are derived.

The intrinsic discrepancy δ{p1, p2} between two normal densities p1(x) and p2(x), with
pi(x) = N(x |µi,σi), is

δ{p1, p2} = min{∑{p1 | p2}, ∑{p2 | p1}},

∑{pi | pj} =
Z 1

−1
pj(x) log

pj(x)
pi(x)

dx =
1
2

n
log

σ2
i

σ2
j

+
σ2

j

σ2
i

− 1 +
(µi − µj)2

σ2
i

o
. (18)

The behaviour of the intrinsic discrepancy is very different from the conventional quadratic
distance, `quad{p1, p2} = c{(µ1 − µ2)2 + (σ1 − σ2)2}. In Figure 1, the discrepancy between
a normal distribution N(x |µ,σ) and a standard normal N(x | 0, 1) is represented for both the
intrinsic discrepancy and the quadratic distance as a function of µ and log σ; a useful range of
parameter values, µ ∈ [−3, 3] and σ ∈ [e−3, e3] ≈ [0.05, 20.1] has been used and, to facilitate
comparison, the constant c in the quadratic distance has been chosen such that both surfaces
have the same value at the extreme point (3, 3). It is apparent from Figure 1 that, as one would
expect from its analytical form, the quadratic distance essentially ignores discrepancies due
to small σ values: the quadratic distance is simply not appropriate to describe the divergence
between two normal distributions.

It may be verified that the minimum logarithmic discrepancy of {N(x |µi,σi), µi ∈ <}
from N(x |µj,σj) is achieved when µi = µj , so that

min
µi∈<

∑{pi | pj} = ∑{pi | pj}
ØØØ
µi=µj

=
1
2

n
log

σ2
i

σ2
j

+
σ2

j

σ2
i

− 1
o
. (19)
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Figure 1. Intrinsic discrepancy (left panel) and quadratic distance (right panel) between N(x |µ,σ)
and N(x | 0, 1) as a function of µ and log σ.

Thus, the intrinsic discrepancy between the normal N(x |µ,σ) and the set of normals with
standard deviation σ̃,Mσ̃ ≡ {N(x | µ̃, σ̃), µ̃ ∈ <)} is achieved when µ̃ = µ, and, using (18)
and (19)

δ{Mσ̃, N(x |µ,σ)} = δ(θ) =
Ω 1

2 [log θ−1 + θ − 1] , if θ < 1;
1
2 [log θ + θ−1 − 1] , if θ ≥ 1. (20)

which only depends on θ = σ̃2/σ2, the ratio of the two variances. Comparison with the entropy
loss (4) immediately shows that, the entropy loss is the same as the intrinsic loss for θ < 1, i.e.,
for σ̃2 < σ2, but rather different for θ > 1 (i.e., for σ̃2 > σ2).

!2 !1 0 1 2

0.2

0.4

0.6

0.8

1

1.2

1.4

lsquad

lentropy

lint

log!Σ###2 "Σ2 #
Figure 2. Standardized quadratic loss `squad(σ̃2,σ2), entropy loss `entropy(σ̃2,σ2) and intrinsic loss,
`int(σ̃2,σ2) as a function of log[σ̃2/σ2].

Thus the intrinsic loss for this problem, a loss function which treats symmetrically the
case σ̃2 < σ2 and the case σ̃2 > σ2, turns out to be a symmetrized version of the entropy
loss which Stein (1964) suggested for this problem. This is better seen in a logarithmic scale;
Figure 2 represents the standardized quadratic loss (2), the entropy loss (4) and the intrinsic
loss (20) as a function of log[σ̃2/σ2]. The dramatic overpenalization of large estimates by the
standardized quadratic loss is immediately apparent; the entropy loss behaves better, but it still
clearly overpenalizes large estimates.
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Since the normal is a location-scale model, the reference prior when σ (or any one-to-one
transformation of σ) is the parameter of interest is the universally recommended (improper)
prior π(µ,σ) = σ−1. The corresponding reference posterior distribution of θ = σ̃2/σ2, after
a random sample x = {x1, . . . , xn} of size n ≥ 2 has been observed, is the (always proper)
gamma density

π(θ |x) = π(θ |n, s2, σ̃2) = Ga
µ

θ
ØØØ

n− 1
2

, ns2

2σ̃2

∂
, n ≥ 2, (21)

where, again, s2 is the MLE of σ2. Hence, the intrinsic estimator of the normal variance is that
value σ2

int of σ̃2 which minimizes the expected posterior loss, i.e.,

σ2
int = arg min

σ̃2
d(σ̃2 |n, s2),

d(σ̃2 |n, s2) =
Z 1

0
δ(θ)π(θ |n, s2, σ̃2) dθ

, (22)

where δ(θ) is given by (20) and π(θ |n, s2, σ̃2) is the gamma density (21). Since (21) implies
that the reference posterior distribution of τ = ns2/σ2 is a central χ2

n−1, the expected posterior
loss from using σ̃2 may further be written as

d(σ̃2 |n, s2) = d(a |n) =
Z 1

0
δ(a τ)χ2(τ |n− 1) dτ, a =

σ̃2

ns2
. (23)

Thus, the intrinsic estimator is an affine equivariant estimator of the form

σ2
int(n, s2) = c(n) s2, c(n) = na∗n, (24)

where a∗n is the value of awhichminimisesd(a |n) in (23). The exact value of a∗n, and hence that
of c(n) = na∗n, may be numerically found by one-dimensional numerical integration followed
by numerical optimization. This is tabulated in Table 1, and represented in Figure 3. It may
be appreciated that c(2) ≈ 5 and that, for n > 4, c(n) is reasonably well approximated by its
asymptotic limit, n/(n− 2).

Table 1. Exact valueandapproximationof the intrinsic estimatorof the normal variance σ2
int = c(n) s2.

n c(n) n/(n− 2)

2 4.982 —
3 2.357 3.000
4 1.803 2.000
5 1.569 1.667
6 1.440 1.500
7 1.359 1.400
8 1.303 1.333
9 1.262 1.286
10 1.231 1.250
20 1.106 1.111
30 1.069 1.071
40 1.051 1.053
50 1.041 1.042
60 1.034 1.034
70 1.029 1.029
80 1.025 1.026
90 1.022 1.023
100 1.020 1.020
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Figure 3. The intrinsic estimator of the normal variance is σ2
int = c(n) s2. The exact values of c(n),

n > 2, are represented by dots and its approximation n/(n− 2) by a continuous line.

Summarizing, σ2
int(2, s

2) ≈ 5 s2, σ2
int(3, s

2) ≈ 2.4 s2, σ2
int(4, s

2) ≈ 1.8 s2 and, for
moderate sample sizes,

σ2
int(n, s2) ≈ n s2

n− 2
= σ̃2

n−2 (25)

which is larger than both the MLE (which divides by n the sum of squares) and that the conven-
tional unbiased estimate (which divides the sum of squares by n−1). Since intrinsic estimation
is consistent under one-to-one reparametrizations, the intrinsic estimator of the standard devi-
ation is just σint, the squared root of σ2

int, and the intrinsic estimator of, say, log σ is simply
log σint.

4. DISCUSSION

As mentioned before, the behaviour of each possible estimator is best described by its reference
posterior expected intrinsic loss,

d(σ̃2
i |n, s2) =

Z 1

0
δ{σ̃2

i ,σ
2}π(σ2 |n, s2) dσ2, (26)

which precisely measures, as a function of the relevant observed data (n, s2), the expected loss
to be suffered if σ̃2

i = σ̃2
i (n, s2)where used as a proxy for σ2. Notice that since the intrinsic loss

function δ in invariant under reparametrization, the value of the expected loss (26) is independent
of the particular parametrization chosen; for instance, d(σ̃i |n, s) = d(σ̃2

i |n, s).
It immediately follows form (23) that the expected intrinsic loss d(σ̃2

i |n, s2) of any affine
equivariant estimator σ̃2

i = kn s2 is actually independent of s2 and only depends on the sample
size n. Table 2 provides, for different n values, the expected posterior intrinsic loss which
correspond to the estimators σ2

int, σ̃2
n−1 and σ̃2

n+1 which are respectively the Bayes estimators
under the intrinsic loss, the entropy loss, and standardized quadratic loss.

It may be appreciated that with n = 2 the posterior expected loss of the intrinsic estimator
σ2

int is only 57% of that of the “straw man" σ̃2
n+1 and 86% of the conventional estimator σ̃2

n−1.
As one would expect, those very large relative gains decrease with the sample size, since all
those estimators converge to each other as n→1.
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Table 2. Reference expected posterior intrinsic losses and intrinsic risks associated to the use of the
intrinsic loss, the Stein loss and the quadratic loss Bayes estimators

.
n d(σ̃2

int |n, s2) d(σ̃2
n−1 |n, s2) d(σ̃2

n+1 |n, s2)
r(σ2

int |n,σ2) r(σ̃2
n−1 |n,σ2)) r(σ̃2

n+1 |n,σ2)

2 0.486 0.562 0.848
3 0.225 0.250 0.381
4 0.146 0.159 0.236
5 0.109 0.116 0.168
10 0.048 0.050 0.065
20 0.023 0.024 0.028
30 0.016 0.016 0.018
40 0.012 0.012 0.013
50 0.009 0.009 0.010

The frequentist behaviour of each possible estimator is conventionally described by its the
expected loss under sampling, i.e., its risk function

r(σ̃2
i |n,σ2) =

Z 1

0
δ{σ̃2

i ,σ
2} p(s2 |n,σ2) ds2. (27)

In this problem σ2 and s2 play dual roles from, respectively, a Bayesian and a frequentist
perspective. This follows from the interesting fact that the reference posterior distribution of
τ = n s2/σ2 is precisely the same as the sampling distribution of t = n s2/σ2, namely a
χ2

n−1 distribution. Since the intrinsic loss is symmetric, so that δ{σ̃2
i ,σ

2} = δ{σ2, σ̃2
i }, this

implies that the intrinsic risk of any affine equivariant estimator (the expected intrinsic loss
under repeated sampling) is precisely equal to its expected reference posterior loss, that is, for
all affine equivariant estimators σ̃2

i = kn s2,

r(σ̃2
i |n,σ2) = d(σ̃2

i |n, s2), n ≥ 2.

Hence, their risks for different sample sizes are also given by Table 2. This implies that, under
intrinsic loss, the intrinsic estimator dominates all affine equivariant estimators.

It follows form the preceding discussion that, it the arguments given for the general use of
the intrinsic discrepancy loss are accepted, then the optimal estimator of the normal variance
is the intrinsic estimator σ̃2

int given by (24), quite well approximated by σ̃2
n−2 for all but very

small samples. Moreover, since intrinsic estimation is an invariant procedure, the optimal
estimate of any one-to-one function √[σ2] of the normal variance is precisely √̃int = √[σ̃2

int].
Finally, the intrinsic estimator is also the best affine equivariant estimator under the frequentist
decision-theoretic criterion of minimizing the (intrinsic) risk.
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